CN109476512A - 从水中去除砷和重金属的组合物和方法 - Google Patents

从水中去除砷和重金属的组合物和方法 Download PDF

Info

Publication number
CN109476512A
CN109476512A CN201780036269.7A CN201780036269A CN109476512A CN 109476512 A CN109476512 A CN 109476512A CN 201780036269 A CN201780036269 A CN 201780036269A CN 109476512 A CN109476512 A CN 109476512A
Authority
CN
China
Prior art keywords
medium
water
zvi
ceramic particles
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780036269.7A
Other languages
English (en)
Other versions
CN109476512B (zh
Inventor
董良杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meso Filtration Co
Original Assignee
Meso Filtration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meso Filtration Co filed Critical Meso Filtration Co
Publication of CN109476512A publication Critical patent/CN109476512A/zh
Application granted granted Critical
Publication of CN109476512B publication Critical patent/CN109476512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种用于去除流体中的污染物的介质。当干燥形式时,介质包括:约90%或更高重量的氧化铝;约0.1%至约2.0%重量的零价铁(ZVI);和约1%至约5%重量的碳。本发明还提供了生产介质的方法。

Description

从水中去除砷和重金属的组合物和方法
相关申请的交叉引用
本申请要求2016年6月12日提交的美国临时申请No.62/349,022的优先权,其公开内容通过引用整体并入本文。
发明领域
本发明涉及从流体中去除污染物的组合物和方法,更具体地,涉及从水中去除砷和/或重金属的组合物和方法。
背景技术
根据世界卫生组织(WHO)的数据,砷是一种在岩石、土壤和水中发现的剧毒金属元素,影响全球1亿多人。在不同地区,地下水中天然存在的砷浓度从几ppb到高达10ppm不等,但在大多数砷污染情况中,如孟加拉国、印度西孟加拉邦和中国大同盆地,砷以亚砷酸盐和砷酸盐的形式存在,浓度平均约为300ppb。在美国,环境保护署报告说,二十多个州的一千三百万人受到受砷污染的饮用水的影响。与砷摄入有关的医学问题包括皮肤癌和膀胱癌等。
由于反渗透技术在去除亚砷酸盐方面表现不佳并产生高浓度废水,因此许多新技术开发工作都集中在吸附介质(4)上,特别是在点使用水过滤系统中。目前用于从水中去除砷的工业技术包括沉淀、吸附、反渗透、离子交换(IX)、膜过滤、绿砂过滤。还有许多用于从饮用水中去除重金属的正在开发的技术,包括:氧化铁涂覆的砂、纳米过滤、铁屑、硫改性的铁、颗粒状氢氧化铁、生物沉降工艺和植物吸收方法。
然而,这些技术存在各种缺陷。例如,过滤工艺,包括膜过滤、RO、反向电渗析(EDR)和纳米过滤,可能是昂贵的并且难以操作。另外,废物处理是一个问题。膜容易堵塞并因此被污染,并产生浓缩废水,所述浓缩废水必须进行处理以进行进一步的处理。铁屑、硫磺改性铁和颗粒状氢氧化铁都需要反冲洗和游离铁离子。生物沉降工艺和植物摄入方法都难以操作并且在社会上是不可接受的。沉淀工艺,包括凝结/过滤(C/F)、直接过滤、凝结辅助微滤、增强的凝结、石灰软化和增强的石灰软化,都存在诸如pH调节问题和有毒污泥的问题,这些问题更难以处理。吸附工艺,特别是活性氧化铝,具有低容量和氧化铝问题;它还需要进行氧化和pH调节的预处理。尽管碳基净化可以去除饮用水中的一些有机污染物,但碳对去除重金属和砷无效,尤其是As(III)和As(V)。物理净化,例如金属氧化物,需要调节pH、氧化过程并且会堵塞。
此外,使用上述技术净化水后,安全有效的废物处理仍然存在重大问题。解决砷污染还有许多其他障碍,如材料限制、工业放大、废物管理、用户教育、运营和维护、成本效益甚至社会习惯方面的障碍。
最近发现零价铁(或ZVI、Fe(0)、金属铁)有望去除地下水中的砷以及其他污染物。砷去除的机理被认为涉及As(III)和As(V)被吸附在由于Fe(0)腐蚀反应原位形成的铁氧化物上。然而,Fe(0)易于在空气中氧化,并且在氧化过程中,铁浸出液导致水变成棕色或黄色,影响水的外观和质量。
同样为本发明人的美国专利No.8,361,920公开了一种铁涂覆的陶瓷颗粒(ICPG)材料,其可以高效率地从水中除去砷。其中,ICPG介质是通过用铁粉涂覆陶瓷颗粒制造的。砷的吸附主要通过主要位于ICPG介质表面的活化吸附点发生。吸附能力相对较低,并且除去足够的污染物所需的接触时间很长。据信通过ICPG去除砷的机理与用纯Fe(0)去除砷的机理不同。
仍然需要从水中除去砷和/或重金属的改进的组合物,以及这些有毒物质的安全处理。
发明内容
本发明公开的主题的目的和优点将在下面的描述中进行阐述并且清楚表明,并且将通过实践本发明所公开的主题来了解。通过书面描述及其权利要求以及附图中特别指出的组合物和方法,将实现和获得本发明公开主题的其他优点。
根据本发明公开的主题的一个方面,公开了一种用于去除流体中的污染物的介质。当干燥形式时,该介质包括:约90%或更高重量的氧化铝;约0.1%至约2.0%重量的零价铁(ZVI);和约1%至约5%重量的碳。该介质还可包含占介质重量约0.1%至约5%的SiO2。在一些实施方案中,SiO2的量低于介质重量的2%。所述流体可以是水。
在一些实施方案中,介质具有多个直径在20nm至约70nm之间的孔。在一些实施方案中,多个孔中的至少70%具有40nm至约60nm的直径。
在一些实施方案中,介质为颗粒形式。颗粒的外径可以为约0.01mm至约3mm。
所述介质可有效地从水中除去砷或重金属如Pb和Cd。
根据本发明公开的主题的另一方面,公开了一种生产可用于从水中去除污染物的介质的方法。该方法包括:混合结构化材料、碳源材料和水,以获得原始陶瓷颗粒;在缺氧气氛中加热所述原始陶瓷颗粒,形成第一陶瓷颗粒;使第一陶瓷颗粒与(a)含有Fe2+的溶液,然后(b)一种能够将Fe2+还原成ZVI的还原剂接触,形成含ZVI的多孔陶瓷颗粒;以及在缺氧气氛中加热含有ZVI的多孔陶瓷颗粒以产生介质。
在该方法的一些实施方案中,结构化材料包含粘土。在该方法的一些实施方案中,结构化材料通过硅藻土的脱硅作用获得。在某些实施方案中,该方法还包括通过硅藻土的脱硅作用获得结构化材料。
在某些实施方案中,结构化材料包含大于90%重量的氧化铝。在这些实施方案中,所述结构化材料可进一步包含约0.1wt%至约5wt%的SiO2
在一些实施方案中,碳源包含碳水化合物,例如淀粉或面粉。
在一些实施方案中,含有Fe2+的溶液包含FeSO4或FeCl2
在一些实施方案中,用于还原Fe2+的还原剂是NaBH4或KBH4溶液。在其他实施方案中,还原剂是H2气体。
在本发明公开主题的另一方面,公开了一种生产可用于从水中去除污染物的介质的方法。该方法包括:获得具有孔的第一多孔陶瓷颗粒,所述孔具有涂有碳的壁;使第一多孔陶瓷颗粒与含Fe2+的溶液接触,使至少一部分Fe2+保留在陶瓷颗粒的至少一些孔中;使多孔陶瓷颗粒与能够将Fe2+还原成ZVI的还原剂接触,从而形成含ZVI的多孔陶瓷颗粒;以及在缺氧环境中加热含有ZVI的多孔陶瓷颗粒以产生介质。
在该方法的一些实施方案中,所述还原剂是NaBH4或KBH4。在这些实施方案的一些中,含Fe2+的溶液包含FeSO4或FeCl2。在某些实施方案中,第一多孔陶瓷颗粒的至少50%的孔具有约70nm至约100nm的直径。在某些实施方案中,第一多孔陶瓷颗粒的至少90%的孔具有约70nm至约100nm的直径。
附图的简要说明
图1a是在使用过滤介质之前根据本发明的一些实施方案制造的过滤介质的SEM照片。
图1b是在使用过滤介质从水中除去砷之后根据本发明的一些实施方案的过滤介质的SEM照片。
详述
此处公开了本发明的实施方案,在一些情况下以示例性形式或通过参考一张或多张附图进行了公开。然而,特定实施方案的任何此类公开内容仅用于说明目的,并不表示本发明的全部范围。
如本文所使用的与砷去除有关的术语“砷”是指砷元素以及其具有不同价态的砷的化合物和离子,例如各种氧化物或盐类,例如砷酸根(As V)和亚砷酸根离子(As III)。
根据本发明公开的主题的一个方面,公开了一种用于去除流体中的污染物的介质(或过滤介质)。该介质包括干燥形式:约90%或更高重量(或wt%)的氧化铝(Al2O3);约0.1%至约2.0%重量的ZVI;和约1%至5%重量的碳。在一些实施方案中,介质包含约0.2至约1.8wt%、约0.5wt%至约1.5wt%、约0.6wt%至约1.3wt%、或约0.8wt%至约1.2wt%的ZVI。该介质还可包含SiO2,其量为介质的约0.1wt%至约5wt%、约1wt%至约3wt%、约0.5wt%至约2wt%、约0.1wt%至约0.5wt%、约0.5wt%至约1wt%或约1wt%至约1.5wt%。
未使用的介质是多孔的并且包含多个孔。所述孔可以具有主要由氧化铝形成的结构壁,其涂覆有碳和ZVI。在一些实施方案中,介质的至少50%的孔具有约20nm至约70nm的直径。在其他实施方案中,介质的孔的至少60%、至少65%、至少70%、至少75%、至少80%、至少85%或至少90%的直径在20nm至70nm之间。在下文中,介质的多孔结构也称为中孔。所述孔可以在结构上开放并形成互连通道以允许流体进入介质。在一些实施方案中,多个孔中的至少70%具有40nm至约60nm的直径。
根据本发明公开主题的另一方面,公开了一种生产过滤介质的方法。首先,将结构化材料与碳源材料和水混合以获得原始陶瓷颗粒。然后将原始陶瓷颗粒在缺氧气氛或室中加热或烧制以形成具有多个孔的陶瓷颗粒(第一加热过程)。然后使多孔陶瓷颗粒首先与含有Fe2+的溶液接触,然后与能够将Fe2+还原成ZVI的还原剂接触,从而形成含ZVI的多孔陶瓷颗粒。含有ZVI的多孔陶瓷颗粒在缺氧气氛中加热以产生过滤介质(第二加热过程)。下面结合彼此进一步描述用于介质的组合物和用于制备介质的方法的细节,以便于参考和理解。
在一些实施方案中,结构化材料可包括各种粘土材料,例如高岭土、硅藻土粘土、硅藻土等。在一些实施方案中,用于生产本发明的介质的结构化材料包含氧化铝(Al2O3)和/或其水合物。或者,结构化材料可包含氢氧化铝或其水合物,例如三水铝石。
一些粘土材料可含有大量的二氧化硅(SiO2)。在一些实施方案中,可以首先在第一加热过程之前进行结构化材料的脱硅。例如,硅藻土的脱硅可以通过使硅藻土与Na2SO4、NaOH或本领域公知的其他合适的化学品接触,然后以可溶性硅酸钠的形式除去Si来进行。应理解,脱硅可能是不完全的,并且在脱硅后,结构化材料中仍然存在不显着的SiO2(例如,低于2wt%)。
在一些实施方案中,结构化材料包含约5wt%至约95wt%的氧化铝,例如,约10wt%至约90wt%、约20wt%至约80wt%、约30wt%至约70wt%、约5wt%、约10wt%、约15wt%、约20wt%、约25wt%、约30wt%、约35wt%、约40wt%、约45wt%、约50wt%、约55wt%、约60wt%、约65wt%、约70wt%、约75wt%、约80wt%、约85wt%或约90wt%。在一些实施方案中、结构化材料包含至少约70wt%、至少约75wt%、至少约80wt%、至少约85wt%、或至少约90wt%的氧化铝。在一些实施方案中,结构化材料包含约0.1wt%至约5wt%、约0.5wt%至约2wt%、约0.1wt%至约0.5wt%、约0.5wt%至约1wt%、约1wt%至约1.5wt%、或约1wt%至约3wt%的SiO2
在一些实施方案中,可首先对结构化材料进行研磨以减小其粒度。在一些实施方案中,可以通过尺寸分级筛选和选择结构化材料,例如通过特定规格的筛,例如40、80、120、200、300、400、500、600、800、1000或1200标准目。在一些实施方案中,首先将结构化材料和碳源材料干混合约1至20分钟以组合。可用于混合粘土和碳源材料的颗粒制造商可在陶瓷工业中商购获得。可用于本发明的混合器可以是例如圆形混合器。结构化材料可占总干混合物的约90至约99wt%。碳源材料可占总干混合物的1wt%至约10wt%。在一些实施方案中,碳源材料占总干混合物的约2wt%至约8wt%,例如占总干混合物的约5wt%。在第一次加热过程完成后,留在多孔陶瓷颗粒中的碳产生量取决于加热条件,例如加热温度、升温速度、气氛组成等。
对于生产介质的过程,碳源材料是指可以通过碳化至少部分地转化为碳的含碳材料。在一些实施方案中,本发明的碳源可选自含有碳水化合物的物质,例如乳糖、麦芽糖和蔗糖、淀粉、乳清粉、面粉、小麦粉、米粉、玉米粉、燕麦麸、白糖、红糖、玉米淀粉、马铃薯淀粉、其他淀粉、木粉和椰子壳粉。这些碳源可广泛商购。在一些实施方案中,碳源是淀粉。
在一些实施方案中,向结构化材料和碳源材料的混合物中加入水,然后造粒以获得湿的原始陶瓷颗粒。在一些实施方案中,水的添加量可为干混合物的约5至约60wt%。在第一次加热过程之前,在合适的干燥条件下,可以基本上除去湿混合物中的水。
然后将原始陶瓷颗粒在保护性或缺氧的气氛(例如,由高纯度氮气保持的气氛)中加热或烧制,以获得多孔陶瓷颗粒。加热可以在耐热容器中进行,例如铁桶、烘箱、陶瓷窑等,在合适的温度下进行足够长的时间。加热温度可以从较低温度(例如,约300摄氏度)缓慢增加,以升温速率(例如,约5℃/分钟或更低)使得水蒸汽释放速率可控,到更高的温度(例如,约500摄氏度),并在该温度下保持一段延长的时间(例如,约3小时)。由第一加热过程获得的这种多孔陶瓷颗粒可具有开孔,其中至少50%的孔具有约70nm至约100nm的直径。在一些实施方案中,至少60%、至少70%、至少80%或至少90%的孔具有约70nm至约100nm的直径。在碳化过程中产生的碳可以形成粘附在孔壁上的碳层,其主要包含Al2O3。由此形成的至少一些碳被认为是活性炭。
将由加热获得的多孔陶瓷颗粒冷却至例如室温,然后与含Fe2+的溶液接触,例如,浸入FeSO4溶液或FeCl2溶液中预定的时间,例如,从约10分钟至约30分钟,以使溶液充分渗透到陶瓷颗粒的孔中。溶液中的至少一部分Fe2+保留在多孔陶瓷颗粒的孔中。然后,将陶瓷颗粒(已经用Fe2+溶液处理)与能够将Fe2+还原成ZVI的还原剂(例如,NaBH4或KBH4溶液)接触(例如,浸入)预定的持续时间,例如,从约20分钟到大约60分钟。以这种方式,Fe2+还原为ZVI可以在陶瓷颗粒的孔内原位发生。优选地,可以选择还原剂的量,使得足以导致保留在陶瓷颗粒的孔中的Fe2+完全还原。由此得到的颗粒在此被称为含ZVI或负载ZVI的陶瓷颗粒。
虽然还原剂可以是含有还原剂的溶液,但在替代实施方案中,还原剂可以是H 2气体。例如,含有Fe2+的原始陶瓷颗粒可以在氢气和CO的还原气氛中直接烧制,未使用的氢气可以在通过窑或炉后再循环或烧制。在此过程中,不需要还原剂溶液。
然后将含有ZVI的多孔陶瓷颗粒在缺氧/还原气氛中加热以产生过滤介质。例如,加热含ZVI的多孔陶瓷颗粒可在窑或烘箱中的氮气保护气氛中在约400℃至约600℃的温度范围内进行。加热温度可以以10℃/分钟或更低的升温速率缓慢增加,然后在最终温度下保持延长的时间,例如约3小时。该加热步骤使Fe(0)与位于孔壁上的碳层固定。结果,Fe(0)可以与碳均匀分布,并且当用于去除流体中的污染物时不会从介质中浸出。而且,碳可以保护Fe(0)不被氧化。在加热完成后,接着将窑冷却至70摄氏度以下,然后收集过滤介质备用。
在一些实施方案中,本发明的过滤介质用于从流体(例如水)中除去污染物。在一些实施方案中,污染物是砷。在一些实施方案中,污染物是As(III)。在其他实施方案中,污染物是As(V)。在进一步的实施方案中,污染物是重金属。在一些实施方案中,污染物是重金属的组合或混合物。如本文所用,术语“金属”是指但不限于元素周期表中第3至13族的元素。因此,术语“金属”广泛地指所有金属元素,包括准金属、第13族元素和镧系元素。适用于本发明的特定金属包括,例如但不限于:铝(Al)、锑(Sb)、砷(As)、钡(Ba)、镉(Cd)、钴(Co)、铬(Cr))、铜(Cu)、铁(Fe)、铅(Pb)、汞(Hg)、锰(Mn)、钼(Mo)、镍(Ni)、硒(Se)、硅(Si)、银(Ag))、锡(Sn)、钛(Ti)、钒(V)和锌(Zn)。如本文所用,术语“金属”还指其金属/金属离子,及其金属的盐。在某些实施方案中,重金属是Pb。在其他实施方案中,重金属是Cd。
在一些实施方案中,污染物在流体中的存在量为约50ppb至约500ppb。污染物的去除率随接触时间而变化。
在一些实施方案中,本发明的过滤介质可具有As(III)的吸附容量,例如,约5mg/g至约12mg/g。
在一些实施方案中,过滤装置可以与本发明的过滤介质结合使用以净化水。过滤装置可包括任何类型的容器,其可容纳本发明的过滤介质。优选地,过滤装置包括圆柱。过滤装置可以填充例如10g至1000g的本发明的过滤介质。
本发明的过滤介质可用于各种不同的饮用水过滤系统,例如用于单户住宅的小体积水过滤系统,或大容量水处理过程,例如,饮用水厂。本发明的过滤介质还可用于处理工业废水,或用于含砷和/或含重金属的危险材料储存。
在一些实施方案中,本发明的过滤介质可用作过滤系统的一部分,例如用于由天然纤维(例如,纤维素纤维)、合成纤维(例如,聚乙烯、聚丙烯、聚氨酯、聚酯、玻璃纤维等),或其混合物制成的织造或非织造过滤材料的填料。
本发明的过滤介质提供高通量过滤、高污染物去除能力和长保质期的组合。虽然不希望受任何特定理论的束缚,但据信这可能是由于几种因素的协同作用,例如碳载量、原始陶瓷颗粒的孔隙尺寸和孔内ZVI的原位生成,所述孔导致可用于活性吸附砷的大表面积以及ZVI的均匀分布,其中碳负载在过滤介质的中孔结构内,其保护ZVI免于氧化。
提供以下实施例以通过说明而非限制的方式进一步阐述本发明的某些方面。
实施例1:过滤介质的制造
将通过脱硅处理的铝土矿开采部位的硅藻土粉末通过吹气选择和分离研磨成1200标准目,并与作为碳源的5%淀粉混合。通过添加约12%至约15%纯水(基于原始陶瓷的重量)将混合物粉末造粒为0.5mm至1.0mm尺寸的原始陶瓷颗粒。将由此形成的原始陶瓷颗粒在500℃下烧制3小时,升温速率为2℃/min,以制备烧制介质。将烧制的介质浸没在2%FeSO4溶液中15分钟并自然浸出水,然后加入2%的NaBH4溶液中30分钟,在介质的孔内发生零价铁结晶。将ZVI溶液处理过的介质再次在480-500℃的烘箱中焙烧3小时,同时在整个焙烧过程中加氮气保护。当处理过的介质冷却至室温时,将其储存并准备用于批量试验和管柱试验。
实施例2:砷吸附试验-批量试验
在具有500ppm砷溶液亚砷酸钠和砷酸钠的标准烧杯中,将1克通过实施例1中描述的方法制备的过滤介质与恒定混合器一起加入24小时。
确定根据实施例1制备的过滤介质对亚砷酸盐和砷酸盐的吸附容量相似,为8.5mg/g至9.2mg/g。在较低的pH(例如,pH为4至6.5)下,砷酸盐吸附增加。在较高的pH(例如,pH为8.5至10)下,亚砷酸盐吸附容量增加。
实施例3:除砷试验
将根据实施例1制备的200g过滤介质包装在直径为3cm的玻璃柱中,该柱用可调速泵连接。接触时间(V/流速)设定为15、30、60、90和120秒。结果表明,砷的去除效率受其初始进水浓度和其他参数的影响。管柱试验数据显示它们在处理含有50ppb和320ppb砷的进水中的关系。需要90秒和75秒来实现大于97%的去除率,而根据美国专利No.8,361,920的现有技术制造的ICPG介质需要大约15分钟以获得类似的结果。
实施例4:TCLP和SEM分析
根据实施例1制备的使用过滤介质的毒性特性溶出程序(TCLP)结果表明,基于EPA批准的美国环境保护署SW-846方法1311TCLP的标准方法,砷浸出率处于不可检测的水平。
SEM照片显示,本发明的过滤介质的大多数孔在约20至约70nm的范围内(图1a)。图1b显示本发明的过滤介质的孔在吸附后充满砷。
实施例5:铅去除试验
通过将90g根据实施例1制备的过滤介质填充到圆筒中来制备过滤器。确定过滤器在45秒的接触时间内除去700升含Pb水(Pb浓度为150ppb)中的99%Pb。
实施例6:纤维素过滤纸介质
在造纸过程中,通过纤维素和根据实施例1制备的介质以50%:50%的重量比制备滤纸。中颗粒的尺寸小于200目,夹在两层纤维素内,在120摄氏度下干燥。滤纸的总厚度约为0.7毫米。将滤纸切成直径为110mm的圆形,将其置于标准漏斗中。使混合砷(76ppb)、铅(95ppb)和镉(225ppb)水溶液的流入物以30ml/min的流速形成穿过滤纸的重力流。上述三种污染物的去除率分别为49%、57%和67%。相比之下,普通滤纸如Whatman滤纸仅能达到低于4%的去除率。
对于本领域技术人员显而易见地是,在不脱离本发明的范围和精神的情况下,可以对本文公开的发明进行各种替换和修改。

Claims (26)

1.一种用于去除流体中的污染物的具有多个孔的介质,包括,当处于干燥形式时:
约90%或更高重量的氧化铝(Al2O3);
约0.1%至约2.0%重量的零价铁(ZVI);和
约1%至约5%重量的碳。
2.根据权利要求1所述的介质,还包含含量为介质重量约0.1%至约5%的SiO2,其。
3.根据权利要求2所述的介质,其中所述SiO2的含量低于介质重量的2%。
4.根据权利要求1所述的介质,其中所述多个孔包含直径在20nm至约70nm之间的孔。
5.根据权利要求1所述的介质,其中所述多个孔中的至少70%具有40nm至约60nm的直径。
6.根据权利要求1所述的介质,其中所述介质是颗粒形式。
7.根据权利要求6所述的介质,其中所述颗粒的外径为约0.01mm至约3mm。
8.根据权利要求1所述的介质,其中所述介质能有效地从水中除去砷。
9.根据权利要求1所述的介质,其中所述介质能有效地从水中去除重金属。
10.根据权利要求1所述的介质,其中所述介质能有效地从水中除去Pb。
11.一种生产可用于从水中去除污染物的介质的方法,包括:
混合(A)结构化材料,(B)碳源材料和(C)水,得到原始陶瓷颗粒;
在缺氧气氛中加热所述原始陶瓷颗粒,形成第一陶瓷颗粒;
使所述第一陶瓷颗粒与下列物质接触:(a)含有Fe2+的溶液,然后(b)能够将Fe2+还原成ZVI的还原剂,形成含ZVI的多孔陶瓷颗粒;和
在缺氧气氛中加热含有ZVI的多孔陶瓷颗粒以产生介质。
12.根据权利要求11所述的方法,其中所述结构化材料包括粘土。
13.根据权利要求11所述的方法,其中所述结构化材料通过硅藻土的脱硅获得。
14.根据权利要求11所述的方法,其中所述结构化材料包含大于90%重量的氧化铝。
15.根据权利要求14所述的方法,其中所述结构化材料还包含约0.1wt%至约5wt%的SiO2
16.根据权利要求11所述的方法,其中所述碳源材料包括碳水化合物。
17.根据权利要求16所述的方法,其中所述碳水化合物是淀粉。
18.根据权利要求11所述的方法,其中所述含Fe2+的溶液包含FeSO4
19.根据权利要求11所述的方法,其中所述还原剂是NaBH4溶液。
20.根据权利要求11所述的方法,其中所述还原剂是KBH4溶液。
21.根据权利要求11所述的方法,其中所述还原剂是H2气体。
22.一种生产可用于从水中去除污染物的介质的方法,包括:
获得具有涂有碳的壁的孔的第一多孔陶瓷颗粒;
使所述第一多孔陶瓷颗粒与含Fe2+的溶液接触,使至少一部分Fe2+保留在所述陶瓷颗粒的至少一些孔中;
使所述多孔陶瓷颗粒与能够将Fe2+还原成ZVI的还原剂接触,从而形成含ZVI的多孔陶瓷颗粒;和
在缺氧气氛中加热含有ZVI的多孔陶瓷颗粒以产生介质。
23.根据权利要求所述22所述的方法,其中所述还原剂是NaBH4或KBH4
24.根据权利要求22所述的方法,其中所述含Fe2+的溶液包含FeSO4
25.根据权利要求22所述的方法,其中所述第一多孔陶瓷颗粒的至少50%的孔具有约70nm至约100nm的直径。
26.根据权利要求22所述的方法,其中所述第一多孔陶瓷颗粒的至少90%的孔具有约70nm至约100nm的直径。
CN201780036269.7A 2016-06-12 2017-06-11 从水中去除砷和重金属的组合物和方法 Active CN109476512B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662349022P 2016-06-12 2016-06-12
US62/349,022 2016-06-12
PCT/US2017/036922 WO2017218366A1 (en) 2016-06-12 2017-06-11 Compositions and methods for removal of arsenic and heavy metals from water

Publications (2)

Publication Number Publication Date
CN109476512A true CN109476512A (zh) 2019-03-15
CN109476512B CN109476512B (zh) 2021-11-09

Family

ID=60663776

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780036269.7A Active CN109476512B (zh) 2016-06-12 2017-06-11 从水中去除砷和重金属的组合物和方法

Country Status (4)

Country Link
US (1) US20190106337A1 (zh)
CN (1) CN109476512B (zh)
CA (1) CA3026658A1 (zh)
WO (1) WO2017218366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255690A (zh) * 2019-07-24 2019-09-20 浙江海洋大学 重金属废水处理剂及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7323345B2 (ja) * 2019-06-19 2023-08-08 株式会社フジタ 吸着材及びその製造方法
US11325346B2 (en) * 2020-10-12 2022-05-10 Senturion+ LLC Protective fabric and protective product
CN112456597A (zh) * 2020-10-21 2021-03-09 北京工业大学 改性纤维素滤纸负载纳米零价铁去除地下水中六价铬的方法
CN114832769B (zh) * 2022-05-17 2024-03-26 青岛科技大学 一种草酸盐改性纳米零价铁材料及其制备方法和应用

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604379A (en) * 1947-01-23 1952-07-22 Ancor Corp Alumina extraction
US6080905A (en) * 1997-03-10 2000-06-27 Bp Amoco Corporation Olefin purification by adsorption of acetylenics and regeneration of adsorbent
CN1986037A (zh) * 2006-11-17 2007-06-27 大连理工大学 掺硅二氧化钛纳米管复合分离膜及其制备方法和应用
CN1995413A (zh) * 2006-12-29 2007-07-11 中国铝业股份有限公司 一种粘土矿脱硅方法
CN101405223A (zh) * 2005-12-29 2009-04-08 微鼻技术公司 从水中除去砷和重金属的方法及组合物
CN101472660A (zh) * 2006-06-14 2009-07-01 艾克奴过滤系统有限公司 陶瓷过滤器
CN101646490A (zh) * 2007-03-15 2010-02-10 巴斯夫欧洲公司 再生助滤剂的方法
US20120018384A1 (en) * 2010-02-01 2012-01-26 John Sawyer Mercury removal from water
CN103249474A (zh) * 2010-12-17 2013-08-14 通用电气公司 氧化铝陶瓷膜
CN103386231A (zh) * 2013-07-12 2013-11-13 苏州微陶重金属过滤科技有限公司 一种家用过滤器滤芯材料及其制备方法
WO2014209850A1 (en) * 2013-06-26 2014-12-31 Corning Incorporated Methods and apparatus for synthesis of stabilized zero valent nanoparticles
CN104291797A (zh) * 2014-09-26 2015-01-21 福州大学 一种零价铁包覆竹炭基多孔陶粒及其制备方法和应用
TW201505972A (zh) * 2013-06-26 2015-02-16 Corning Inc 使用零價奈米顆粒處理含污染物液體的方法及設備
EP2921224A2 (en) * 2014-03-21 2015-09-23 Amcol International Corporation Dispersible, reactive contaminant capping material
CN105081305A (zh) * 2014-05-04 2015-11-25 中国人民解放军63971部队 多孔纳米零价铁及多孔纳米零价铁复合材料
US20160017238A1 (en) * 2012-02-17 2016-01-21 Kior, Inc. Mesoporous Zeolite-Containing Catalysts For The Thermoconversion Of Biomass And For Upgrading Bio-Oils
CN105392756A (zh) * 2013-05-20 2016-03-09 康宁股份有限公司 多孔陶瓷制品及其制造方法
CN106536420A (zh) * 2014-07-22 2017-03-22 康宁股份有限公司 用于水的重金属治理的过滤器和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213016B4 (de) * 2002-03-22 2006-08-17 Helsa-Automotive Gmbh & Co. Kg Mechanisch stabiler, poröser Aktivkohleformkörper, Verfahren zu dessen Herstellung und dessen Verwendung
US20060049091A1 (en) * 2004-09-03 2006-03-09 Cheetham Jeffrey K Reactive adsorbent for heavy elements
WO2014132106A1 (en) * 2013-02-27 2014-09-04 University Of Calcutta Preparing and using metal nanoparticles

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2604379A (en) * 1947-01-23 1952-07-22 Ancor Corp Alumina extraction
US6080905A (en) * 1997-03-10 2000-06-27 Bp Amoco Corporation Olefin purification by adsorption of acetylenics and regeneration of adsorbent
CN101405223A (zh) * 2005-12-29 2009-04-08 微鼻技术公司 从水中除去砷和重金属的方法及组合物
CN101472660A (zh) * 2006-06-14 2009-07-01 艾克奴过滤系统有限公司 陶瓷过滤器
CN1986037A (zh) * 2006-11-17 2007-06-27 大连理工大学 掺硅二氧化钛纳米管复合分离膜及其制备方法和应用
CN1995413A (zh) * 2006-12-29 2007-07-11 中国铝业股份有限公司 一种粘土矿脱硅方法
CN101646490A (zh) * 2007-03-15 2010-02-10 巴斯夫欧洲公司 再生助滤剂的方法
US20120018384A1 (en) * 2010-02-01 2012-01-26 John Sawyer Mercury removal from water
CN103249474A (zh) * 2010-12-17 2013-08-14 通用电气公司 氧化铝陶瓷膜
US20160017238A1 (en) * 2012-02-17 2016-01-21 Kior, Inc. Mesoporous Zeolite-Containing Catalysts For The Thermoconversion Of Biomass And For Upgrading Bio-Oils
CN105392756A (zh) * 2013-05-20 2016-03-09 康宁股份有限公司 多孔陶瓷制品及其制造方法
WO2014209850A1 (en) * 2013-06-26 2014-12-31 Corning Incorporated Methods and apparatus for synthesis of stabilized zero valent nanoparticles
TW201505972A (zh) * 2013-06-26 2015-02-16 Corning Inc 使用零價奈米顆粒處理含污染物液體的方法及設備
CN103386231A (zh) * 2013-07-12 2013-11-13 苏州微陶重金属过滤科技有限公司 一种家用过滤器滤芯材料及其制备方法
EP2921224A2 (en) * 2014-03-21 2015-09-23 Amcol International Corporation Dispersible, reactive contaminant capping material
CN105081305A (zh) * 2014-05-04 2015-11-25 中国人民解放军63971部队 多孔纳米零价铁及多孔纳米零价铁复合材料
CN106536420A (zh) * 2014-07-22 2017-03-22 康宁股份有限公司 用于水的重金属治理的过滤器和方法
CN104291797A (zh) * 2014-09-26 2015-01-21 福州大学 一种零价铁包覆竹炭基多孔陶粒及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110255690A (zh) * 2019-07-24 2019-09-20 浙江海洋大学 重金属废水处理剂及其应用
CN110255690B (zh) * 2019-07-24 2022-01-11 浙江海洋大学 重金属废水处理剂及其应用

Also Published As

Publication number Publication date
US20190106337A1 (en) 2019-04-11
CA3026658A1 (en) 2017-12-21
CN109476512B (zh) 2021-11-09
WO2017218366A1 (en) 2017-12-21

Similar Documents

Publication Publication Date Title
CN109476512A (zh) 从水中去除砷和重金属的组合物和方法
CA2908814C (en) A filter material having a function of adsorbing and fixing arsenic and heavy metals
US7892436B2 (en) Compositions and methods for removing arsenic in water
Ghassabzadeh et al. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite
Jain et al. Technological options for the removal of arsenic with special reference to South East Asia
Nashine et al. Equilibrium, kinetic and thermodynamic studies for adsorption of As (III) on coconut (Cocos nucifera L.) fiber
CN1729146B (zh) 表面活性氧化钛产品的制备方法和该产品在水处理技术中的用途
Taleb et al. Fabrication of SiO2/CuFe2O4/polyaniline composite: a highly efficient adsorbent for heavy metals removal from aquatic environment
Usman et al. Pre‐deposited dynamic membrane adsorber formed of microscale conventional iron oxide‐based adsorbents to remove arsenic from water: application study and mathematical modeling
TW201504159A (zh) 用於穩定的零價奈米顆粒合成的方法及設備
TW201505972A (zh) 使用零價奈米顆粒處理含污染物液體的方法及設備
Kinhikar Removal of nickel (II) from aqueous solutions by adsorption with granular activated carbon (GAC)
JP5970453B2 (ja) 流体浄化用の鉄−銅組成物
WO2010003267A1 (en) Water treatment system with adsorbent material based on mineral grains for removal of arsenic and methods of production, recycling and use
MX2013009192A (es) Medio de filtracion para la purificacion de fluidos.
Liu et al. The performance of phosphate removal using aluminium-manganese bimetal oxide coated zeolite: batch and dynamic adsorption studies
Rivera et al. Removal of chromate anions and immobilization using surfactant-modified zeolites
Dutta et al. Sustainable magnetically retrievable nanoadsorbents for selective removal of heavy metal ions from different charged wastewaters
Khan et al. Removal of lead ion from aqueous solution by bamboo activated carbon
Gupta et al. Improved arsenite adsorption using iron-impregnated marble dust with surface functionalized by quaternary ammonium ions
JP2007117923A (ja) 陰イオン吸着材、その製造方法、陰イオンの除去方法、陰イオン吸着材の再生方法および元素回収方法
US20190359501A1 (en) Process for preparation of granular material
JP3595911B2 (ja) 吸着セラミック
Robbins Development of an iron-oxide coated ceramic filter for removal of As (III) and As (V) in developing nations
Singh et al. An economic removal of Ni (II) from aqueous solutions using an indigenous adsorbent

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant