CN109490232B - 一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法 - Google Patents

一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法 Download PDF

Info

Publication number
CN109490232B
CN109490232B CN201811617930.6A CN201811617930A CN109490232B CN 109490232 B CN109490232 B CN 109490232B CN 201811617930 A CN201811617930 A CN 201811617930A CN 109490232 B CN109490232 B CN 109490232B
Authority
CN
China
Prior art keywords
temperature
probe
silver nanoparticle
detecting
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811617930.6A
Other languages
English (en)
Other versions
CN109490232A (zh
Inventor
刘训恿
戴雨晴
刘毅
夏云霞
陈钱
朱晨雪
边杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ludong University
Original Assignee
Ludong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ludong University filed Critical Ludong University
Priority to CN201811617930.6A priority Critical patent/CN109490232B/zh
Publication of CN109490232A publication Critical patent/CN109490232A/zh
Application granted granted Critical
Publication of CN109490232B publication Critical patent/CN109490232B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种基于超支化温敏聚合物为模板制备的温敏型银纳米粒子探针用于海水中Cu2+检测与分离的方法。该探针的制备方法是以超支化温敏聚合物为稳定剂和模板,通过抗坏血酸还原硝酸银制备出了温敏银纳米粒子。当Cu2+存在时,该探针出现紫外‑可见特征吸收和荧光强度双重变化响应。该方法通过紫外‑可见特征峰强度和荧光猝灭程度变化,可分别在2×10‑6‑2×10‑5 mol/L和4.2×10‑6‑2.1×10‑5 mol/L的浓度范围内实现对Cu2+的高灵敏检测,其线性相关系数分别为0.9900和0.9935。该探针对Cu2+的检测具有高的选择性,不受干扰离子的影响。同时,加热含有Cu2+的探针体系至超支化温敏聚合物溶液浊点以上,可使Cu2+及使用后的银纳米粒子探针随超支化温敏聚合物一起沉淀析出,对Cu2+及使用后的银纳米粒子的分离效率都在95%以上,可有效消除其对环境的危害。

Description

一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的 制备方法
技术领域
本发明涉及纳米传感领域,具体涉及一种温敏银纳米探针的制备方法及其对海水中铜离子的荧光、比色检测与分离应用。
背景技术
海洋是整个地球水循环的源泉,不仅所需要的淡水源自于海洋,一部分食物也源自于海洋。近年来,由于海水养殖、生活垃圾和工业废料对近海岸区域造成严重的污染,二价铜离子(Cu2+)成为了导致海水污染的主要污染物之一。虽然,Cu2+相对其他重金属离子毒性较弱,但是过量的Cu2+会危害人的机能,损害人体肝脏、诱发血液疾病,此外还会影响其他生物体的基本生理活动。美国环境保护署允许饮用水中Cu2+限度为1.3 ppm(约20 μM)。因此,有效检测与分离海水中的Cu2+,尤其是实现对近海岸区域内海水中Cu2+的快速检测与富集分离迫在眉睫。
现有的Cu2+检测手段主要有原子吸收光谱法、电感耦合等离子体-质谱法、电感耦合等离子体-原子发射光谱法、石英晶体微天平检测技术等。这些方法都需要昂贵的仪器成本支出和专业的操作人员,分析时间长,还对工作环境有较高的要求,难以普及应用。而基于贵金属纳米粒子的比色检测和荧光法由于操作方便、响应快,而在现场实时快检方面被广泛应用。但面对成分复杂的海水体系,单纯依靠比色或荧光强度变化一种信号响应,很容易出现假信号响应,造成目标物的检测准确度降低。本发明为了解决以上问题,拟构建基于比色和荧光同时响应的海水中Cu2+的检测方法,提高其检测准确度。借助于超支化聚合物的多官能团和类球形结构提高银纳米探针的稳定性,使该其能够适应高盐的海水环境。
同时,目前比色或荧光探针大部分都只有检测功能,而检测后对Cu2+及使用后的探针的有效分离和回收也尤为重要。本发明基于聚合物的温敏特性还可实现对Cu2+及使用后的探针的分离,加热含有Cu2+的聚合物溶液达到体系浊点,待沉淀分层后,即可富集或分离Cu2+及使用后的探针。
发明内容
本发明针对现有技术的不足,提供一种兼高灵敏度、高选择性、低成本的一种用于检测与分离海水中Cu2+的温敏银纳米探针的制备方法。该方法适用于快速现场检测Cu2+,特别适用于海水体系Cu2+含量超标的快速检出,并可在检测后,对Cu2+及探针进行富集分离。
解决上述技术问题,本发明中采用的技术方案是:
1. 探针的合成
步骤1:超支化温敏聚合物的制备
在氮气保护下,向超支化聚乙烯亚胺(HPEI)的氯仿溶液中依次加入不同量的异丁酸酐、三乙胺,置于常温下搅拌1-2天后,升温至 40-65℃反应1-5 h,通过洗涤、透析脱除小分子副产物,干燥后制得不同温敏基团取代度的超支化温敏聚合物。
步骤2:温敏银纳米粒子探针的制备
将上述的超支化温敏聚合物溶于一定体积的水中,再加入一定量的AgNO3溶液混合均匀,加入还原剂,快速搅拌一段时间后,得到浅黄色的温敏型银纳米粒子溶液。
2. 探针的应用
将一定浓度的Cu2+海水溶液和抗坏血酸海水溶液加至一定量的温敏型银纳米粒子溶液中,检测体系紫外-可见吸收光谱和荧光强度变化。
3. Cu2+及探针的富集分离
加热含有Cu2+及探针的聚合物溶液达到体系浊点,待沉淀分层后,测定Cu2+及探针的分离效率。
该荧光检测传感器对Ba2+, Mg2+, Pb2+, Na+, Cd2+, Ni2+, Hg2+, Mn2+, Sr2+, Cs+,Zn2+等金属离子的荧光检测均无明显的变化,而Cu2+可使其发生快速的荧光猝灭。
与现有技术相比,本发明的有益效果:
本发明克服现有技术的不足,基于温敏型银纳米探针可单一的被Cu2+猝灭,使该超支化温敏聚合物稳定的银纳米粒子可作为Cu2+检测的荧光探针,建立了一种快速检测铜离子的荧光方法。
本发明中,探针具有比色、荧光双重响应信号,能够方便快捷的检测海水中的Cu2+,具有很高的应用价值。
本发明中,荧光探针具有很高的灵敏度,响应时间快速,其对海水中Cu2+的最低检测浓度低至2.00 µM,具有很高的实用性,也为突发Cu2+危害的应急及在线监控提供了实际参考价值。
本发明中,温敏基团的引入赋予此新型探针兼有检测和对Cu2+及使用后的探针的高效分离和回收的功能,为其在检测和分离方面的实际应用提供了有效依据。
附图说明
图1:海水中不同浓度Cu2+存在时体系(A)紫外-可见吸收光谱和(B)其线性关系拟合图。
图2:海水中不同浓度Cu2+存在时体系(A)荧光光谱和(B)其线性关系拟合图。
具体实施方式
本发明所要解决的技术问题是提供一种简单、高稳定性的探针的制备方法和快速检测和分离Cu2+的应用新技术,下面结合实施例对本发明做进一步的描述:
为实现上述发明目的,本发明采用如下技术方案:
实施例1:超支化温敏聚合物的制备
在氮气保护下,向15 mL溶有2.50 g HPEI的氯仿溶液中,加入3.78 g三乙胺,再缓慢滴加异丁酸酐 5.37 g,置于常温下搅拌24 h后,升温至 60 ℃保温3 h后,结束反应,通过洗涤、透析脱除小分子副产物,干燥后制得超支化温敏聚合物。
实施例2:温敏银纳米粒子探针的制备
先将0.25 g 超支化温敏聚合物溶于90 mL水中,加0.00025 mol/L的AgNO3溶液10mL,搅拌2 h后,加入0.0528 g抗坏血酸,10 min后,体系呈浅黄色,继续搅拌反应两天后,得到温敏银纳米粒子溶液。
实施例3:探针检测方法的构建和检测灵敏度的研究
在本发明中,以温敏银纳米粒子作为检测探针,检测海水体系中Cu2+的存在。在检测过程中,当存在Cu2+时,由荧光光谱可以看出荧光发生了明显猝灭,从而达到证明海水中Cu2+存在的目的。
本实施例中,取0-2.0 mL 3.2 mmol/L Cu2+的海水溶液于12.5 mmol/L温敏银纳米粒子溶液中,并加入0.75-3 mL 浓度为16.0 mmol/L的抗坏血酸,检测体系最终定容6 mL,通过荧光光谱和紫外-可见吸收光谱来验证探针对Cu2+检测的灵敏度,由检测结果得图1。由图1可知,随着Cu2+浓度的增加温敏银纳米粒子溶液紫外-可见吸收光谱的特征吸收呈线性增加,其线性相关系数R 2为0.9900,对海水中Cu2+的最低检测浓度为2.00 µM。同时,由图2可知,Cu2+浓度与荧光强度降低程度也呈线性关系(R 2为0.9935),故还可以通过测定荧光强度确定Cu2+浓度。即基于荧光和紫外-可见吸收光谱两种信号响应实现了对Cu2+的高专一、高灵敏检测。
实施例4:干扰实验
在超支化温敏聚合物稳定的银纳米粒子作为探针检测Cu2+的实验中,同时选用多种离子(Ba2+, Mg2+, Pb2+, Na+, Cd2+, Ni2+, Hg2+, Mn2+, Sr2+, Cs+, Zn2+)作为干扰离子来考察探针的检测选择性。分别取0.5 mL 32.0 mmol/L干扰金属离子溶液于2 mL 12.5mmol/L温敏型银纳米粒子溶液中,加入2.0 mL 浓度为64.0 mmol/L的抗坏血酸,并使检测体系最终定容6 mL。实验结果表明,加入相同浓度的其它金属离子均未使体系荧光强度和紫外-可见特征吸收强度发生明显变化,即本发明的探针检测Cu2+具有较好的特异性。
实施例5:Cu2+及探针的富集分离
加热实施例3中Cu2+浓度分别为3.3 µM, 6.7 µM和16.7 µM溶液至体系浊点,待沉淀分层后,离心分离,通过电感耦合等离子光谱仪(ICP)和紫外-可见吸收光谱仪分别测定上层清液中Cu2+及银纳米粒子探针的含量。根据ICP检测数据表明,该方法对三种浓度溶液中Cu2+的分离效率分别为95.8%,96.7%和98.3%。同时,紫外-可见吸收光谱检测无特征峰吸收,表明使用后的银纳米粒子已被高效分离。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的相关内容和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于包括以下步骤:
在氮气保护下,向超支化聚乙烯亚胺(HPEI)的氯仿溶液中依次加入不同量的异丁酸酐、三乙胺,置于常温下搅拌1-2天后,升温至 40-65℃反应1-5 h,通过洗涤、透析脱除小分子副产物,干燥后制得温敏基团的取代度为0.6-0.95的超支化温敏聚合物;将上述超支化温敏聚合物溶于一定体积的水中,再加入一定量的AgNO3溶液混合均匀,加入还原剂,快速搅拌一段时间后,制备出浅黄色的温敏型银纳米粒子溶液;然后,将一定浓度的Cu2+海水溶液和抗坏血酸海水溶液加至一定量的温敏型银纳米粒子溶液中,检测体系紫外-可见吸收光谱和荧光强度变化;加热含有Cu2+及探针的聚合物溶液达到体系浊点,待沉淀分层后,测定Cu2+及探针的分离效率。
2.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,制备银纳米粒子探针时超支化温敏聚合物的溶液浓度为1.00-5.00g/L。
3.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,AgNO3溶液浓度为0.10-0.50 mM。
4.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,Cu2+比色检测的浓度范围为0-8.3×10-5 mol/L。
5.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,Cu2+比色检测的浓度范围为2×10-6-2×10-5 mol/L。
6.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,Cu2+荧光检测的浓度范围为0-3.3×10-5 mol/L。
7.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,Cu2+荧光检测的浓度范围为4.2×10-6-2.1×10-5 mol/L。
8.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,对Cu2+及使用后的银纳米粒子的分离效率在95-99.6%。
9.根据权利要求1所述一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法,其特征在于,探针除适用于海水体系中铜离子的检测与分离外,还可用于饮用水、自来水、湖水以及河水体系。
CN201811617930.6A 2018-12-28 2018-12-28 一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法 Active CN109490232B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811617930.6A CN109490232B (zh) 2018-12-28 2018-12-28 一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811617930.6A CN109490232B (zh) 2018-12-28 2018-12-28 一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法

Publications (2)

Publication Number Publication Date
CN109490232A CN109490232A (zh) 2019-03-19
CN109490232B true CN109490232B (zh) 2021-09-21

Family

ID=65712805

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811617930.6A Active CN109490232B (zh) 2018-12-28 2018-12-28 一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法

Country Status (1)

Country Link
CN (1) CN109490232B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596061A (zh) * 2019-09-19 2019-12-20 南京林业大学 基于BPEI-CuNCs荧光探针快速检测铜离子的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261228A (zh) * 2008-04-16 2008-09-10 厦门大学 一种铜离子荧光探针及其制备方法和用途
CN108077307A (zh) * 2016-11-23 2018-05-29 韩会义 一种聚乙烯亚胺包埋无色纳米银抗菌剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101261228A (zh) * 2008-04-16 2008-09-10 厦门大学 一种铜离子荧光探针及其制备方法和用途
CN108077307A (zh) * 2016-11-23 2018-05-29 韩会义 一种聚乙烯亚胺包埋无色纳米银抗菌剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sensitive and Selective Detection of Copper Ions with Highly Stable Polyethyleneimine-Protected Silver Nanoclusters;Yuan Zhiqin等;《Anal. Chem》;20131125;第86卷;第420页左栏第3段-第423页右栏第2段 *
Simultaneous enrichment, separation and detection of mercury(II) ions using cloud point extraction and colorimetric sensor based on thermoresponsive hyperbranched polymer–gold nanocomposite;Liu Yi等;《Anal.Methods》;20151017;第7卷;第10152页右栏第5段-10153页右栏第2段,图2B *

Also Published As

Publication number Publication date
CN109490232A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
Bloom et al. The quantitation of aqueous aluminum
Wimmer et al. New insights into the formation of silver-based nanoparticles under natural and semi-natural conditions
Lin et al. Determination of iron in seawater: from the laboratory to in situ measurements
Yang et al. Fluorescent paper sensor fabricated by carbazole-based probes for dual visual detection of Cu 2+ and gaseous H 2 S
Liu et al. Fluorescent silver nanoclusters for user-friendly detection of Cu 2+ on a paper platform
CN109342384B (zh) 一种检测氰离子的可视化比率荧光体系及其制备方法和应用
Fan et al. Use of polymer-bound Schiff base as a new liquid binding agent of diffusive gradients in thin-films for the measurement of labile Cu2+, Cd2+ and Pb2+
Li et al. PAR immobilized colorimetric fiber for heavy metal ion detection and adsorption
CN111690405B (zh) 一种荧光碳点及其制备方法和在检测铜离子中的应用
CN110940648B (zh) 一种绿色荧光碳量子点的合成方法及在检测亚硝酸盐中的应用
CN102519924A (zh) 一种快速免标记检测铅离子的方法
Tan et al. Disposable carbon dots modified screen printed carbon electrode electrochemical sensor strip for selective detection of ferric ions
CN109490232B (zh) 一种用于检测与分离海水中铜离子的温敏银纳米粒子探针的制备方法
CN102608091A (zh) 一种快速免标记检测硫离子的方法
CN101122593B (zh) 一种淡水环境重金属污染和微量元素积累的贝类监测方法
Mohammadi et al. Flame atomic absorption spectrometric determination of trace amounts of palladium, gold and nickel after cloud point extraction
Augelli et al. Chronopotentiometric stripping analysis using gold electrodes, an efficient technique for mercury quantification in natural waters
CN103901006B (zh) 基于ZnO量子点检测镉离子的试剂及方法
Zhou et al. Highly sensitive and selective colorimetric detection of iodide based on anti-aggregation of gold nanoparticles
CN1687753A (zh) 一种快速检测重金属镉的试纸、制备方法和应用
Mahmoud et al. Static removal of cadmium from aqueous and nonaqueous matrices by application of layer-by-layer chemical deposition technique
CN110907589B (zh) 一种基于GQDs光催化可视化检测Cu2+的方法
CN108392853B (zh) 一种固相萃取柱及其制备方法与应用
CN103217416B (zh) 检测二价汞离子的检测组合物、方法与试剂盒
CN108760702B (zh) 一种硫离子的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant