CN109507194A - 一种增材制造过程中金属材料裂纹敏感性的评价方法 - Google Patents
一种增材制造过程中金属材料裂纹敏感性的评价方法 Download PDFInfo
- Publication number
- CN109507194A CN109507194A CN201811340749.5A CN201811340749A CN109507194A CN 109507194 A CN109507194 A CN 109507194A CN 201811340749 A CN201811340749 A CN 201811340749A CN 109507194 A CN109507194 A CN 109507194A
- Authority
- CN
- China
- Prior art keywords
- material manufacturing
- alloy
- increasing material
- crack sensitivity
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 68
- 230000035945 sensitivity Effects 0.000 title claims abstract description 39
- 239000007769 metal material Substances 0.000 title claims abstract description 34
- 238000011156 evaluation Methods 0.000 title claims abstract description 27
- 239000000956 alloy Substances 0.000 claims abstract description 44
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 42
- 208000037656 Respiratory Sounds Diseases 0.000 claims abstract description 25
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000000843 powder Substances 0.000 claims abstract description 20
- 238000005516 engineering process Methods 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 238000000227 grinding Methods 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims description 12
- 238000005422 blasting Methods 0.000 claims description 6
- 244000137852 Petrea volubilis Species 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 238000005253 cladding Methods 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000000356 contaminant Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 238000004445 quantitative analysis Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 239000004615 ingredient Substances 0.000 claims 1
- 230000008447 perception Effects 0.000 claims 1
- 239000004576 sand Substances 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 6
- 238000004458 analytical method Methods 0.000 abstract description 3
- 229910000601 superalloy Inorganic materials 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000009852 coagulant defect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000528 statistical test Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/30—Process control
- B22F10/34—Process control of powder characteristics, e.g. density, oxidation or flowability
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Plasma & Fusion (AREA)
- Signal Processing (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
本发明涉及增材制造技术领域,具体为一种增材制造过程中金属材料裂纹敏感性的评价方法。利用激光同轴送粉或粉末床铺粉在激光选区熔化的增材制造工艺,在金属基材上采用相同成形工艺制备不同的合金试样,根据合金试样剖面上裂纹面积百分比越大合金裂纹敏感性越大的规律,对金属材料裂纹敏感性进行评价。从而,在保证金属基材及增材制造工艺完全相同的情况下,通过分析所得样品中裂纹的面积百分比来定量评价合金的裂纹敏感性。裂纹面积百分比越大,合金裂纹敏感性约大。本发明方法简单易行,能快速准确的定量评价合金裂纹敏感性,可用于新合金成分优化设计,也可用于已有合金增材制造工艺适应性评价。
Description
技术领域:
本发明涉及增材制造技术领域,具体为一种增材制造过程中金属材料裂纹敏感性的评价方法。
背景技术:
激光熔覆技术是一种数字化与智能化的先进制造技术,它利用计算机设计三维图形,以合金粉末为初始材料,通过计算机控制,逐点扫描实现零部件的近净成形。该技术集设计与制造为一体,突破传统工艺制备多孔、网格、空心等复杂结构件的技术瓶颈,能够实现产品结构的复杂化、轻量化和低成本化,在航空、航天、核工程、动力能源、交通运输、医疗等领域应用前景广阔。
然而,增材制造技术成形钛合金、铝合金、高温合金、钢等金属构件时,有些合金成形性较好,成形过程中不易出裂纹,如:钛合金;但是有些塑性稍差的合金,成形时容易出现裂纹等凝固缺陷,如:镍基高温合金、TiAl金属间化合物等。裂纹问题已经成为制约增材制造技术在金属材料领域进一步推广应用的瓶颈问题。为此,在实际生产中,需选用裂纹形成倾向性低,即裂纹敏感性差的材料以保证构件的可成形性。鉴于此,本发明提出一种评价增材制造金属材料裂纹敏感性的方法。
发明内容:
本发明的目的在于提供一种增材制造过程中金属材料裂纹敏感性的评价方法,该方法可行性强,适用于所有金属材料。
本发明的技术方案是:
一种增材制造过程中金属材料裂纹敏感性的评价方法,利用同轴送粉或粉末床铺粉进行激光增材制造,在金属基材上采用相同成形工艺制备不同的合金试样,根据合金试样剖面上裂纹面积百分比越大合金裂纹敏感性越大的规律,对金属材料裂纹敏感性进行评价。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,所选金属基材微观组织结构相同,且具有恒定的尺寸,以保证基材热传导、界面处成分分布对待分析合金的影响相同。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,所评价金属材料为高温合金时,金属基材选择应为高温合金材料。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,增材制造过程中,不同合金试样的粉末粒度、激光功率、扫描速度工艺参数相同。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,采用激光增材制造技术制备裂纹敏感性分析样品,在激光熔覆前将待金属基板表面砂纸磨平并喷砂处理,而后利用激光增材制造技术将待分析金属粉末熔覆在试样表面,最后将试样从中间剖开,分析剖面上裂纹面积占试样总面积的百分比,以此表征增材制造过程中材料的裂纹敏感性。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,选用一种金属材料为基板,基板尺寸无明确限制,但需要横向对比的试样,基板材料与尺寸固定,采用砂纸将基板试样表面磨平,以去除表面污染物,而后采用喷砂处理,使试样表面呈现出的粗糙度为0.5~4.5Ra。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,利用计算机画图软件和增材制造切片软件,根据拟成形的样件形貌及尺寸,生成可控制激光扫描路径的程序,而后通过增材制造切片软件生成可控制激光扫描路径的程序。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,粉末使用之前进行100~200℃的烘干处理,在相同的增材制造工艺下进行试样制备。
所述的增材制造过程中金属材料裂纹敏感性的评价方法,增材制造之后将试样沿纵向从中间剖开,对剖面进行常规的金相观察,统计不同成分试样中裂纹的总面积占整个剖面面积的百分比,通过对比裂纹面积百分比来定量分析合金的裂纹敏感性。
本发明的设计思想是:
本发明在保证金属基材及增材制造工艺完全相同的情况下,通过分析所得样品中裂纹的面积百分比来定量评价合金的裂纹敏感性。裂纹面积百分比越大,合金裂纹敏感性约大。
本发明的优点及有益效果是:
1.本发明以裂纹面积百分比表明合金增材制造过程中的裂纹敏感性,方法简单易行,成本低,能快速准确的定量评价合金裂纹敏感性,因而该方法利于推广应用。
2.本发明可用于新合金成分优化设计,也可用于已有合金增材制造工艺适应性评价。
附图说明:
图1为激光增材制造制备试样的宏观形貌。
图2为不同合金试样的剖面组织;其中,(a)IN718,(b)M951,(c)K465。
具体实施方式:
在具体实施过程中,本发明增材制造过程中金属材料裂纹敏感性的评价方法,具体步骤如下:
(1)基体表面处理
采用砂纸将金属基材表面磨平,以去除表面污染物,而后采用喷砂处理,使基体表面洁净并呈现出一定的粗糙度。
(2)激光扫描路径规划
利用计算机画图软件(UG或CAD)和增材制造切片软件,根据拟成形的样件形貌及尺寸,生成可控制激光扫描路径的程序,而后通过增材制造切片软件生成可控制激光扫描路径的程序。
(3)激光增材制造
利用激光同轴送粉系统或激光选区熔化系统,通过同轴送粉或粉末床铺粉进行激光增材制造,采用完全相同的增材制造工艺将烘干好的待分析粉末进行熔覆成形。
(4)裂纹观察
将增材制造获得的试样沿纵向从中间剖开,对剖面进行金相观察,统计试样中裂纹面积百分比,通过对比裂纹面积百分比来分析合金的裂纹敏感性。
其中,激光增材制造过程非常重要。制造过程关键之一,采用氩气对试样进行保护以防止制造过程中O、N等杂质进入熔池;制造过程关键之二,激光束能量密度适中,能够保证试样成形过程中无熔合不良、大尺寸气孔等缺陷。
下面,通过实施例和附图对本发明进一步详细阐述。
实施例
本实施例中,按照本发明技术方案中所描述的方法在DZ40M钴基高温合金基材上制备IN718、M951和K465三种高温合金试样。DZ40M钴基高温合金基材为铸态,尺寸为Ф16mm×8mm,未进行热处理。本实施例所需IN718、M951和K465三种高温合金粉末为氩气雾化制备,粉末粒度为-100~+300目。采用同轴送粉的方法进行激光增材制造。试样成形前,将基材表面进行240#砂纸打磨,而后进行刚玉砂喷砂处理。将三种粉末进行150℃/1h的烘干处理。成形时,所采用得激光功率为800W,激光光斑直径0.9mm,保护气体氩气压强为0.15MPa,光束扫描速度为800mm/min,道次之间搭接率为45%,送粉量为2.5g/min,送粉气体为Ar气。由此方法制备的试样宏观形貌如图1所示。
将成形后的试样进行金相观察,试样剖面的所有区域进行金相观察并拍照,统计每张照片中裂纹的面积百分比,而后取平均值作为该试样中裂纹的面积百分比。如图2所示,显示三种合金的金相照片,(a)图合金的裂纹面积百分比为0%,(b)图合金的裂纹面积百分比为0.3%,(c)图合金的裂纹面积百分比为1.1%。对比可见,K465合金增材制造过程中裂纹敏感性更大些。
实施例结果表明,本发明方法简单易行,能快速准确的定量评价合金裂纹敏感性,可用于新合金成分优化设计,也可用于已有合金增材制造工艺适应性评价。
Claims (9)
1.一种增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,利用同轴送粉或粉末床铺粉进行激光增材制造,在金属基材上采用相同成形工艺制备不同的合金试样,根据合金试样剖面上裂纹面积百分比越大合金裂纹敏感性越大的规律,对金属材料裂纹敏感性进行评价。
2.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,所选金属基材微观组织结构相同,且具有恒定的尺寸,以保证基材热传导、界面处成分分布对待分析合金的影响相同。
3.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,所评价金属材料为高温合金时,金属基材选择应为高温合金材料。
4.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,增材制造过程中,不同合金试样的粉末粒度、激光功率、扫描速度工艺参数相同。
5.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,采用激光增材制造技术制备裂纹敏感性分析样品,在激光熔覆前将待金属基板表面砂纸磨平并喷砂处理,而后利用激光增材制造技术将待分析金属粉末熔覆在试样表面,最后将试样从中间剖开,分析剖面上裂纹面积占试样总面积的百分比,以此表征增材制造过程中材料的裂纹敏感性。
6.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,选用一种金属材料为基板,基板尺寸无明确限制,但需要横向对比的试样,基板材料与尺寸固定,采用砂纸将基板试样表面磨平,以去除表面污染物,而后采用喷砂处理,使试样表面呈现出的粗糙度为0.5~4.5Ra。
7.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,利用计算机画图软件和增材制造切片软件,根据拟成形的样件形貌及尺寸,生成可控制激光扫描路径的程序,而后通过增材制造切片软件生成可控制激光扫描路径的程序。
8.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,粉末使用之前进行100~200℃的烘干处理,在相同的增材制造工艺下进行试样制备。
9.按照权利要求1所述的增材制造过程中金属材料裂纹敏感性的评价方法,其特征在于,增材制造之后将试样沿纵向从中间剖开,对剖面进行常规的金相观察,统计不同成分试样中裂纹的总面积占整个剖面面积的百分比,通过对比裂纹面积百分比来定量分析合金的裂纹敏感性。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811340749.5A CN109507194A (zh) | 2018-11-12 | 2018-11-12 | 一种增材制造过程中金属材料裂纹敏感性的评价方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811340749.5A CN109507194A (zh) | 2018-11-12 | 2018-11-12 | 一种增材制造过程中金属材料裂纹敏感性的评价方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109507194A true CN109507194A (zh) | 2019-03-22 |
Family
ID=65747967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811340749.5A Pending CN109507194A (zh) | 2018-11-12 | 2018-11-12 | 一种增材制造过程中金属材料裂纹敏感性的评价方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109507194A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067781A (zh) * | 2020-08-21 | 2020-12-11 | 平顶山平煤机煤矿机械装备有限公司 | 用于液压支架结构件焊接冷裂纹敏感性的试验方法 |
CN113237908A (zh) * | 2021-04-30 | 2021-08-10 | 北京科技大学 | 一种评定亚包晶钢裂纹敏感性的方法 |
CN113777270A (zh) * | 2021-08-18 | 2021-12-10 | 中国航发北京航空材料研究院 | 高温合金粉末热裂敏感性和热裂敏感温度的表征方法 |
CN115932208A (zh) * | 2023-01-06 | 2023-04-07 | 江苏科技大学 | 一种激光熔覆裂纹敏感性的评价方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710038A (zh) * | 2008-09-14 | 2010-05-19 | 诺沃皮尼奥内有限公司 | 用于确定再热裂纹敏感性的方法 |
CN105436707A (zh) * | 2015-12-30 | 2016-03-30 | 哈尔滨工业大学 | 一种电磁感应同步预热辅助的基于激光増材制造的连接方法 |
CN106053477A (zh) * | 2016-06-27 | 2016-10-26 | 山东大学 | 一种高强度钢搭接接头焊接裂纹敏感性的评定方法 |
EP3192598A1 (de) * | 2016-01-14 | 2017-07-19 | MTU Aero Engines GmbH | Verfahren zum ermitteln einer konzentration wenigstens eines werkstoffs in einem pulver für ein additives herstellverfahren |
CN107316290A (zh) * | 2017-06-19 | 2017-11-03 | 中车戚墅堰机车车辆工艺研究所有限公司 | 一种铬陶瓷复合镀层网状裂纹定量检测方法 |
CN108330483A (zh) * | 2017-01-20 | 2018-07-27 | 中国科学院金属研究所 | 单晶高温合金基体上单晶MCrAlY涂层的激光熔覆成形方法 |
-
2018
- 2018-11-12 CN CN201811340749.5A patent/CN109507194A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101710038A (zh) * | 2008-09-14 | 2010-05-19 | 诺沃皮尼奥内有限公司 | 用于确定再热裂纹敏感性的方法 |
CN105436707A (zh) * | 2015-12-30 | 2016-03-30 | 哈尔滨工业大学 | 一种电磁感应同步预热辅助的基于激光増材制造的连接方法 |
EP3192598A1 (de) * | 2016-01-14 | 2017-07-19 | MTU Aero Engines GmbH | Verfahren zum ermitteln einer konzentration wenigstens eines werkstoffs in einem pulver für ein additives herstellverfahren |
CN106053477A (zh) * | 2016-06-27 | 2016-10-26 | 山东大学 | 一种高强度钢搭接接头焊接裂纹敏感性的评定方法 |
CN108330483A (zh) * | 2017-01-20 | 2018-07-27 | 中国科学院金属研究所 | 单晶高温合金基体上单晶MCrAlY涂层的激光熔覆成形方法 |
CN107316290A (zh) * | 2017-06-19 | 2017-11-03 | 中车戚墅堰机车车辆工艺研究所有限公司 | 一种铬陶瓷复合镀层网状裂纹定量检测方法 |
Non-Patent Citations (2)
Title |
---|
邵玉呈等: "关于Deloro 40镍基合金粉末激光增材制造成型件裂纹问题研究", 《应用激光》 * |
郭学廉: "《庆祝北京航空航天大学建校四十周年优秀学术论文集 1952-1992》", 31 October 1992 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112067781A (zh) * | 2020-08-21 | 2020-12-11 | 平顶山平煤机煤矿机械装备有限公司 | 用于液压支架结构件焊接冷裂纹敏感性的试验方法 |
CN112067781B (zh) * | 2020-08-21 | 2023-09-19 | 平顶山平煤机煤矿机械装备有限公司 | 用于液压支架结构件焊接冷裂纹敏感性的试验方法 |
CN113237908A (zh) * | 2021-04-30 | 2021-08-10 | 北京科技大学 | 一种评定亚包晶钢裂纹敏感性的方法 |
CN113777270A (zh) * | 2021-08-18 | 2021-12-10 | 中国航发北京航空材料研究院 | 高温合金粉末热裂敏感性和热裂敏感温度的表征方法 |
CN113777270B (zh) * | 2021-08-18 | 2024-01-12 | 中国航发北京航空材料研究院 | 高温合金粉末热裂敏感性和热裂敏感温度的表征方法 |
CN115932208A (zh) * | 2023-01-06 | 2023-04-07 | 江苏科技大学 | 一种激光熔覆裂纹敏感性的评价方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109507194A (zh) | 一种增材制造过程中金属材料裂纹敏感性的评价方法 | |
Li et al. | High deposition rate powder-and wire-based laser directed energy deposition of metallic materials: A review | |
Liu et al. | Parameter optimization and experimental study of the sprocket repairing using laser cladding | |
Caiazzo et al. | Laser powder-bed fusion of Inconel 718 to manufacture turbine blades | |
Garcia-Colomo et al. | A comparison framework to support the selection of the best additive manufacturing process for specific aerospace applications | |
Liu et al. | TC17 titanium alloy laser melting deposition repair process and properties | |
Caiazzo | Laser-aided Directed Metal Deposition of Ni-based superalloy powder | |
Song et al. | Rebuilding of metal components with laser cladding forming | |
Glukhov et al. | Quality management of metal products prepared by high-speed direct laser deposition technology | |
Wang et al. | Influences of deposition strategies and oblique angle on properties of AISI316L stainless steel oblique thin-walled part by direct laser fabrication | |
He et al. | Experimental study on the fabrication profile and mechanical properties by substrate-inclined angle using laser melting deposition (LMD) integrating with the substrate of stainless steel | |
WO2020131276A1 (en) | Method for manufacturing metal components using recycled feedstock and additive manufacturing | |
Jafarlou et al. | Structural integrity of additively manufactured stainless steel with cold sprayed barrier coating under combined cyclic loading | |
Lu et al. | Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel | |
Ramiro et al. | Characteristics of Fe-, Ni-and Co-based powder coatings fabricated by laser metal deposition without preheating the base material | |
Vinod et al. | A novel technique for reducing lead-time and energy consumption in fabrication of Inconel-625 parts by laser-based metal deposition process | |
Liu et al. | Investigations of energy density effects on forming accuracy and mechanical properties of Inconel 718 fabricated by LENS process | |
Bhargava et al. | Tandem rapid manufacturing of Inconel-625 using laser assisted and plasma transferred arc depositions | |
Kong et al. | High-rate laser metal deposition of Inconel 718 component using low heat-input approach | |
Tillmann et al. | Vacuum brazing of 316L stainless steel based on additively manufactured and conventional material grades | |
Wang et al. | Post-processing Techniques for Metal-based Additive Manufacturing: Towards Precision Fabrication | |
Loginova et al. | Peculiarities of the microstructure and properties of parts produced by the direct laser deposition of 316L steel powder | |
Liu et al. | A Review of the Anomalies in Directed Energy Deposition (DED) Processes and Potential Solutions | |
Burad et al. | Characterization of additive manufactured inconel 718 alloy using laser cladding | |
Fomin et al. | Optimization of laser cladding of cold spray coatings with B4C and Ni powders |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190322 |