CN109479203A - 控制节点及其方法 - Google Patents
控制节点及其方法 Download PDFInfo
- Publication number
- CN109479203A CN109479203A CN201680085882.3A CN201680085882A CN109479203A CN 109479203 A CN109479203 A CN 109479203A CN 201680085882 A CN201680085882 A CN 201680085882A CN 109479203 A CN109479203 A CN 109479203A
- Authority
- CN
- China
- Prior art keywords
- control node
- association
- csi
- group
- remote radio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/52—Allocation or scheduling criteria for wireless resources based on load
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/0205—Traffic management, e.g. flow control or congestion control at the air interface
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/085—Access point devices with remote components
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及控制节点。第一控制节点(100)包括:收发器(102),其被配置成接收包括用于多个第一远程射频头(410a,410b,...,410n)与多个用户设备(500a,500b,...,500n)之间的无线信道的信道状态信息CSI的第一组信道状态信息CSI;和处理器(104),其被配置成基于第一组CSI来确定第一关联(110),其中,第一关联(110)包括所述多个第一远程射频头(410a,410b,...,410n)与第一控制节点(100)之间的关联。此外,本发明还涉及对应的方法、蜂窝无线通信系统、计算机程序和计算机程序产品。
Description
技术领域
本发明涉及控制节点。此外,本发明还涉及对应的方法、无线通信系统、计算机程序和计算机程序产品。
背景技术
传统地,蜂窝网络采用固定的基础设施天线结构来支持用户数据请求。这种结构中最突出的要素是基站,基站利用一定空间区域中的一组无线资源,导致在较大区域上(例如,在城市中)部署许多基站以实现覆盖。在这种给定的结构中,用户终端通常与一个基站相关联,只要用户处于其覆盖范围内,该基站就服务于用户。如果用户移动而超出覆盖范围,则通常执行切换,使得可以通过网络来保留用户体验。切换通常涉及用户与新基站的关联导致主干网中积压的和新到达的数据重定向到新基站。
在这些应用最先进技术的系统中,除了上述的切换现象以外,还已知改变用户-基站关联的另外两种情境。
负载不均衡:如果与相邻基站相比,一个基站本地关联了更多用户,则可能调用负载均衡,其包括从过载小区切换选择的用户终端。几个原因可以导致这样的负载均衡动作,比如,回程的过载、随机接入信道的堵塞或者空中接口上的无线资源不足而无法服务于所有用户。
小区边缘用户:当用户终端位于一个小区的边界时,用户终端很可能经历很低的信号干扰噪声比(Signal to Interference and Noise Ratio,SINR)。另外,文献中提出并且在先进长期演进(Long Term Evolution,LTE)中实现的一种解决方案是:使用户终端同时与两个基站相关联。这被称为多点协作传输,其需要所涉及的基站的紧密同步,这是因为它们在相同的无线资源上在相同的时间点将数据符号发送至接收用户终端。在这种情况下,用户数据被同时转发至两个基站。此外,协调的多点具有可能减少相邻基站之间的干扰的优点。
最近,随着关于5G规范及其技术推动者的讨论的开始,新颖的蜂窝架构正在出现。这些架构中包括云无线接入网络(Cloud Radio Access Network,CRAN),这是为未来5G蜂窝网络提出的集中式云计算解决方案。通过采用大量密集设置的发送天线,CRAN能够实现5G规定的极高数据速率/面积频谱效率要求。更具体地,存在以下想法:部署大量所谓的远程射频头(Remote Radio Head,RRH),所述远程射频头本质上是在本地部署的具有低处理能力的天线阵列,被称为聚合节点(Aggregation Node,AN)的更集中的实体根据所述远程射频头的传输特性来控制它们。AN协调多个RRH的传输,因此要求将RRH分配给AN,建立所谓的天线域(Antenna Domain,AD)。在这种架构中,用户终端与一些RRH相关联,并且通过RRH与一些AN相关联。这种新颖的架构在服务于相关联的终端时具有显著优势,这是因为:可以协调多个RRH的传输,从而致使(除了其他问题以外)对干扰的细粒度控制。
在常规解决方案中,考虑一个单个天线域,并且假定由于有限的回程以及在AN处缺乏全局的发送器处信道状态信息(Channel State Information at the Transmitter,CSIT)而导致大联合(即,通过所考虑的AD中的所有RRH的协作传输)不可能。另外,这种常规解决方案研究了由于RRH聚集(当代替大联合时,由RRH形成本地联合)而导致的和速率的增益与能量效率的增益。作者假定每个RRH簇内的传输策略被固定为块对角/迫零波束成形(Block Diagonal/Zero-Forcing Beamforming,BD/ZFBF)。于是,对于每个RRH簇,作者使用随机几何概念为每个用户(给定某个预先指定的阈值SINR)计算成功的接入(即,覆盖)概率;然后使该覆盖概率乘以确定性的/预先指定的速率,以计算每个簇的和速率。然后利用这个和速率构造效用函数,以建立联合形式博弈来解决RRH聚集问题;然后使用合并方法和分离方法来解决联合形式博弈。如预期的,提出的方案在大联合方案与非联合方案(两种极端情况)之间进行。
在另一种常规解决方案中,考虑了单个天线域,其中每个RRH通过受约束的回程链路连接至AN。此外,假定不同RRH的回程链路具有不同容量。然后将每RRH回程约束重新制定为等效的每RRH发送功率约束。它们然后通过对RRH进行静态/动态以用户为中心聚集(即,多个RRH联合服务用户,类似于CoMP)来解决加权和速率最大化问题,而一个簇中的RRH采用加权最小均方误差(Weighted Minimum Mean Square Error,WMMSE)预编码方案。作者还提出了一些启发式的次优的RRH聚集方法。与本文献中可用的简单的RRH聚集方法相比,仿真结果显示了所提出的方法的性能增益。
在CRAN架构的上下文中,常规解决方案产生几个主要缺点。
AD之间的干扰:尽管常规解决方案一直研究对AD内的若干簇之间的干扰进行均衡的技术,但是除了采用传统的基于RRM的干扰减轻技术以外,如何处理相邻AD之间的干扰未得到解决。
AN的回程限制:此外,如何处理每个AD的回程上的容量限制或者如何处理关于RRH与AN之间的回程的容量限制完全未得到解决。
RRH与用户终端之间的空中接口上的无线资源限制/控制信道的限制/随机接入信道的限制:在CRAN中如何处理在多个AN和多个RRH感兴趣的特定区域上强烈变化的用户分布,即,除了采用传统的负载均衡技术以外,如何在CRAN中执行负载均衡未得到解决。
处理RRH或AN的限制:如何处理关于任何RRH(如果它们配备有这样的资源)的处理能力的限制以及/或者如何处理AN处的处理限制都未得到解决。
发明内容
本发明的实施方式的目的是提供一种减轻或解决常规解决方案的缺陷和问题的解决方案。
本发明的实施方式的另一目的是提供允许在无线通信系统中形成和重新形成天线域的机制。
以上目的和另外的目的通过独立权利要求的主题来实现。本发明的另外的有利实现形式由从属权利要求限定。
根据本发明的第一方面,利用用于无线通信系统的第一控制节点来实现上述目的和其他目的,第一控制节点包括:
收发器,被配置成:
接收包括用于多个第一远程射频头与多个用户设备之间的无线信道的信道状态信息CSI的第一组信道状态信息CSI;和
处理器,被配置成:
基于第一组CSI来确定第一关联,其中,第一关联包括多个第一远程射频头与第一控制节点之间的关联。
表述“关联”在这种上下文中的含义可能意味着RRH到控制节点的逻辑分配。这可以例如涉及用户设备的管理,用户设备进而与其RRH相关联。因此,用户设备的管理可能由控制节点通过与其相关联的RRH执行。
根据第一方面的第一控制节点提供了超过常规解决方案的许多优点。
一个这样的优点是:对于给定的用户关联以及因此对于给定的信道条件而言干扰最小化;解决了天线域形成(Antenna Domain Formation,ADF)问题,以使感兴趣区域(Areaof Interest,Aol)内的干扰泄漏最小化。
另一优点是:通过考虑每个控制节点/每个RRH处理约束以解决ADF问题并相应地在不同的天线域上重新分配负载来有效利用网络资源。这也将导致更鲁棒的网络,其可以更考究地处理用户负载的突然波动。
此外,上述两种效果将最终导致系统吞吐量的显著增加、用户公平性、更好的性能、网络容量的增加、能量效率的提高等。
利用根据第一方面的第一控制节点来实现以下特点:由于不同AD之间干扰减少和/或回程链路上的拥塞较低和/或对每个控制节点而言较低的计算负荷和/或为每个RRH分配较少数目的用户终端等而导致的对每个用户终端而言更好的性能(即,更高的吞吐量、更高的可靠性、更短的等待时间等)。
通过更好地管理AD之间的干扰、在AD之间更均衡地分配负载、更均衡的回程利用以及对每个控制节点而言更低的计算负荷来提高整体网络容量(就满意的用户而言)是另外的效果。在其针对网络负载的显著(突然)增加而与现有服务水平协议一致地作出反应的能力方面,这些系统效果还提高了网络鲁棒性。
此外,由于更好的干扰管理以及RRH和/或控制节点的动态激活和去激活而导致降低了在空中接口上花费的发送功率,从而降低了网络的功耗,因此提高了能量效率。
在根据第一方面的控制节点的第一可能的实现形式中,处理器被配置成通过以下操作来确定第一关联:
基于所述第一组CSI来计算所述多个第一远程射频头和多个用户设备之间的至少一个
交叉耦合;以及
基于所计算的交叉耦合来确定第一关联。
该实现形式的优点在于:交叉耦合是关于可以针对改进的性能计算第一关联的适当措施。
在根据第一方面的第一实现形式的控制节点的第二可能的实现形式中,处理器被配置成通过以下操作来确定第一关联:
针对第一候选关联来计算所述多个第一远程射频头与多个用户设备之间的第一交叉耦合;
针对第二候选关联来计算所述多个第一远程射频头与多个用户设备之间的至少一个第二交叉耦合;以及
通过选择具有最低交叉耦合的第一候选关联或第二候选关联来确定第一关联。
这种实现形式的优点在于:通过比较不同的候选可以实现甚至更好的性能。
在根据第一方面的第二实现形式的控制节点的第三可能的实现形式中,处理器被配置成通过以下操作迭代地确定第一关联:
在迭代中计算第一交叉耦合;
在随后的迭代中计算第二交叉耦合;以及
在后续迭代中确定第一关联。
当满足标准时,可以停止迭代。例如,期望的性能如:用于多个用户设备的系统比特率、多个用户设备之间的比特率公平性或者多个用户设备的比特率百分比。
这种实现形式的优点在于:通过朝着解(solution)进行迭代,可以实现甚至更好的性能。
在根据第一方面的前述实现形式中任一项的控制节点的第四可能的实现形式中,收发器被配置成:
从第二控制节点接收第二组CSI,其中,所述第二组CSI包括用于多个第二远程射频头与多个用户设备之间的无线信道的CSI,
其中,所述处理器被配置成:
基于所述第一组CSI和所述第二组CSI的结合(concatenation)来确定第一关联。
由于第一组CSI和第二组CSI来自不同的RRH,因此第一组CSI和第二组CSI互不相关。所以,将第一组CSI和第二组CSI结合。
这种实现形式的优点在于:通过使多于一个的控制节点相互作用并彼此协作,可以实现甚至更好的系统性能。例如,可以将RRH与控制节点之间的距离id保持为较小,协作区域可以使得能够实现RRH之间的低延迟协作以获得更好的性能,同时仍然受益于当前的ADF算法。
在根据第一方面的第四实现形式的控制节点的第五可能的实现形式中,收发器被配置成:
将第一关联发送至第二控制节点。
这种实现形式的优点在于:可以在系统中的不同控制节点之间进行相关信息的交换,以实现甚至更好的系统性能。
在根据第一方面的第四或第五实现形式的控制节点的第六可能的实现形式中,收发器被配置成:
将第一组CSI发送至第二控制节点。
这种实现形式的优点在于:通过进一步共享CSI信息,将使当前的ADF甚至更强大,从而产生更高的性能。
在根据第一方面的第四、第五或第六实现形式的控制节点的第七可能的实现形式中,处理器被配置成:
确定第一触发,所述第一触发包括针对第二控制节点的用于确定所述多个第二远程射频头与第二控制节点之间的第二关联的指令,
其中,收发器被配置成:
将第一触发发送至第二控制节点。
可以基于以下中至少之一来确定第一触发:第一控制节点的计算负荷;以及第一控制节点与所述多个第一远程射频头中的至少一个第一远程射频头之间的回程链路的容量利用率。
这种实现形式的优点在于:通过添加触发来启动当前的ADF算法,它可以减少控制节点之间的信令开销,使得仅在需要时才调用当前的ADF算法。这可以与使其一直运行相比较。
在根据第一方面的第四、第五、第六或第八实现形式的控制节点的第八可能的实现形式中,收发器被配置成:
从第二控制节点接收第二触发,第二触发包括针对第一控制节点的用于确定第一关联的指令,
其中,处理器被配置成:
响应于接收到第二触发来确定第一关联。
在根据第一方面的前述实现形式中任一项的控制节点的第九可能的实现形式中,收发器被配置成:
将第一关联发送至所述多个第一远程射频头。
该实现形式的优点在于:确保RRH获得更新的信息并且可以执行与指示的控制节点重新关联。
在根据第一方面的前述实现形式中任一项的控制节点的第十可能的实现形式中,所述多个第一远程射频头与第一控制节点之间的关联包括:所述多个第一远程射频头到第一控制节点的分配。
在根据第一方面的前述实现形式中任一项的控制节点的第十一可能的实现形式中,所述第一关联还包括所述多个第一远程射频头与多个用户设备之间的连接。
这种实现形式的优点在于:通过在控制节点、RRH和用户设备之间添加连接,对当前的ADF算法而言,第一关联是增加的自由度以进一步提高系统的性能。
根据本发明的第二方面,利用用于无线通信系统的方法来实现上述目的和其他目的,所述方法包括:
接收包括用于多个第一远程射频头与多个用户设备之间的无线信道的信道状态信息CSI的第一组CSI;以及
基于所述第一组CSI来确定第一关联,其中,第一关联包括所述多个第一远程射频头与第一控制节点之间的关联。
在根据第二方面的方法的第一可能的实现形式中,该方法包括:
基于第一组CSI来计算多个第一远程射频头与多个用户设备之间的至少一个交叉耦合;以及
基于所计算的交叉耦合来确定第一关联。
在根据第二方面的第一实现形式的方法的第二可能的实现形式中,所述方法包括:
针对第一候选关联来计算所述多个第一远程射频头与多个用户设备之间的第一交叉耦合;
针对第二候选关联来计算所述多个第一远程射频头与多个用户设备之间的至少一个第二交叉耦合;以及
通过选择具有最低交叉耦合的第一候选关联或第二候选关联来确定第一关联。
在根据第二方面的第二实现形式的方法的第三可能的实现形式中,所述方法包括:
在迭代中计算第一交叉耦合;
在随后的迭代中计算第二交叉耦合;以及
在后续的迭代中确定第一关联。
当满足标准时,可以停止迭代。例如,期望的性能如:用于多个用户设备的系统比特率、多个用户设备之间的比特率公平性或者多个用户设备的比特率百分比。
在根据第二方面的前述实现形式中任一项的方法的第四可能的实现形式中,所述方法包括:
从第二控制节点接收第二组CSI,其中,所述第二组CSI包括用于多个第二远程射频头与多个用户设备之间的无线信道的CSI;以及
基于第一组CSI和第二组CSI的结合来确定第一关联。
由于第一组CSI和第二组CSI来自不同的RRH,因此第一组CSI和第二组CSI互不相关。从而,将第一组CSI和第二组CSI结合。
在根据第二方面的第四实现形式的方法的第五可能的实现形式中,所述方法包括:
将第一关联发送至第二控制节点。
在根据第二方面的第四或第五实现形式的方法的第六可能的实现形式中,所述方法包括:
将第一组CSI发送至第二控制节点。
在根据第二方面的第四、第五或第六实现形式的方法的第七可能的实现形式中,所述方法包括:
确定第一触发,所述第一触发包括针对第二控制节点的用于确定多个第二远程射频头与第二控制节点之间的第二关联的指令;以及
将第一触发发送至第二控制节点。
在根据第二方面的第四、第五、第六或第八实现形式的方法的第八可能的实现形式中,所述方法包括:
从第二控制节点接收第二触发,所述第二触发包括针对第一控制节点的用于确定第一关联的指令;以及
响应于接收到第二触发来确定第一关联。
在根据第二方面的前述实现形式中任一项的方法的第九可能的实现形式中,所述方法包括:
将第一关联发送至所述多个第一远程射频头。
在根据第二方面的前述实现形式中任一项的方法的第十可能的实现形式中,所述多个第一远程射频头与第一控制节点之间的关联包括:所述多个第一远程射频头到第一控制节点的分配。
在根据第二方面的前述实现形式中任一项的方法的第十一可能的实现形式中,第一关联还包括所述多个第一远程射频头与多个用户设备之间的连接。
根据第二方面的方法的优点与根据第一方面的对应的第一控制节点的优点相同。
本发明的实施方式还涉及一种计算机程序,其特征在于代码方法,当所述计算机程序由处理装置运行时,使所述处理装置执行根据本发明的任何方法。此外,本发明还涉及一种包括计算机可读介质和所述提到的计算机程序的计算机程序产品,其中,所述计算机程序被包括在计算机可读介质中,并且包括以下中的一个或更多个:ROM(只读存储器)、PROM(可编程ROM)、EPROM(可擦除PROM)、闪速存储器、EEPROM(电EPROM)和硬盘驱动器。
根据以下详细描述,本发明的实施方式的另外的应用和优点将变得明显。
附图说明
附图意在阐述和说明本发明的不同实施方式,其中:
图1示出了根据本发明的实施方式的控制节点;
图2示出了根据本发明的实施方式的对应方法;
图3示出了根据本发明的实施方式的无线通信系统;
图4示出了本发明的实施方式的状态机;
图5示出了无线通信系统中的一般流程图;
图6示出了无线通信系统中的状态信息的检索;
图7示出了通过回程上的AN(CN)之间的信令来计算新的天线形成;以及
图8示出了交叉耦合。
具体实施方式
图1示出了根据本发明的实施方式的控制节点100。控制节点100包括与处理器104可通信地耦接的收发器102。收发器还可以与用于无线通信的天线106和/或用于通过有线线路110进行有线通信的调制解调器108耦接。收发器102被配置成:接收包括用于多个第一远程射频头410a、410b、...、410n与多个用户设备500a、500b、...、500n之间的无线信道的信道状态信息(Channel State Information,CSI)的第一组信道状态信息(CSI)(参见图3)。处理器104被配置成:基于第一组CSI来确定第一关联110,其中,第一关联110包括所述多个第一远程射频头410a、410b、...、410n与第一控制节点100之间的关联。
控制节点100可以是托管用于多个远程射频头(Remote Radio Head,RRH)或等同的发送和接收点(Transmission and Reception Point,TRP)的基带功能的集中式服务器。控制节点100还可以是对应该协调其发送/接收的基站进行控制的RRM服务器。为了在5G中使用3GPP术语,一些公司建议具有集中式单元(Central Unit,CU)和许多分布式单元(Distributed Unit,DU)。在LTE中,已经讨论了用于双连接的协调的RRM(coordinatedRRM,cRRM)服务器或主eNB(master eNB,MeNB)。这两个节点都可以是控制节点100。此外,控制节点100可以是接入和移动性控制(Access and Mobility Control,AMC)节点。控制节点100将类似于UMTS中的SRNC,但是UMTS不支持如本文中描述的这种密集CoMP。
图2示出了可以在控制节点(如图1所示的控制节点)中执行的对应方法。方法200包括:接收202包括用于多个第一远程射频头410a、410b、...、410n与多个用户设备500a、500b、...、500n之间的无线信道的CSI的第一组CSI。方法200还包括:基于第一组CSI来确定204第一关联110。第一关联110包括所述多个第一远程射频头410a、410b、...、410n与第一控制节点100之间的关联。
图3示出了本发明的蜂窝无线通信系统600中的示例性实施方式。它示出了第一控制节点100如何通过通信链路610从第一远程射频头410a、410b、...、410n接收第一组CSI。在确定了第一关联110之后,第一控制节点100将第一关联110发送至远程射频头410a、410b、...、410n。
图3还示出了系统的控制节点之间的协作和交互。在图3中仅示出两个控制节点,但是应该认识到,本解决方案不限于此。第二控制节点300向第一控制节点100发送第二组CSI。第二组CSI包括用于所述多个第二远程射频头420a、420b、...、420n与多个用户设备500a、500b、...、500n之间的无线信道的CSI。因此,第一控制节点100被配置成:基于第一组CSI和第二组CSI的结合来确定第一关联110,以获得甚至更好的系统性能。
图3还示出了系统的控制节点之间的另外的信令,以由于本发明的实施方式的协作方面而产生甚至更好的性能。
第一控制节点100将第一关联110发送至第二控制节点300。第一控制节点100将第一组CSI发送至第二控制节点(300)。
第一控制节点100确定第一触发130,该第一触发130包括针对第二控制节点300的用于确定所述多个第二远程射频头420a、420b、...、420n与第二控制节点300之间的第二关联112的指令。此外,第一控制节点100将第一触发130发送至第二控制节点300。因此,第一控制节点100从第二控制节点300接收第二触发132。第二触发132包括针对第一控制节点100的用于确定第一关联110的指令。当接收到第二触发132时,第一控制节点100响应于接收到第二触发(132)来确定第一关联(110)。
如上所述,在常规解决方案中,由于诸如回程容量和多个AD的处理能力的若干原因,在可能与其相关联的RRH和用户终端的数目方面对每个控制节点(Control Node,CN)或等同的聚合节点(Aggregation Node,AN)进行限制。由于RRH可能建立到多于一个AN的回程连接,因此AD的不同组合是可以的,这导致所谓的天线域形成(antenna domainformation,ADF)问题,即,要选择哪个AD形成。
本解决方案触发的关注是:由于没有协调AD之间的传输,因此需要通过对ADF问题的适当解决方案来减轻不同AD之间的干扰。具体地,这被称为“干扰泄漏最小化”问题,其中,目的是使感兴趣区域(Area of Interest,Aol)中的所有RRH之间的成对干扰泄漏最小化。为此,我们首先注意到:干扰泄漏最小化问题可以被重新确定为ADF问题。于是,给定初始系统状态,Aol(或者整个Aol的全局CSI)中的所有RRH之间的成对干扰泄漏由所有AN获取。根据收集的测量,AN计算然后由系统实现的AD的新的(可能更好的)形成。
在这一点上,值得一提的是,本解决方案不只受限于应用于CRAN架构。它更适用于任何“合适的”蜂窝架构,其中合适的架构被定义为具有三层通信节点(即,用户设备、发送天线(如RRH)和控制节点)的分层架构。说了这些,CRAN是如下这样一种适当的架构:发送天线被称为RRH,控制节点被称为AN。
参照图1、图2和图3,本解决方案提出了新颖的控制节点和对应的方法以优化蜂窝架构中的系统级性能,其中合适的架构被定义为具有三层节点的分层架构。说了这些,在下面的公开内容中,在CRAN的背景下描述和说明所提出的解决方案,CRAN是如下这样一种适当的架构:发送天线被称为RRH,CN被称为AN。然而,本解决方案不限于此。
当提出的解决方案生效时,蜂窝架构将处于如图4所示的三种状态之一。
在稳定状态I中:蜂窝系统具有期望的系统级吞吐量,因此处于稳定状态。
在ADF状态II中:由于某种外部触发(例如,用户移动)或内部触发(例如,回程约束),蜂窝系统转换到此状态。于是,如图5所示,ADF状态由三个顺序机制组成,其中每个机制概述网络元件(即,AN、RRH和用户设备)之间的控制数据流的特性。
在用户重新关联状态III中:当ADF状态基于当前用户设备-RRH分配已经达到稳定解决方案时,蜂窝系统转换到此状态。在这种状态下,可以基于与ADF状态相同的标准重新访问用户设备-RRH分配,以进一步提高性能。利用新的用户设备-RRH分配,系统可以转换回到ADF状态,以查看是否有甚至更好的解决方案,或者如果没有找到更好的解决方案或者系统性能增加低于阈值,则系统可以转换到稳定操作状态。
说了这些,如上面已经指出的,ADF状态由三个基本机制组成。为了利用本解决方案,这三种机制必须由网络按顺序执行。在下文中,我们首先以抽象形式(并且在CRAN背景下)描述每个机制,然后通过ADF示出关于“干扰泄漏最小化”的每个步骤。注意,这只是更好地说明所述机制步骤的示例。另外,我们假定给出了一些初始RRH-AN的关联以及用户设备-RRH的关联。
参照图5,我们将用干扰泄漏最小化问题的示例来详细阐述三种机制A、B和C中的每种机制(即,涉及哪些网络元件,以及完成什么种类的控制信令)。如上所述,关于这点,AN完全对应于本控制设备100,并且表述“用户”与本“用户设备”和LTE术语UE完全可互换地使用。
A)状态信息的检索
这种机制也被称为测量收集与分发阶段。对于干扰泄漏最小化问题,相邻RRH/用户之间的成对干扰泄漏影响要由所有AN(当RRH/用户被分配到不同AD时)来计算。为此,Aol中的每个AN(与其他AN联合地,或者独立地)将正交/非正交(关于其他AN)无线/编码资源分配给其相关联的用户,用于在上行链路上进行引导。用户然后在上行链路上传送引导,这有助于每个AN(通过其相关联的RRH)收集Aol中的所有用户的发送器处信道状态信息(CSIT)。接下来,AN利用控制和数据信令(通过AN-AN回程)在AN之间交换CSIT数据。于是,最终,任一个AN具有全局CSIT(对于整个Aol)(新形成的集中式计算),或者多个AN具有全局CSIT(新形成的分布式计算)。
在CRAN的控制平面上,需要原语(可以由较高的层调用并且由较低的层执行的良好定义的通信过程)来查询关于AN和/或AN及其相关联的RRH和/或AN、其相关的RRH以及其相关联的用户终端的状态信息。该原语允许指定感兴趣的信息的类型,例如,AN的(平均或瞬时)计算负荷、AN或相关联的RRH的回程的(平均或瞬时)负荷、到AN的相关联的用户终端的数目、到RRH的相关联的终端的数目、相关联的用户终端与某个指定的RRH之间的(平均或瞬时)信道状态、一组终端的信道状态信息与指定的RRH的聚集、以及关于与AN相关联的用户终端的位置的信息。在前面,该信息需要由AN收集/监视,或者在接收到原语时,该信息被收集,然后被提供至发送该原语的请求实体。这在图6中被举例说明,在图6中,AN1向AN2发送状态请求。响应于接收到该状态请求,AN2收集信息并且将包括所收集的信息的状态报告发送至AN1。
在干扰泄漏最小化的情况下的示例
为了执行ADF以使干扰泄漏最小化,主要需要获得整个Aol的发送器/接收器之间的所有信道的全局信道状态信息(channel state information,CSI)(更频繁/瞬时CSI情况,或更低频率/统计CSI情况)。实现这的一种可能性是:在空中接口(假定TDD空中接口)的上行链路传输阶段期间针对每个RRH执行CSI获取。为此,可以使用传统/正交引导方法或WMMSE方法。这样,每个AN(从连接到它的RRH)获得其RRH与Aol中的所有用户之间的信道的CSI向量。如果原语被执行,就直接提供该信息,或者该信息被进一步聚集以表示链路的统计特性。在第三变型中,每个AN可以跟踪相关联的用户终端的位置,并且如果原语被外部实体执行,就发回位置报告。
B)新形成(formation)的计算
在这个机制中,基于中心方法或者基于分散式方法,由AN收集的全局CSIT数据被处理,以产生改进的RRH-AN关联(以及改进的用户-RRH关联)。分散式方法可以由迭代过程组成(例如,通过使用BCD方法),其中——在预定序列中——中间解被计算并且通过单独的信令协议被传递至AN-AN回程上的其他AN。在达到预定质量阈值之后,可以终止该序列以减少AN-AN回程上的信令,这通常在被优化的度量不再显著地变化或者替代地在达到某个绝对值时被执行。
在一个实施方式中,通过以下步骤确定第一关联110:通过基于第一组CSI来计算所述多个第一远程射频头410a、410b、...、410n与多个用户设备500a、500b、...、500n之间的至少一个交叉耦合;以及基于所计算的交叉耦合来确定第一关联110。
在一个示例中,第一控制节点100针对第一候选关联来计算所述多个第一远程射频头410a、410b、...、410n与多个用户设备500a、500b、...、500n之间的第一交叉耦合。此外,针对第二候选关联来计算所述多个第一远程射频头410a、410b、...、410n与多个用户设备500a、500b、...、500n之间的至少一个第二交叉耦合。最后,通过选择具有最低交叉耦合的第一候选关联或第二候选关联来确定第一关联110。
在迭代方法中,第一控制节点100通过迭代地进行以下操作来确定第一关联110:
在迭代中计算第一交叉耦合;
在随后的迭代中计算第二交叉耦合;以及
在后续迭代中确定第一关联110。
交叉耦合在这种上下文中的含义基于用于用户设备与RRH之间的信道的CSI信息,其中RRH被关联到除了与为其分配了用户设备的RRH相关联的控制节点(第一控制节点100)以外的另一个控制节点(第二控制节点300)。然后,交叉耦合是关于分配给AD的所有用户设备和其他AD中的所有RRH的CSI的总和,反之亦然。在图8中示出了交叉耦合的示例,其中两个RRH(410n和420n)被关联到不同的AN(100和300),并且如用实线箭头表示的,两个用户设备(500n)被分配给各自的RRH。利用RRH与用户设备(500n)之间的虚线箭头表示两个AD之间的交叉耦合。
ADF计算可以集中组织或分散组织地执行。在集中的情况下,一个指定的AN通过原语触发与其状态信息有关的所有分配的AN。然后分配的AN提供状态信息,该状态信息是用于执行新ADF的计算的基础。在另外的变型中,例如由于回程容量或计算能力的高利用率,还可以通过请求重新计算ADF的一个(或多个)分配的AN触发新ADF的这种计算。在这种情况下,指定的AN可以从剩余的分配的AN请求另外的状态信息,然后执行新AD的计算。
相比之下,在分散组织中,一组AN互相交换第一状态信息,使得该组中的所有AN具有整个CSI。然后,可以执行新ADF的分布式计算,其中每个AN仅基于其本地目标函数来计算新ADF上的增量更新。一旦执行本地计算,将部分解按照预定的顺序传递至下一个AN。例如,一旦预定的质量水平不再增加或者百分比增加低于给定阈值,就可以终止该序列计算。AN之间的所有信息交换都通过AN-AN回程来执行。涉及ADF处理的一组AN的形成、集中式或分散式ADF计算方法的选择、在集中式情况下对指定节点的选择、在分散式方法中对迭代序列的选择全部由控制平面的对应原语控制。可能地,多个这样的ADF处理可以以不同模式(集中式/分散式)并行运行,例如,将所得到的ADF与较大时间参考结构中的不同时隙关联。最后,要注意的是,ADF的计算还可以包括用户终端的重新分布。在这种情况下,一种可能的实现可能首先涉及基于用户终端到RRH的固定分配来计算ADF。然而,在整个ADF计算过程的下一步中,重新考虑/重新计算用户终端与RRH的关联。这一旦完成,就再次调用ADF计算,以基于给定(先前计算的)用户终端分配来考虑将RRH分配给AN。
在干扰泄漏最小化的情况下的示例
ADF问题可以定义为:给定具有N(>A)个RRH和A个AN的Aol,在给定时间应该将哪些RRH分配给哪个AN从而使得实现一些性能目标(即,总和干扰泄漏最小化)?本发明以层级方式消除Aol内的总和干扰。也就是说,首先将ADF确定为IP问题,并且使用被称为块坐标下降(Block Coordinate Descent,BCD)的迭代算法(这使AD之间的干扰最小化)来对其进行求解。然后,在使用迭代BCD对ADF求解之后,由所有RRH使用基于加权最小均方误差(WeightedMinimum Mean Square Error,WMMSE)的协调波束成形(Coordinated Beamforming,CB)算法(这使每个AD内的干扰最小化)联合地服务于每个AD中的用户。
在干扰泄漏设置的情况下,可以参照图7以下面的方式实现分散式方法。对于先前定义的一组AN和预定的迭代序列,在交换状态信息之后,每个AN本地地/部分地解决干扰泄漏最小化问题。更确切地说,在每次迭代期间,如在图7中用从AN1到AN2的箭头x(t)所示的,每个AN首先从所有其他AN获取最新的(二值的)关联向量x(t)。基于最新的(二值的)关联向量x(t),AN更新它自己的关联向量。
AN然后将其更新的关联向量(x(t+1))发送至所有其他AN,如在图7中用从AN2到AN1的箭头x(t+1)所示的。
AN之间的该消息交换在AN-AN回程上执行,并且信令继续,可能直到干扰泄漏没有进一步减少或者直到某个质量指标不再被提高目标百分比为止。控制节点之间的信息交换x(t)是所得到的二元关联矩阵(#RRH×#AN),该二元关联矩阵是在发送控制节点(AN1)中执行的优化过程的结果。然后,接收控制节点(AN2)至少基于接收到的x(t)以及它具有的CSI信息来进行优化。AN2还将在AN2中执行的优化过程的结果x(t+1)发送至AN1,其重复该过程,直到所得到的x(t+n+1)等于接收到的x(t+n)为止。这样就达到了稳定状态。
C)新形成(formation)的实现
在这种机制中,将新的一组关联传送到网络中的所有节点,并且调用对应的重新关联(包括将积压的数据递送至不同的AN)。也可以迭代地实现重新关联,以使对回程的影响最小化。
在集中组织的一组要执行ADF的AN中,指定的AN——一旦ADF最终被生成——在控制平面上执行原语以重新配置AN。为此,指定的节点通知每个AN关于新的RRH分配,使得在接收到该信息时,AN可以将RRH移交给它们新分配的AN。这还包括积压数据的递送以及通过控制平面将正在进行的数据传输重新路由至新AN。在通过RRH分配和用户终端分配对ADF求解的情况下,指定的节点将这些信息集都分发给AN,然后让它们执行RRH与用户终端的切换。注意,特别是整个RRH到新AN的切换是在控制平面中必须定义信令结构(即,原语)的新颖特征。在计算的分散式组织中,一旦终止计算,即,迭代过程由于质量改进的增量太少而停止,一种可能性是:发现该终止准则的对应AN向所选择的组的所有其他AN指示这,其然后将所得到的RRH/终端分配考虑为有效分配并在之后实现它。
在干扰泄漏最小化的情况下的示例
在AD的新形成可用之后,对于固定用户关联情况,执行控制信道/回程上的信令原语,以向RRH通知它们的新关联(对于可能不同的AN)。另外,对于动态用户关联情况,执行空中接口的控制信道/下行链路上的信令,以使用户终端知道它们的新关联(对于可能不同的RRH)。最后但并非最不重要,将来的数据以及当前积压的每个用户的数据被重新路由至可能不同的AN。
此外,系统从ADF状态转换到此状态,以通过更新整个Aol内的用户-RRH关联来进一步提高系统级吞吐量。在这种状态下,再次进行测量(状态信息的检索)阶段,其中来自各种用户-RRH关联的性能影响由Aol内的AN(独立地或联合地)确定。随着用户-RRH关联的改进,RRH-AN的关联紧接着被更新。这个迭代过程持续到系统性能指标没有进一步的提高为止。
此外,根据本发明的实施方式的任何方法可以在具有代码方法的计算机程序中实现,当所述计算机程序由处理装置运行时,使处理装置执行该方法的步骤。该计算机程序被包括在计算机程序产品的计算机可读介质中。计算机可读介质可以基本上包括任何存储器,如ROM(只读存储器)、PROM(可编程只读存储器)、EPROM(可擦除PROM)、闪速存储器、EEPROM(电可擦除PROM)或硬盘驱动器。
此外,技术人员认识到,控制节点100包括用于执行本方案的以例如功能、装置、单元、元件等形式的必要的通信能力。其他这样的装置、单元、元件和功能的示例是:被适当地布置在一起用于执行本方案的处理器、存储器、缓冲器、控制逻辑、编码器、解码器、速率匹配器、解速率匹配器、映射单元、乘法器、决策单元、选择单元、交换机、交织器、解交织器、调制器、解调器、输入端、输出端、天线、放大器、接收器单元、发送器单元、DSP、MSD、TCM编码器、TCM解码器、电源单元、电力馈线、通信接口、通信协议等。
特别地,本控制节点100的处理器可以包括例如中央处理单元(CentralProcessing Unit,CPU)、处理单元、处理电路、处理器、专用集成电路(ApplicationSpecific Integrated Circuit,ASIC)、微处理器或者可以解释并执行指令的其他处理逻辑中的一个或更多个实例。因此,表述“处理器”可以表示处理电路系统,该处理电路系统包括多个处理电路,例如,上面提到的处理电路中的任意、一些或全部处理电路。处理电路系统还可以执行用于输入、输出和处理数据的数据处理功能,包括数据缓冲和设备控制功能,如呼叫处理控制、用户接口控制等。
最后,应该理解的是,本发明不限于上述实施方式,而是还涉及并包括所附独立权利要求范围内的所有实施方式。
Claims (13)
1.一种用于无线通信系统(600)的第一控制节点,所述第一控制节点(100)包括:
收发器(102),被配置成:
接收包括用于多个第一远程射频头(410a,410b,...,410n)与多个用户设备(500a,500b,...,500n)之间的无线信道的信道状态信息CSI的第一组信道状态信息CSI;和
处理器(104),被配置成:
基于所述第一组CSI来确定第一关联(110),其中,所述第一关联(110)包括所述多个第一远程射频头(410a,410b,...,410n)与所述第一控制节点(100)之间的关联。
2.根据权利要求1所述的第一控制节点(100),其中,所述处理器(104)被配置成通过以下操作来确定所述第一关联(110):
基于所述第一组CSI来计算所述多个第一远程射频头(410a,410b,...,410n)与多个用户设备(500a,500b,...,500n)之间的至少一个交叉耦合;以及
基于所计算的交叉耦合来确定所述第一关联(110)。
3.根据权利要求2所述的第一控制节点(100),其中,所述处理器(104)被配置成通过以下操作来确定所述第一关联(110):
针对第一候选关联来计算所述多个第一远程射频头(410a,410b,...,410n)与多个用户设备(500a,500b,...,500n)之间的第一交叉耦合;
针对第二候选关联来计算所述多个第一远程射频头(410a,410b,...,410n)与多个用户设备(500a,500b,...,500n)之间的至少一个第二交叉耦合;以及
通过选择具有最低交叉耦合的所述第一候选关联或所述第二候选关联来确定所述第一关联(110)。
4.根据权利要求3所述的第一控制节点(100),其中,所述处理器(104)被配置成通过以下操作来迭代地确定所述第一关联(110):
在迭代中计算所述第一交叉耦合;
在随后的迭代中计算所述第二交叉耦合;以及
在后续的迭代中确定所述第一关联(110)。
5.根据前述权利要求中任一项所述的第一控制节点(100),其中,所述收发器(102)被配置成:
从第二控制节点(300)接收第二组CSI,其中,所述第二组CSI包括用于多个第二远程射频头(420a,420b,...,420n)与所述多个用户设备(500a,500b,...,500n)之间的无线信道的CSI,
其中,所述处理器(104)被配置成:
基于所述第一组CSI和所述第二组CSI的结合来确定所述第一关联(110)。
6.根据权利要求5所述的第一控制节点(100),其中,所述收发器(102)被配置成:将所述第一关联(110)发送至所述第二控制节点(300)。
7.根据权利要求5或6所述的第一控制节点(100),其中,所述收发器(102)被配置成:
将所述第一组CSI发送至所述第二控制节点(300)。
8.根据权利要求5至7中任一项所述的第一控制节点(100),其中,所述处理器(104)被配置成:
确定第一触发(130),所述第一触发包括针对所述第二控制节点(300)的用于确定所述多个第二远程射频头(420a,420b,...,420n)与所述第二控制节点(300)之间的第二关联(112)的指令,
其中,所述收发器(102)被配置成:
将所述第一触发(130)发送至所述第二控制节点(300)。
9.根据权利要求5至8中任一项所述的第一控制节点(100),其中,所述收发器(102)被配置成:
从所述第二控制节点(300)接收第二触发(132),所述第二触发(132)包括针对所述第一控制节点(100)的用于确定所述第一关联(110)的指令,
其中,所述处理器(104)被配置成:
响应于接收到所述第二触发(132)来确定所述第一关联(110)。
10.根据前述权利要求中任一项所述的第一控制节点(100),其中,所述收发器(102)被配置成:
将所述第一关联(110)发送至所述多个第一远程射频头(410a,410b,...,410n)。
11.根据前述权利要求中任一项所述的第一控制节点(100),其中,所述多个第一远程射频头(410n)与所述第一控制节点(100)之间的关联包括:所述多个第一远程射频头(410n)到所述第一控制节点(100)的分配。
12.一种用于无线通信系统(600)的方法,所述方法(200)包括:
接收(202)包括用于多个第一远程射频头(410a,410b,...,410n)与多个用户设备(500a,500b,...,500n)之间的无线信道的信道状态信息CSI的第一组CSI;以及
基于所述第一组CSI来确定(204)第一关联(110),其中,所述第一关联(110)包括所述多个第一远程射频头(410a,410b,...,410n)与所述第一控制节点(100)之间的关联。
13.一种具有程序代码的计算机程序,当所述计算机程序在计算机上运行时,所述程序代码用于执行根据权利要求12所述的方法。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2016/061437 WO2017198311A1 (en) | 2016-05-20 | 2016-05-20 | Control node and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109479203A true CN109479203A (zh) | 2019-03-15 |
CN109479203B CN109479203B (zh) | 2020-10-27 |
Family
ID=56084013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680085882.3A Active CN109479203B (zh) | 2016-05-20 | 2016-05-20 | 控制节点及其方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10652898B2 (zh) |
EP (1) | EP3430830B1 (zh) |
CN (1) | CN109479203B (zh) |
WO (1) | WO2017198311A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112088555B (zh) | 2018-05-02 | 2023-09-12 | 华为技术有限公司 | 用于无线通信系统中的资源分配的协调器网络节点和网络接入节点 |
CN114223171B (zh) * | 2019-07-02 | 2024-03-15 | 康普技术有限责任公司 | 与云无线电接入网络一起使用的前传接口 |
US11502793B2 (en) * | 2020-11-30 | 2022-11-15 | ISRD Sp. z o.o. | Cooperative radio resource allocation in a wireless communication network and methods for use therewith |
US11889494B2 (en) | 2020-12-29 | 2024-01-30 | ISRD Sp. z o.o. | Cooperative radio resource scheduling in a wireless communication network and methods for use therewith |
US11356155B1 (en) | 2021-11-11 | 2022-06-07 | King Abdulaziz University | Method of optimizing multi-cell association in downlink multi-user, multiple-input, multiple-output (MU-MIMO) systems via statistical beamforming |
US11870527B2 (en) | 2022-01-21 | 2024-01-09 | ISRD Sp. z o.o. | Wireless communication network with master distributed unit and methods for use therewith |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102904625A (zh) * | 2011-07-26 | 2013-01-30 | 株式会社日立制作所 | 用于分布式天线系统的参考信号设计 |
US20130242748A1 (en) * | 2012-03-16 | 2013-09-19 | Nokia Siemens Networks Oy | Hierarchical network and interference management |
US20140031049A1 (en) * | 2012-07-26 | 2014-01-30 | Nec Laboratories America, Inc. | Cloud-based Radio Access Network for Small Cells |
US20150036664A1 (en) * | 2012-02-23 | 2015-02-05 | Lg Electronics Inc. | Method for performing handover in c-ran systems, and apparatus therefor |
CN105284140A (zh) * | 2014-03-10 | 2016-01-27 | 因特莱特股份公司 | 用于确定无线控制装置无线通信限制的方法和系统 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9673945B2 (en) * | 2011-02-18 | 2017-06-06 | Qualcomm Incorporated | Implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources |
EP2695450A4 (en) * | 2011-04-01 | 2014-09-10 | Intel Corp | UPLINK POWER CONTROL METHOD FOR RRH SYSTEMS DISTRIBUTED WITH THE SAME CELL ID |
KR101767997B1 (ko) * | 2011-06-24 | 2017-08-14 | 삼성전자 주식회사 | 직교 주파수 분할 다중 접속 이동통신 시스템을 기반으로 하는 분산 안테나 시스템에서 하향링크 간섭 측정 방법 및 장치 |
JP5978566B2 (ja) * | 2011-07-07 | 2016-08-24 | ソニー株式会社 | 通信装置、通信方法および基地局 |
US9264204B2 (en) * | 2011-08-17 | 2016-02-16 | Lg Electronics Inc. | Method and apparatus for inter-cell interference coordination for transmission point group |
US9917629B2 (en) * | 2011-12-14 | 2018-03-13 | Qualcomm Incoroporated | Multi-hypothesis channel quality indicator feedback |
KR20130101294A (ko) * | 2012-03-05 | 2013-09-13 | 삼성전자주식회사 | 협력 통신 방법 및 장치 |
US9094855B2 (en) * | 2012-05-30 | 2015-07-28 | Intel Corporation | Measurement of nodes in coordinated multipoint (CoMP) systems |
KR102052420B1 (ko) * | 2012-11-02 | 2019-12-05 | 코란씨, 엘엘씨 | 통신 시스템에서 간섭 측정을 위한 방법 및 그 장치 |
US9161299B2 (en) * | 2013-01-28 | 2015-10-13 | Transpacific Ip Management Group Ltd. | Remote radio header selection |
WO2014139588A1 (en) * | 2013-03-15 | 2014-09-18 | Nokia Solutions And Networks Oy | Coordinated multipoint joint transmission with relaxed backhaul requirements |
US10177826B2 (en) * | 2015-12-28 | 2019-01-08 | Qualcomm Incorporated | Transmission of channel state information based on selected non-frequency domain components of channel responses |
US10034176B2 (en) * | 2016-02-29 | 2018-07-24 | Alcatel Lucent | Extending a wireless coverage area in an unlicensed frequency band of a small cell using remote radio heads |
JP6845871B2 (ja) * | 2016-05-05 | 2021-03-24 | 株式会社Nttドコモ | アップリンクパイロット及び分散されたユーザ近接検出に基づく基地局選択のメカニズム及び手順 |
-
2016
- 2016-05-20 EP EP16725476.2A patent/EP3430830B1/en active Active
- 2016-05-20 WO PCT/EP2016/061437 patent/WO2017198311A1/en active Application Filing
- 2016-05-20 CN CN201680085882.3A patent/CN109479203B/zh active Active
-
2018
- 2018-11-19 US US16/194,854 patent/US10652898B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102904625A (zh) * | 2011-07-26 | 2013-01-30 | 株式会社日立制作所 | 用于分布式天线系统的参考信号设计 |
US20150036664A1 (en) * | 2012-02-23 | 2015-02-05 | Lg Electronics Inc. | Method for performing handover in c-ran systems, and apparatus therefor |
US20130242748A1 (en) * | 2012-03-16 | 2013-09-19 | Nokia Siemens Networks Oy | Hierarchical network and interference management |
US20140031049A1 (en) * | 2012-07-26 | 2014-01-30 | Nec Laboratories America, Inc. | Cloud-based Radio Access Network for Small Cells |
CN105284140A (zh) * | 2014-03-10 | 2016-01-27 | 因特莱特股份公司 | 用于确定无线控制装置无线通信限制的方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2017198311A1 (en) | 2017-11-23 |
EP3430830A1 (en) | 2019-01-23 |
CN109479203B (zh) | 2020-10-27 |
US10652898B2 (en) | 2020-05-12 |
US20190090247A1 (en) | 2019-03-21 |
EP3430830B1 (en) | 2021-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | Computation offloading with data caching enhancement for mobile edge computing | |
CN110546995B (zh) | 用于无线通信系统中的负载均衡的设备和方法 | |
CN109479203A (zh) | 控制节点及其方法 | |
CN104796918B (zh) | 无线通信组网的方法 | |
Fan et al. | Towards traffic load balancing in drone-assisted communications for IoT | |
JP5697622B2 (ja) | 移動通信システム及びそのリモート無線ユニットクラスタリング方法 | |
CN102160445B (zh) | 支持网络范围的下行链路多入多出无线通信的架构 | |
US11672001B2 (en) | Systems and methods for interference management in a radio access network | |
WO2015131677A1 (zh) | 虚拟小区的构建、协作节点的选择方法及装置 | |
WO2016142888A1 (en) | Power allocation for device-to-device communication underlaying cellular networks | |
CN107911856B (zh) | 一种超密集异构网络中基于匹配博弈的分离多接入方法 | |
CN108781380A (zh) | 电子设备、用于电子设备的方法和信息处理设备 | |
Biermann et al. | CoMP clustering and backhaul limitations in cooperative cellular mobile access networks | |
US11601379B1 (en) | System and method for dynamic physical resource block allocation across networks using a virtualization layer | |
US20130163539A1 (en) | Radio resource management for distributed cellular systems | |
CN109362087B (zh) | 基于异构云无线接入网络的流量卸载协作方法及系统 | |
KR102053766B1 (ko) | 중첩된 무선네트워크 환경에서 모바일 데이터의 전송속도를 향상하기 위한 복수개 셀 선택 및 데이터 분산 전송 방법 | |
Harutyunyan et al. | CU placement over a reconfigurable wireless fronthaul in 5G networks with functional splits | |
Wang et al. | MiFo: A novel edge network integration framework for fog computing | |
JP6704524B2 (ja) | 無線リソースを割り当てるための装置および方法 | |
Sun et al. | Computation offloading with virtual resources management in mobile edge networks | |
WO2015085494A1 (zh) | 基站及用户调度方法 | |
CN108377542B (zh) | 一种基于信干漏比的功率分割方法 | |
Riggio et al. | SWAN: Base-band units placement over reconfigurable wireless front-hauls | |
US11638171B2 (en) | Systems and methods for dynamic wireless network configuration based on mobile radio unit location |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |