CN109468332B - 溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用 - Google Patents

溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用 Download PDF

Info

Publication number
CN109468332B
CN109468332B CN201811448784.9A CN201811448784A CN109468332B CN 109468332 B CN109468332 B CN 109468332B CN 201811448784 A CN201811448784 A CN 201811448784A CN 109468332 B CN109468332 B CN 109468332B
Authority
CN
China
Prior art keywords
acid
bromomuconic
bromocatechol
bnbc
pet28a
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811448784.9A
Other languages
English (en)
Other versions
CN109468332A (zh
Inventor
周宁一
高义舟
汪磊
许楹
赵环
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201811448784.9A priority Critical patent/CN109468332B/zh
Publication of CN109468332A publication Critical patent/CN109468332A/zh
Application granted granted Critical
Publication of CN109468332B publication Critical patent/CN109468332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11001Catechol 1,2-dioxygenase (1.13.11.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明属于生物技术及酶基因工程领域,涉及溴邻苯二酚1,2双加氧酶编码基因在合成2‑溴粘康酸的应用,具体还公开了一种合成2‑溴粘康酸的方法,以3‑溴邻苯二酚为原料在溴邻苯二酚1,2双加氧酶催化下制得2‑溴粘康酸。本发明为2‑溴粘康酸的制备提供了一种制备过程简单、反应条件温和以及低污染的酶学合成法,为后续分离纯化和大批量工业生产提供了简单便捷的途径。

Description

溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用
技术领域
本发明属于生物技术及酶基因工程领域,涉及一种溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用,具体涉及一种通过生物酶学手段合成 2-溴粘康酸的方法。
背景技术
粘康酸可用于抗紫外线防护剂及军工特种用品上,另外,粘康酸也是合成肥酸的前体物质,肥酸又是合成尼龙66和塑料的前体物质(见Biosynthesis of cis,cis-MuconicAcid and Its Aromatic Precursors,Catechol and Protocatechuic Acid,fromRenewable Feedstocks by Saccharomyces cerevisiae[J].Applied&EnvironmentalMicrobiology,2012,78,8421-8430)。
粘康酸分为顺,顺-粘康酸、顺,反粘康酸和反反粘康酸。顺,顺-粘康酸主要是微生物代谢的中间产物,通过微生物代谢过程中酶促反应制得。例如底物邻氨基苯甲酸盐通过工程菌株大肠杆菌利用顺序酶促反应邻氨基苯甲酸盐 1,2双加氧酶和邻苯二酚双加氧酶制得粘康酸(见A novel muconic acid biosynthesis approach by shuntingtryptophan biosynthesis via anthranilate[J]. Applied&EnvironmentalMicrobiology,2013,79,4024-4030);底物葡萄糖也可以用工程菌过量表达3-脱氢草莽酸甲酯脱水酶,原儿茶酸脱羧酶,邻苯二酚 1,2双加氧酶等顺序酶促反应制得粘康酸(见Biosynthesis of cis,cis-Muconic Acid and Its Aromatic Precursors,Catechol andProtocatechuic Acid,from Renewable Feedstocks by Saccharomyces cerevisiae[J].Applied&Environmental Microbiology,2012,78,8421-8430);还有一些细菌可以将苯类化合物转化成为粘康酸(见Microbial production of cis,cis-muconic acid frombenzoic acid[J]. Applied Microbiology&Biotechnology,1988,28,20-25.Microbialproduction of cis,cis-muconic acid[J].Journal of Biotechnology,1990,14,203-210.)。
有研究报道某些邻苯二酚双加氧酶可以将3-氯邻苯二酚转化为2-氯粘康酸(见Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzenecatabolism pathway in Pseudomonas stutzeri ZWLR2-1.Applied&EnvironmentalMicrobiology 2011.77,4547-4552.),但该酶从未报道过用于2-溴粘康酸的生产。
在通常情况下,卤族元素的加入,可以改变化合物的特性,在某些方面有着超出不含卤族取代化合物的性能,如聚氯乙烯与聚乙烯,它们有着明显的物理及化学差异,而各自有不同的应用。粘康酸及其聚合物目前应用广泛,而目前尚无溴代粘康酸生产方法的报道,其理化知识与作用我们也无从知道。但从粘康酸在工业上的应用可以判断,溴粘康酸也将具有潜在的工业应用价值。
发明内容
为了提供一种现实可行通过酶学法制备2-溴粘康酸的途径,本发明受到菌株Pseudomonas stutzeri ZWLR2-1在代谢污染物2-氯硝基苯(2CNB)过程中,有一个酶(GenBank编号:ADQ90213.1)可以将3-氯邻苯二酚转化为2- 氯粘康酸的启发,从而探亢该酶用于2-溴粘康酸生产的可能性,该酶原名为 3-氯邻苯二酚1,2双加氧酶,经本研究证实,该酶也可将3-溴邻苯二酚催化生成2-溴粘康酸,因此,本发明将该酶称为3-溴邻苯二酚1,2双加氧酶(bnbC)。
因此,本发明提供了一种溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用,具体而言是提供一种合成2-溴粘康酸的方法。
本发明的技术方案如下:
溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用,该编码基因的核苷酸序列如SEQ ID No.1所示。
一种合成2-溴粘康酸的方法,包括以下步骤:
(1)用引物GTGCCGCGCGGCAGCCATATGCCCGGTGAGGGGCTA和ACGGAGCTCGAATTCGGATCCTGCCGCGCGCGATGC从菌株 Pseudomonas stutzeri ZWLR2-1的基因组DNA中扩增bnbC基因,扩增后利用胶回收试剂盒纯化的PCR产物;再利用限制性内切酶 Nde I和BamH I线性化商业质粒载体pET28a,并通过DNA重组酶将PCR产物与线性化载体连接,用经典的大肠杆菌转化方法将质粒 DNA转移到大肠杆菌E.coli Trans1-T1中,成功构建质粒pET28a- bnbC,该重组质粒的核苷酸序列如SEQ ID No.2所示;
(2)将成功构建的质粒pET28a-bnbC转入表达菌株E.coli BL21(DE3)中,获得重组菌E.coli BL21(DE3)[pET28a-bnbC],在LB培养基中37℃培养,当菌液OD600约为0.6时,加入终浓度为0.2mmol/L的IPTG (异丙基硫代半乳糖苷)于30℃诱导4h后,6,000×g离心5min收集菌体,重悬于提前预冷的50mmol/L pH 7.4磷酸缓冲液中,清洗两次后,再次重悬于同样的缓冲液中,随后冰水浴中超声破碎,细胞裂解液10,000×g离心1h后收集上清液,利用HisTrap HP亲和层析柱和AKTA蛋白纯化系统对E.coli BL21(DE3)[pET28a-bnbC]细胞抽提液进行蛋白纯化;
(3)将纯化后的细胞抽提液加至3-溴邻苯二酚溶液中催化,即得到2-溴粘康酸。
与现有技术相比,本发明的有益效果如下:
现有技术未见报道关于2-溴粘糠酸的制备方法,市场上也无法购得,本发明首次阐明了2-溴粘康酸的制备及分离方法,通过酶学方法以3-溴邻苯二酚为原料进行制得,通过液相色谱进行分离纯化。并通过质谱、核磁等方法进行了鉴定。该物质可作为重要化工物质粘康酸的卤族元素取代物,可能与粘康酸有类似的工业用途,但是可能也有不同的特性,具有潜在的工业价值,关于其工业应用的研究正在进行中;此外,该物质还可以作为实验标品,应用于科学研究中。本发明关于2-溴粘康酸的制备方法是利用微生物代谢过程中的酶促反应获得,相比较传统的物理化学方法的高污染性,该方法不会对环境造成污染。本发明制备过程简单,Pseudomonas stutzeri ZWLR2-1菌株中的邻苯二酚双加氧酶性质稳定,4℃条件下保存7天酶的活性不会明显丧失,反应条件简单,不需要任何辅因子,不需要含有盐离子的缓冲溶液调节pH变化,仅在纯水中加底物和酶反应即可获得含2-溴粘康酸的反应液,为后续分离纯化和大批量工业生产提供了简单便捷的方法。
附图说明
图1为重组质粒pET28a-bnbC的结构图;
图2为用分光光度计测定溴邻苯二酚1,2双加氧酶催化3-溴邻苯二酚的开环活性示意图;
图3和图4为2-溴粘康酸的LC-MS图;
图5为2-溴粘康酸的1H-NMR谱图;
图6为2-溴粘康酸的13C-NMR谱图;
图7为2-溴粘康酸的COSY谱图;
图8为2-溴粘康酸的NOESY谱图;
图9为酶促反应底物与产物及转化率之间的关系图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应该理解,这些实施例仅用于说明本发明,而不用于限定本发明的保护范围。在实际应用中本领域技术人员根据本发明做出的改进和调整,仍属于本发明的保护范围。
一、重组质粒的构建
溴邻苯二酚1,2双加氧酶的编码基因bnbC来源于Pseudomonas stutzeri ZWLR2-1。
构建重组质粒pET28a-bnbC,先用引物GTGCCGCGCGGCAGCCATATGCCCGGTGAGGGGCTA和ACGGAGCTCGAATTCGGATCCTGCCGCGCGCGATGC从菌株 Pseudomonas stutzeri ZWLR2-1的基因组DNA中扩增bnbC基因,扩增后利用胶回收试剂盒纯化的PCR产物;再利用限制性内切酶Nde I和BamH I线性化商业质粒载体pET28a,并通过DNA重组酶将PCR产物与线性化载体连接,用经典的大肠杆菌转化方法(氯化钙法)(Molecular cloning:a laboratorymanual.Cold Spring Harbor Laboratory Press.1989.)将质粒DNA转移到大肠杆菌E.coli Trans1-T1中,成功构建质粒pET28a-bnbC,见图1所示。提取质粒并进行DNA测序验证。
二、溴邻苯二酚1,2双加氧酶的纯化及活力测定
将成功构建的质粒pET28a-bnbC转入表达菌株E.coli BL21(DE3)中,获得重组菌E.coli BL21(DE3)[pET28a-bnbC],在LB培养基中37℃培养,当菌液OD600约为0.6时,加入终浓度为0.2mmol/L的IPTG(异丙基硫代半乳糖苷)于30℃诱导4h后,6,000×g离心5min收集菌体,重悬于提前预冷的 50mmol/L pH7.4磷酸缓冲液中,清洗两次后,再次重悬于同样的缓冲液中,随后冰水浴中超声破碎,细胞裂解液10,000×g离心1h后收集上清液。利用HisTrap HP亲和层析柱和AKTA蛋白纯化系统对E.coli BL21(DE3)[pET28a-bnbC]细胞抽提液进行蛋白纯化,bnbC蛋白洗脱条件为 300mmol/L咪唑,通过观察到的紫外检测峰,收集相应时间下的洗脱溶液。纯化的蛋白样品于4℃保存。反应液中加入1mL水,5mM 3-溴邻苯二酚,适量的酶,反应6小时,获得含2-溴粘康酸的反应液,用于质谱分析以及通过液相色谱进行分离纯化,核磁共振等操作。
另一反应液中加入1mL PB缓冲液(50mM,pH7.4),0.5mM 3-溴邻苯二酚,适量的酶,用分光光度计监测吸收峰的变化,酶反应在石英比色杯中进行,并通过扫描模式实时监测比色杯中各波长吸光值的变化,见图2所示。
其中,3-溴邻苯二酚在280nm有最大吸收峰,它的摩尔消光系数ε280=1952 M-1·cm-1;2-溴粘康酸在270nm处有最大吸收峰,它的摩尔消光系数ε260=13867 M-1·em-1。采用分光光度计的波长扫描模式,扫描波长为200nm-320nm。每分钟扫一次,而每条曲线代表每次扫描的结果。由图2可知,随着时间的推移,每次扫描在260nm处的吸光值都会有所上升,这显示有产物的积累,同时波峰向左偏移。因此,证实邻苯二酚双加氧酶可以催化3-溴邻苯二酚的开环生成2-溴粘康酸。
三、LC-MS分析及HPLC纯化2溴粘康酸
将酶促反应液反应6小时后加入30%甲酸终止反应,于室温12000×g高速离心5min后取上清液进行LC-MS分析,色谱柱为Bio-RAD Aminex HPX-87H(300mm×7.8mm),流动相为体积比为0.1%的甲酸的水溶液,采用等度洗脱程序,进样量为10μL,流速为0.4mL/min,检测波长为260nm。此条件下2-溴粘康酸的出峰时间为23min,质谱图初步验证此物质为2-溴粘康酸,见图3和图4所示。用HPLC收集2-溴粘康酸出峰时的液体:条件同上,只改变流速为0.8mL/min,进样量为100μL,上述条件下2-溴粘康酸的保留时间为11.5min。
从图3和图4可知,酶促反应液在液相中得到一个明显的峰,此峰在负离子模式下的质谱与2-溴粘康酸吻合。
四、核磁共振分析验证2-溴粘康酸的结构
将HPLC收集到的样品冻干后溶于氘代DMSO中,1H-NMR实验如图5所示;13C-NMR谱实验如图6所示;COSY谱实验(1H-1HCOSY谱,13C-1HCOSY 谱)如图7所示;NOESY谱实验如图8所示。核磁共振图谱归属表如表1所示。
Figure BDA0001885048690000071
表1:核磁共振图谱归属表
Figure BDA0001885048690000072
注:s单峰,d两重峰,t三重峰,m五重峰
五、酶促反应底物与产物及转化率之间的关系
为了指导实际生产过程中原料3-溴邻苯二酚的投放量,本发明还研究了在溴邻苯二酚1,2双加氧酶过量的情况下,原料浓度与产物浓度的定量关系。
酶促反应液中加入1mL水,分别加入0.1mM;0.2mM;0.5mM;1mM;2mM; 5mM浓度的原料3-溴邻苯二酚,过量的溴邻苯二酚1,2双加氧酶,反应6小时后用分光光度计计算产物浓度,实验结果见图9所示。
在理想条件下,3-溴邻苯二酚会以1∶1的比例转化为2-溴粘康酸,但从图 9可知,事实并非如此,即使在酶过量条件下,酶促反应6小时后,增加原料 3-溴邻苯二酚的浓度,确实可以提升2-溴粘康酸的产量。但并非线性提升,随着原料浓度增加,产物浓度也增加,但增加不如原料的增加快,因此所用原料浓度越高,转化率越低。
以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。
SEQUENCE LISTING
<110> 上海交通大学
<120> 溴邻苯二酚1,2双加氧酶的编码基因及其应用
<130>
<160> 2
<170> PatentIn version 3.5
<210> 1
<211> 828
<212> DNA
<213> Pseudomonas stutzeri
<400> 1
atgcccggtg aggggctaga ctcaggcact aggacaagaa gcgttaggag cggagagatg 60
agcaacaatc gtattcatgc ggtggtatca gacattgtga acggaattcg ccaggtcctg 120
gtcaggcacg gcgtgacatt cgacgaatat cgcgcgggtg tcatgtatgc tgtgaaaacg 180
ggtgaagcgg gcgagattcc gcttatgctc gatgtctttc tgaactcgac cgtcagcgac 240
atcgagaatg ctgcctatgg cggcaccgag gggacgatcg aaggccccta ttatctgccg 300
aatgcgccca tcattccgaa cggcggtgag attctcacct atgatgatga ccgcaacgtc 360
cccatggtcg tgcgcggcac ggtcaaggat ctcgaaggcc agccgatcgc cggcgccacg 420
gttgatatct ggcactcgac gccggacggc tattatggcg gcatccacaa cgacattccg 480
gcaaactact accggggcaa ggttctgacg gactccgaag gtcggtattt cgtccgttcg 540
accgtgcccg ttccctacaa gatcccggat caaggcccca ccggcgcgct tctagaaatg 600
atgggcgggc atagttggcg gccggcgcac gtccatttca aggttcgcgc ggacggctac 660
cacaccctca ccacgcagag ttatttcgag cagggcgact atgtcgagga cgactgctgc 720
aatggcgtgc gtcccgtcca ggtcaagccc gatgtgcggg aaaatggcga gaaggtgatc 780
gagaacgact tccagctcgc gcccgacgtg atcgcatcgc gcgcggca 828
<210> 2
<211> 6160
<212> DNA
<213> 人工序列
<400> 2
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaatttagg tggcactttt 480
cggggaaatg tgcgcggaac ccctatttgt ttatttttct aaatacattc aaatatgtat 540
ccgctcatga attaattctt agaaaaactc atcgagcatc aaatgaaact gcaatttatt 600
catatcagga ttatcaatac catatttttg aaaaagccgt ttctgtaatg aaggagaaaa 660
ctcaccgagg cagttccata ggatggcaag atcctggtat cggtctgcga ttccgactcg 720
tccaacatca atacaaccta ttaatttccc ctcgtcaaaa ataaggttat caagtgagaa 780
atcaccatga gtgacgactg aatccggtga gaatggcaaa agtttatgca tttctttcca 840
gacttgttca acaggccagc cattacgctc gtcatcaaaa tcactcgcat caaccaaacc 900
gttattcatt cgtgattgcg cctgagcgag acgaaatacg cgatcgctgt taaaaggaca 960
attacaaaca ggaatcgaat gcaaccggcg caggaacact gccagcgcat caacaatatt 1020
ttcacctgaa tcaggatatt cttctaatac ctggaatgct gttttcccgg ggatcgcagt 1080
ggtgagtaac catgcatcat caggagtacg gataaaatgc ttgatggtcg gaagaggcat 1140
aaattccgtc agccagttta gtctgaccat ctcatctgta acatcattgg caacgctacc 1200
tttgccatgt ttcagaaaca actctggcgc atcgggcttc ccatacaatc gatagattgt 1260
cgcacctgat tgcccgacat tatcgcgagc ccatttatac ccatataaat cagcatccat 1320
gttggaattt aatcgcggcc tagagcaaga cgtttcccgt tgaatatggc tcataacacc 1380
ccttgtatta ctgtttatgt aagcagacag ttttattgtt catgaccaaa atcccttaac 1440
gtgagttttc gttccactga gcgtcagacc ccgtagaaaa gatcaaagga tcttcttgag 1500
atcctttttt tctgcgcgta atctgctgct tgcaaacaaa aaaaccaccg ctaccagcgg 1560
tggtttgttt gccggatcaa gagctaccaa ctctttttcc gaaggtaact ggcttcagca 1620
gagcgcagat accaaatact gtccttctag tgtagccgta gttaggccac cacttcaaga 1680
actctgtagc accgcctaca tacctcgctc tgctaatcct gttaccagtg gctgctgcca 1740
gtggcgataa gtcgtgtctt accgggttgg actcaagacg atagttaccg gataaggcgc 1800
agcggtcggg ctgaacgggg ggttcgtgca cacagcccag cttggagcga acgacctaca 1860
ccgaactgag atacctacag cgtgagctat gagaaagcgc cacgcttccc gaagggagaa 1920
aggcggacag gtatccggta agcggcaggg tcggaacagg agagcgcacg agggagcttc 1980
cagggggaaa cgcctggtat ctttatagtc ctgtcgggtt tcgccacctc tgacttgagc 2040
gtcgattttt gtgatgctcg tcaggggggc ggagcctatg gaaaaacgcc agcaacgcgg 2100
cctttttacg gttcctggcc ttttgctggc cttttgctca catgttcttt cctgcgttat 2160
cccctgattc tgtggataac cgtattaccg cctttgagtg agctgatacc gctcgccgca 2220
gccgaacgac cgagcgcagc gagtcagtga gcgaggaagc ggaagagcgc ctgatgcggt 2280
attttctcct tacgcatctg tgcggtattt cacaccgcat atatggtgca ctctcagtac 2340
aatctgctct gatgccgcat agttaagcca gtatacactc cgctatcgct acgtgactgg 2400
gtcatggctg cgccccgaca cccgccaaca cccgctgacg cgccctgacg ggcttgtctg 2460
ctcccggcat ccgcttacag acaagctgtg accgtctccg ggagctgcat gtgtcagagg 2520
ttttcaccgt catcaccgaa acgcgcgagg cagctgcggt aaagctcatc agcgtggtcg 2580
tgaagcgatt cacagatgtc tgcctgttca tccgcgtcca gctcgttgag tttctccaga 2640
agcgttaatg tctggcttct gataaagcgg gccatgttaa gggcggtttt ttcctgtttg 2700
gtcactgatg cctccgtgta agggggattt ctgttcatgg gggtaatgat accgatgaaa 2760
cgagagagga tgctcacgat acgggttact gatgatgaac atgcccggtt actggaacgt 2820
tgtgagggta aacaactggc ggtatggatg cggcgggacc agagaaaaat cactcagggt 2880
caatgccagc gcttcgttaa tacagatgta ggtgttccac agggtagcca gcagcatcct 2940
gcgatgcaga tccggaacat aatggtgcag ggcgctgact tccgcgtttc cagactttac 3000
gaaacacgga aaccgaagac cattcatgtt gttgctcagg tcgcagacgt tttgcagcag 3060
cagtcgcttc acgttcgctc gcgtatcggt gattcattct gctaaccagt aaggcaaccc 3120
cgccagccta gccgggtcct caacgacagg agcacgatca tgcgcacccg tggggccgcc 3180
atgccggcga taatggcctg cttctcgccg aaacgtttgg tggcgggacc agtgacgaag 3240
gcttgagcga gggcgtgcaa gattccgaat accgcaagcg acaggccgat catcgtcgcg 3300
ctccagcgaa agcggtcctc gccgaaaatg acccagagcg ctgccggcac ctgtcctacg 3360
agttgcatga taaagaagac agtcataagt gcggcgacga tagtcatgcc ccgcgcccac 3420
cggaaggagc tgactgggtt gaaggctctc aagggcatcg gtcgagatcc cggtgcctaa 3480
tgagtgagct aacttacatt aattgcgttg cgctcactgc ccgctttcca gtcgggaaac 3540
ctgtcgtgcc agctgcatta atgaatcggc caacgcgcgg ggagaggcgg tttgcgtatt 3600
gggcgccagg gtggtttttc ttttcaccag tgagacgggc aacagctgat tgcccttcac 3660
cgcctggccc tgagagagtt gcagcaagcg gtccacgctg gtttgcccca gcaggcgaaa 3720
atcctgtttg atggtggtta acggcgggat ataacatgag ctgtcttcgg tatcgtcgta 3780
tcccactacc gagatatccg caccaacgcg cagcccggac tcggtaatgg cgcgcattgc 3840
gcccagcgcc atctgatcgt tggcaaccag catcgcagtg ggaacgatgc cctcattcag 3900
catttgcatg gtttgttgaa aaccggacat ggcactccag tcgccttccc gttccgctat 3960
cggctgaatt tgattgcgag tgagatattt atgccagcca gccagacgca gacgcgccga 4020
gacagaactt aatgggcccg ctaacagcgc gatttgctgg tgacccaatg cgaccagatg 4080
ctccacgccc agtcgcgtac cgtcttcatg ggagaaaata atactgttga tgggtgtctg 4140
gtcagagaca tcaagaaata acgccggaac attagtgcag gcagcttcca cagcaatggc 4200
atcctggtca tccagcggat agttaatgat cagcccactg acgcgttgcg cgagaagatt 4260
gtgcaccgcc gctttacagg cttcgacgcc gcttcgttct accatcgaca ccaccacgct 4320
ggcacccagt tgatcggcgc gagatttaat cgccgcgaca atttgcgacg gcgcgtgcag 4380
ggccagactg gaggtggcaa cgccaatcag caacgactgt ttgcccgcca gttgttgtgc 4440
cacgcggttg ggaatgtaat tcagctccgc catcgccgct tccacttttt cccgcgtttt 4500
cgcagaaacg tggctggcct ggttcaccac gcgggaaacg gtctgataag agacaccggc 4560
atactctgcg acatcgtata acgttactgg tttcacattc accaccctga attgactctc 4620
ttccgggcgc tatcatgcca taccgcgaaa ggttttgcgc cattcgatgg tgtccgggat 4680
ctcgacgctc tcccttatgc gactcctgca ttaggaagca gcccagtagt aggttgaggc 4740
cgttgagcac cgccgccgca aggaatggtg catgcaagga gatggcgccc aacagtcccc 4800
cggccacggg gcctgccacc atacccacgc cgaaacaagc gctcatgagc ccgaagtggc 4860
gagcccgatc ttccccatcg gtgatgtcgg cgatataggc gccagcaacc gcacctgtgg 4920
cgccggtgat gccggccacg atgcgtccgg cgtagaggat cgagatctcg atcccgcgaa 4980
attaatacga ctcactatag gggaattgtg agcggataac aattcccctc tagaaataat 5040
tttgtttaac tttaagaagg agatatacca tgggcagcag ccatcatcat catcatcaca 5100
gcagcggcct ggtgccgcgc ggcagccata tgcccggtga ggggctagac tcaggcacta 5160
ggacaagaag cgttaggagc ggagagatga gcaacaatcg tattcatgcg gtggtatcag 5220
acattgtgaa cggaattcgc caggtcctgg tcaggcacgg cgtgacattc gacgaatatc 5280
gcgcgggtgt catgtatgct gtgaaaacgg gtgaagcggg cgagattccg cttatgctcg 5340
atgtctttct gaactcgacc gtcagcgaca tcgagaatgc tgcctatggc ggcaccgagg 5400
ggacgatcga aggcccctat tatctgccga atgcgcccat cattccgaac ggcggtgaga 5460
ttctcaccta tgatgatgac cgcaacgtcc ccatggtcgt gcgcggcacg gtcaaggatc 5520
tcgaaggcca gccgatcgcc ggcgccacgg ttgatatctg gcactcgacg ccggacggct 5580
attatggcgg catccacaac gacattccgg caaactacta ccggggcaag gttctgacgg 5640
actccgaagg tcggtatttc gtccgttcga ccgtgcccgt tccctacaag atcccggatc 5700
aaggccccac cggcgcgctt ctagaaatga tgggcgggca tagttggcgg ccggcgcacg 5760
tccatttcaa ggttcgcgcg gacggctacc acaccctcac cacgcagagt tatttcgagc 5820
agggcgacta tgtcgaggac gactgctgca atggcgtgcg tcccgtccag gtcaagcccg 5880
atgtgcggga aaatggcgag aaggtgatcg agaacgactt ccagctcgcg cccgacgtga 5940
tcgcatcgcg cgcggcagga tccgaattcg agctccgtcg acaagcttgc ggccgcactc 6000
gagcaccacc accaccacca ctgagatccg gctgctaaca aagcccgaaa ggaagctgag 6060
ttggctgctg ccaccgctga gcaataacta gcataacccc ttggggcctc taaacgggtc 6120
ttgaggggtt ttttgctgaa aggaggaact atatccggat 6160

Claims (2)

1.溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用,该编码基因的核苷酸序列如SEQ ID No.1所示。
2.一种合成2-溴粘康酸的方法,其特征在于,包括以下步骤:
(1)用引物GTGCCGCGCGGCAGCCATATGCCCGGTGAGGGGCTA和ACGGAGCTCGAATTCGGATCCTGCCGCGCGCGATGC从菌株Pseudomonas stutzeri ZWLR2-1的基因组DNA中扩增bnbC基因,扩增后利用胶回收试剂盒纯化的PCR产物;再利用限制性内切酶Nde I和BamH I线性化商业质粒载体pET28a,并通过DNA重组酶将PCR产物与线性化载体连接,用大肠杆菌转化方法将质粒DNA转移到大肠杆菌E.coli Trans1-T1中,成功构建质粒pET28a-bnbC,该重组质粒的核苷酸序列如SEQ ID No.2所示;
(2)将质粒pET28a-bnbC转入表达菌株E.coli BL21(DE3)中,获得重组菌E.coli BL21(DE3)[pET28a-bnbC],在LB培养基中37℃培养,当菌液OD600为0.6时,加入终浓度为0.2mmol/L的IPTG于30℃诱导4h后,6,000×g离心5min收集菌体,重悬于提前预冷的50mmol/L pH 7.4磷酸缓冲液中,清洗两次后,再次重悬于同样的缓冲液中,随后冰水浴中超声破碎,细胞裂解液10,000×g离心1h后收集上清液。利用HisTrap HP亲和层析柱和AKTA蛋白纯化系统对E.coliBL21(DE3)[pET28a-bnbC]细胞抽提液进行蛋白纯化;
(3)将纯化后的细胞抽提液加至3-溴邻苯二酚溶液中,即得到2-溴粘康酸。
CN201811448784.9A 2018-11-29 2018-11-29 溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用 Active CN109468332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811448784.9A CN109468332B (zh) 2018-11-29 2018-11-29 溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811448784.9A CN109468332B (zh) 2018-11-29 2018-11-29 溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用

Publications (2)

Publication Number Publication Date
CN109468332A CN109468332A (zh) 2019-03-15
CN109468332B true CN109468332B (zh) 2021-10-26

Family

ID=65673637

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811448784.9A Active CN109468332B (zh) 2018-11-29 2018-11-29 溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用

Country Status (1)

Country Link
CN (1) CN109468332B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110205316A (zh) * 2019-06-21 2019-09-06 济宁学院 一种酶法降解4-氨基水杨酸的方法
CN110241102A (zh) * 2019-06-21 2019-09-17 济宁学院 一种酶法降解2,6-二羟基苯甲酸的方法
CN111254151B (zh) * 2020-04-01 2021-10-29 南京工业大学 一种邻苯二酚1,2-双加氧酶基因及其在合成4位取代顺,顺-粘康酸中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546647A (zh) * 2003-12-11 2004-11-17 中国科学院武汉病毒研究所 施氏假单胞菌zwlr2-1及其制法和应用
CN101597597A (zh) * 2009-06-26 2009-12-09 中国科学院武汉病毒研究所 一种4-硝基酚-4-单加氧酶基因及制备方法和用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1546647A (zh) * 2003-12-11 2004-11-17 中国科学院武汉病毒研究所 施氏假单胞菌zwlr2-1及其制法和应用
CN1259412C (zh) * 2003-12-11 2006-06-14 中国科学院武汉病毒研究所 施氏假单胞菌zwlr2-1及其制法和应用
CN101597597A (zh) * 2009-06-26 2009-12-09 中国科学院武汉病毒研究所 一种4-硝基酚-4-单加氧酶基因及制备方法和用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Patchwork Assembly of nag-Like Nitroarene Dioxygenase Genes and the 3-Chlorocatechol Degradation Cluster for Evolution of the 2-Chloronitrobenzene Catabolism Pathway in Pseudomonas stutzeri ZWLR2-1;Hong Liu et al;《Appl Environ Microbiol》;20110731;第77卷(第13期);第4547页右栏第3段-4548页右栏第3段、第4551页左栏倒数第二段、图1 *
Pseudomonas stutzeri strain ZWLR2-1 catabolic gene cluster, complete sequence;GenBank;《GenBank》;20110627;序列表 *

Also Published As

Publication number Publication date
CN109468332A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN109468332B (zh) 溴邻苯二酚1,2双加氧酶编码基因在合成2-溴粘康酸的应用
Schallmey et al. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca
Abad et al. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst
Lin et al. Increasing the acetyl‐CoA pool in the presence of overexpressed phosphoenolpyruvate carboxylase or pyruvate carboxylase enhances succinate production in Escherichia coli
Moon et al. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5′-phosphate and ATP
CN109161536B (zh) 制备尿苷酸用酶制剂以及酶催化制备尿苷酸的方法
KR20150040359A (ko) 지방산 및 지방산 유도된 산물의 생산을 위한 미생물 및 방법
Wang et al. Lactulose production from lactose by recombinant cellobiose 2‐epimerase in permeabilised E scherichia coli cells
US10174346B2 (en) Microorganisms engineered to produce phenol and its derivatives
CN111254151B (zh) 一种邻苯二酚1,2-双加氧酶基因及其在合成4位取代顺,顺-粘康酸中的应用
de Abreu et al. Efficient purification-immobilization of an organic solvent-tolerant lipase from Staphylococcus warneri EX17 on porous styrene-divinylbenzene beads
Volmer et al. Constitutively solvent‐tolerant Pseudomonas taiwanensis VLB120∆ C∆ ttgV supports particularly high‐styrene epoxidation activities when grown under glucose excess conditions
Singh et al. Bioconversion of acrylonitrile using nitrile hydratase activity of Bacillus sp. APB-6
van Nuland et al. Expansion of the ω‐oxidation system AlkBGTL of P seudomonas putida GPo1 with AlkJ and AlkH results in exclusive mono‐esterified dicarboxylic acid production in E. coli
Rzeznicka et al. Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation
Ménil et al. Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system
Mahour et al. Cell‐free multi‐enzyme synthesis and purification of uridine diphosphate galactose
Jager et al. Saturation mutagenesis reveals the importance of residues αR145 and αF146 of penicillin acylase in the synthesis of β-lactam antibiotics
Ma et al. High-yield production of enantiopure 2-hydroxy-2-(2′-chlorophenyl) acetic acid by long-term operation of a continuous packed bed reactor
Melgarejo-Torres et al. Regime analysis of a Baeyer–Villiger bioconversion in a three-phase (air–water–ionic liquid) stirred tank bioreactor
Sun et al. Directed evolution of nitrilase PpL19 from Pseudomonas psychrotolerans L19 and identification of enantiocomplementary mutants toward mandelonitrile
Ordaz et al. Covalent and metal‐chelate immobilization of a modified 2‐haloacid dehalogenase for the enzymatic resolution of optically active chloropropionic acid
Honda et al. Increasing the thermostable sugar-1-phosphate nucleotidylyltransferase activities of the archaeal ST0452 protein through site saturation mutagenesis of the 97th amino acid position
Kinfu et al. Recombinant RNA polymerase from Geobacillus sp. GHH01 as tool for rapid generation of metagenomic RNAs using in vitro technologies
CN106119224B (zh) 一种酯酶EstP00714及其编码基因和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant