CN109470659A - 高通量的古斯汉森位移型spr传感器 - Google Patents

高通量的古斯汉森位移型spr传感器 Download PDF

Info

Publication number
CN109470659A
CN109470659A CN201811481727.0A CN201811481727A CN109470659A CN 109470659 A CN109470659 A CN 109470659A CN 201811481727 A CN201811481727 A CN 201811481727A CN 109470659 A CN109470659 A CN 109470659A
Authority
CN
China
Prior art keywords
light
ancient
hansen
hansen displacement
throughput
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811481727.0A
Other languages
English (en)
Other versions
CN109470659B (zh
Inventor
王怡沁
刘振超
何赛灵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811481727.0A priority Critical patent/CN109470659B/zh
Publication of CN109470659A publication Critical patent/CN109470659A/zh
Application granted granted Critical
Publication of CN109470659B publication Critical patent/CN109470659B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

本发明公开了一种高通量的古斯汉森位移型SPR传感器,包括p光、s光周期光源,准直扩束器,小孔阵列平板,棱镜,传感芯片,古斯汉森位移放大装置,CCD。p、S周期光源发出p光和S光,两种光束分别经过准直扩束器扩束成平行宽光束。透过小孔阵列平板,宽光束分解为M×N个细光束。s光在传感芯片上无古斯汉森位移,作为参考光,p光在传感芯片每个检测单元上激发SPR现象,并相对于s光产生带有样品信息的古斯汉森位移,古斯汉森位移放大装置将微小的古斯汉森位移放大。CCD检测出放大的古斯汉森位移。本发明采取凹凸透镜组合将古斯汉森位移放大,用CCD检测古斯汉森位移的方法可实时检测多个样品,具有高效、高灵敏度的特点。

Description

高通量的古斯汉森位移型SPR传感器
技术领域
本发明属于光学传感领域,涉及一种高通量的古斯汉森位移型SPR传感器。
背景技术
古斯汉森位移是指反射光相对于入射光发生空间位移,是一种物理光学现象,发生在全反射界面处。光从光疏介质(折射率为n1)入射至光密介质(折射率为n2)时,入射角满足条件时发生全反射。在发生全反射时,反射光在入射面和全反射界面交线处沿光传输的方向上产生一段平移,此为GH位移。
表面等离子体是一种电磁波,是光子和金属表面的自由振动电子发生作用而产生的沿金属表面传播的电子疏密波。当入射光的波矢和表面等离子体波达到波矢匹配条件时,有表面等离子体共振(Surface plasmon resonance,以下简称SPR)现象。一般入射光直接入射金属界面不能激发等离子波,通常选择全反射结构,用倏逝波来激发SPR现象。同时在发生SPR现象时,入射光的能量大部分被耦合进倏逝波中,放大了古斯汉森位移。发生SPR现象时,反射光中携带的古斯汉森位移信息对金属表面的样品的介电常数变化有灵敏的响应。通过检测反射光的古斯汉森位移可对样品进行实时高效的检测。
古斯汉森位移型SPR传感器较其他类型SPR传感器具有明显的优势,其分辨率更高,且系统装置更简单紧凑。实现古斯汉森位移型SPR传感器的关键在于检测古斯汉森位移的传感器。根据理论模拟,古斯汉森位移为百微米量级,0.00018RIU的折射率变化量引起的古斯汉森位移变化量为微米量级。目前通常在古斯汉森位移型SPR传感器中选取位移探测器作为探测古斯汉森位移的传感器,其检测分辨率在纳米量级。商用的位移探测器能实现单点的位置探测,却不能实现多点探测。CCD作为图像信息采集装置在传感面内有多个检测点,可以对多个的位置进行检测。然而CCD的分辨率低,无法检测出古斯汉森位移,而分辨率高的CCD价格昂贵。
据此,本发明加入古斯汉森位移放大装置,将携带样品折射率信息的古斯汉森位移量放大。因而由于样品折射率变化引起微小的古斯汉森位移变化量可通过CCD检测出。同时本发明利用CCD可以检测多点的位置的特点,实现多种样品的实时高精度检测。
发明内容
本发明针对现有技术的不足,提出了一种高通量的古斯汉森位移型SPR传感器,在提高传感器灵敏度的同时实现多种样品同时检测。
本发明包括p光、s光周期光源、准直扩束器、小孔阵列平板、棱镜、传感芯片、古斯汉森位移放大装置、CCD,p光、s光周期光源按照一定的规律间歇地发出p光和s光,由准直扩束器将周期光扩束为宽平行光束,小孔阵列平板将宽光束分割为若干个细平行光束,每个细光束对应激发传感芯片上的传感单元产生SPR现象,每一个检测位点的反射光携带有折射率信息的古斯汉斯位移经过古斯汉森位移放大装置可由CCD对各点的位置实现采集,计算机对CCD采集到的p光和s光分别打在传感芯片出射光信息计算得出传感芯片上每个检测单元经过放大的古斯汉斯位移。
更进一步具体实施中,p光、s光周期光源发出的光只能为p光或者s光。
更进一步具体实施中,小孔阵列平板上的小孔很小且满足不会发生明显衍射的孔径。
更进一步具体实施中,小孔阵列平板上的小孔数目和传感芯片上的检测单元均为M×N个。
更进一步具体实施中,通过小孔阵列的光由棱镜提供的全反射结构产生倏逝波,激发传感芯片发生SPR现象。
更进一步具体实施中,传感芯片用折射率匹配液耦合在棱镜上。
更进一步具体实施中,古斯汉森位移放大装置可以采取凹透镜和凸透镜组合。
更进一步具体实施中,凹透镜的像方焦距和凸透镜物方焦距重合,两透镜的主光轴重合。
更进一步具体实施中,CCD信号接收面垂直于出射光方向。
本发明的有益效果:本发明结合凹凸透镜组合的古斯汉森位移放大装置,使得可由CCD采集古斯汉森位移及其因样品折射率变化而引起的微小的古斯汉森位移变化量。与采取位移探测器的古斯汉森型SPR传感器相比,本发明可实时检测多个样本,具有成本低,灵敏度高,检测效率高的特点。
附图说明
图1为本发明高通量的古斯汉森位移型SPR传感器的系统图。
图2为本发明古斯汉森位移放大结构的原理示意图。
附图标记说明:
1-p光、s光周期光源、2-准直扩束器、3-小孔阵列平板、4-棱镜、5-传感芯片、6-古斯汉森位移放大装置、7-CCD、8-凹透镜、9-凸透镜。
具体实施方式
下面结合附图对本发明做进一步详述:
本发明公开了高通量的古斯汉森位移型SPR传感器,包括p光、s光周期光源1、准直扩束器2、小孔阵列平板3、棱镜4、传感芯片5、古斯汉森位移放大装置6、CCD7。p光、s光周期光源1按一定周期发出p光和s光,通过准直扩束器2分别将p光和s光扩束为平行光束。扩束后的平行光束垂直通过小孔阵列平板后被分为M×N束细光束。细光束通过将棱镜4后分别打在传感芯片5的每一个传感单元上。p光在传感芯片5上激发SPR现象,同时大大增大古斯汉森位移。s光经过传感芯片后不能激发SPR现象,因而采用S光作为参考光;从传感芯片5中每个传感单元出射的p光和s光的间距即为SPR增强的古斯汉森位移。p光和s光所经过的光路是相同的,通过p光和s光位置作差得到的古斯汉森位移可去除由光路引起的噪声,提高检测的分辨率。SPR增强的古斯汉森位移经过古斯汉森位移放大装置6按一定倍率放大p光和s光的间距,即放大古斯汉森位移。放大后的古斯汉森位移可有CCD7分别检测出传感芯片5上每个检测单元对应出射后被放大的p光和s光的位置,信号传输至电脑,由电脑计算做p光和s光的位置差得到被放大后的古斯汉森位移。
下面以凹透镜8和凸透镜9为例说明用于高通量古斯汉森位移型SPR传感器的古斯汉森位移放大结构的原理。采取光线投射高度和角度追迹方法计算采取古斯汉森位移结构6的灵敏度放大倍数。
凹透镜8的像方焦距与凸透镜9的物方焦距重合,两个透镜的主光轴也重合,因此平行光入射该透镜组,平行光出射。假定凹透镜8的焦距为Fa根据光学符号规定,其值为负数,凸透镜9的焦距为Fb,s光沿主光轴入射,p光平行s光,与s光的距离为d0,由于在传感芯片5处检测样品折射率的改变了Δn,p光发生古斯汉森位移设为p'光,p'光与s光的距离为d1。对凹凸透镜组合对古斯汉森位移放大原理进行剖析,先研究p光和s光在古斯汉森位移放大装置6中的传输过程。入射光入射至古斯汉森位移放大装置6时的初始入射角为U。
p光和s光平行入射至凹透镜8,s光入射点距离凹透镜8的主光轴距离为h′s,p光入射点距离凹透镜8的主光轴距离为:
经过凹透镜8后p光和s光与主光轴的夹角U′i,i=p,s满足三角关系式:
i=p,s分别对应于p光和s光的计算过程。p光和s光经过凹透镜后孔径角发生了变化,意味着两者之间的距离将发生变化,光线发散,距离越来越远。入射至凸透镜9时两光束的高度可分别表示为:
h″i=(Fb+Fa)tanU′i-h′i
i=p,s分别对应于p光和s光的计算过程。经过凸透镜9的汇聚作用,p光和s光平行出射,且与入射至古斯汉森位移放大装置6前的入射角一样。即有:
U″p=U″s=U
p光和s光的间距被放大至
同理,样品折射率发生Δn后,产生的古斯汉森位移用p'光和s光的间距计算经过古斯汉森位移放大装置6的古斯汉森位移。
由此可进一步计算,折射率改变Δn引起古斯汉森位移变化Δd=d1-d0经过古斯汉森位移放大装置6后放大为:
采取古斯汉森位移放大装置6的古斯汉森位移型SPR传感器同不采取位移放大装置相比,折射率变化Δn相同的情况时,古斯汉森位移放大倍。这意味着采取合适的凹透镜8和凸透镜9的焦距比,可实现用价格更加便宜的CCD实现古斯汉森位移检测。
实验中,检测折射率变化0.00018RIU的标定液产生古斯汉森位移变化量约为5μm,样品的古斯汉森位移为百微米量级。价格低廉的CCD的像素水平为5.6μm。为能采取廉价的CCD检测古斯汉森位移变化,凸透镜8的焦距Fb和凹透镜的焦距Fa满足采取凹凸透镜组合,可实现多点的古斯汉森位移检测。
本发明采取古斯汉森位移放大装置6放大古斯汉森位移,SPR传感器的灵敏度和传统的古斯汉森位移型SPR传感器相比灵敏度放大倍率可从传感器的灵敏度定义公式推导出。
传感器的灵敏度定义公式为:
因此灵敏度的放大倍率为:
本发明用小孔阵列将准直扩束宽光束分解为多个平行细光束并采取多通道的微流芯片,可实现高通量检测,同时选取凹凸透镜组合的古斯汉森位移放大装置,因而由于检测物折射率变化而引起的微小的古斯汉森位移变化可由CCD检测出,实现高通量高灵敏度的古斯汉森位移型SPR传感器。本发明通过选取不同的凹凸透镜折射率比可使得不同CCD在系统中得以应用。本发明具有造价低,可同时检测多种物质,实时高效的特点。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.高通量的古斯汉森位移型SPR传感器,包括p光、s光周期光源、准直扩束器、小孔阵列平板、棱镜、传感芯片、古斯汉森位移放大装置和CCD,其特征在于:
p光、s光周期光源按照一定的规律间歇地发出p光和s光,由准直扩束器将周期光扩束为宽平行光束,小孔阵列平板将宽光束分割为若干个细平行光束,每个细光束对应激发传感芯片上的传感单元产生SPR现象,每一个检测位点的反射光携带有折射率信息的古斯汉斯位移,经过古斯汉森位移放大装置由CCD对各点的位置实现采集,计算机对CCD采集到的p光和s光分别打在传感芯片后的出射光信息计算,得出传感芯片上每个检测单元经过放大的古斯汉斯位移。
2.根据权利要求1所述的高通量的古斯汉森位移型SPR传感器,其特征在于:p光、s光周期光源发出的光只能为p光或者s光。
3.根据权利要求1所述的高通量的古斯汉森位移型SPR传感器,其特征在于:小孔阵列平板上的最小孔径满足不会发生明显衍射的要求。
4.根据权利要求3所述的高通量的古斯汉森位移型SPR传感器,其特征在于:小孔阵列平板上的小孔数目和传感芯片上的检测单元均为M×N个。
5.根据权利要求1所述的高通量的古斯汉森位移型SPR传感器,其特征在于:通过小孔阵列平板的光由棱镜提供的全反射结构产生倏逝波,激发传感芯片发生SPR现象。
6.根据权利要求1所述的高通量的古斯汉森位移型SPR传感器,其特征在于:传感芯片用折射率匹配液耦合在棱镜上。
7.根据权利要求1所述的高通量的古斯汉森位移型SPR传感器,其特征在于:古斯汉森位移放大装置采取凹透镜和凸透镜组合。
8.根据权利要求7所述的高通量的古斯汉森位移型SPR传感器,其特征在于:凹透镜的像方焦距和凸透镜物方焦距重合,两透镜的主光轴重合。
9.根据权利要求1所述的高通量的古斯汉森位移型SPR传感器,其特征在于:CCD信号接收面垂直于出射光方向。
CN201811481727.0A 2018-12-05 2018-12-05 高通量的古斯汉森位移型spr传感器 Active CN109470659B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811481727.0A CN109470659B (zh) 2018-12-05 2018-12-05 高通量的古斯汉森位移型spr传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811481727.0A CN109470659B (zh) 2018-12-05 2018-12-05 高通量的古斯汉森位移型spr传感器

Publications (2)

Publication Number Publication Date
CN109470659A true CN109470659A (zh) 2019-03-15
CN109470659B CN109470659B (zh) 2020-12-15

Family

ID=65675724

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811481727.0A Active CN109470659B (zh) 2018-12-05 2018-12-05 高通量的古斯汉森位移型spr传感器

Country Status (1)

Country Link
CN (1) CN109470659B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022002991A1 (en) * 2020-06-30 2022-01-06 Ams International Ag Imaging surface plasmon resonance apparatus
WO2022002992A1 (en) * 2020-06-30 2022-01-06 Ams International Ag Imaging surface plasmon resonance apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576937A (zh) * 2003-07-11 2005-02-09 柯尼卡美能达精密光学株式会社 光拾取装置、用于光拾取装置的光学元件及光学元件的制造方法
CN102053073A (zh) * 2010-11-10 2011-05-11 南昌航空大学 一种测量氮气布里渊散射信号的方法及装置
CN102135664A (zh) * 2010-01-22 2011-07-27 宏濑科技股份有限公司 光束修正投射设备
CN102608079A (zh) * 2012-03-03 2012-07-25 南昌航空大学 一种远程激光诱导等离子体光谱探测方法
CN103743674A (zh) * 2013-09-30 2014-04-23 北京航空航天大学 一种非镜面反射效应的增强方法及系统
CN105158208A (zh) * 2015-06-23 2015-12-16 中北大学 一种古斯汉欣位移spr高灵敏度介质折射率检测方法
CN107703103A (zh) * 2017-09-01 2018-02-16 苏州优函信息科技有限公司 用于检测折射率的ghSPR传感器及检测方法
CN108267428A (zh) * 2016-12-30 2018-07-10 北京大学深圳研究生院 便携式增强型表面等离子体共振生物传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1576937A (zh) * 2003-07-11 2005-02-09 柯尼卡美能达精密光学株式会社 光拾取装置、用于光拾取装置的光学元件及光学元件的制造方法
CN102135664A (zh) * 2010-01-22 2011-07-27 宏濑科技股份有限公司 光束修正投射设备
CN102053073A (zh) * 2010-11-10 2011-05-11 南昌航空大学 一种测量氮气布里渊散射信号的方法及装置
CN102608079A (zh) * 2012-03-03 2012-07-25 南昌航空大学 一种远程激光诱导等离子体光谱探测方法
CN103743674A (zh) * 2013-09-30 2014-04-23 北京航空航天大学 一种非镜面反射效应的增强方法及系统
CN105158208A (zh) * 2015-06-23 2015-12-16 中北大学 一种古斯汉欣位移spr高灵敏度介质折射率检测方法
CN108267428A (zh) * 2016-12-30 2018-07-10 北京大学深圳研究生院 便携式增强型表面等离子体共振生物传感器
CN107703103A (zh) * 2017-09-01 2018-02-16 苏州优函信息科技有限公司 用于检测折射率的ghSPR传感器及检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022002991A1 (en) * 2020-06-30 2022-01-06 Ams International Ag Imaging surface plasmon resonance apparatus
WO2022002992A1 (en) * 2020-06-30 2022-01-06 Ams International Ag Imaging surface plasmon resonance apparatus

Also Published As

Publication number Publication date
CN109470659B (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
CN102169050B (zh) 一种反射率综合测量方法
CN100504287C (zh) 表面等离子共振测量装置和方法
US6885454B2 (en) Measuring apparatus
CN105352583A (zh) 一种测量超声波声压和声强的光学方法和装置及其应用
CN109373910A (zh) 一种基于表面等离激元非对称激发的纳米位移测量装置和方法
CN101726253A (zh) 石英管壁厚光电检测系统
CN102636457B (zh) 一种微量液体折射率的测量系统及测量方法
CN109470659A (zh) 高通量的古斯汉森位移型spr传感器
CN102768184A (zh) 一种用于薄膜杨氏模量测量的系统
CN104833411A (zh) 一种高精度微悬臂梁热振动信号测量装置
CN102654457A (zh) 一种折射率传感器及其探测方法
CN104792739A (zh) 一种spr成像传感器及其调节方法和spr成像传感芯片
US20130120743A1 (en) Integrated Surface Plasmon Resonance Sensor
CN115963292A (zh) 一种基于可调谐激光器的微流场测速装置和方法
CN105698677B (zh) 一种基于表面等离激元的四象限探测器
CN103389285A (zh) 表面等离子体共振系统及其检测方法
CN104697906A (zh) 一种基于近场散射的颗粒粒度测量装置及方法
CN102927923B (zh) 一种高精度纳米间距检测装置及检测方法
CN102954950A (zh) 一种基于周期性纳米介质颗粒的生物传感器及其制备方法
CN204514759U (zh) 一种基于近场散射的颗粒粒度图像采集装置
CN201096701Y (zh) 透过率相关频谱法颗粒测量装置
CN216283306U (zh) 一种物体三维形貌测量装置
CN108801377A (zh) 一种针对特殊流体流速和流量测定的光学装置
CN1782695B (zh) 反射式周期性微纳结构的带隙特性测量装置
CN110202414B (zh) 一种基于光学倏逝波的非接触式高精度对刀系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant