CN109457992A - A kind of external bonding of band anchoring reinforces the method and application of concrete structure - Google Patents

A kind of external bonding of band anchoring reinforces the method and application of concrete structure Download PDF

Info

Publication number
CN109457992A
CN109457992A CN201811273437.7A CN201811273437A CN109457992A CN 109457992 A CN109457992 A CN 109457992A CN 201811273437 A CN201811273437 A CN 201811273437A CN 109457992 A CN109457992 A CN 109457992A
Authority
CN
China
Prior art keywords
glue
hole
patch
carbon fiber
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811273437.7A
Other languages
Chinese (zh)
Other versions
CN109457992B (en
Inventor
孙伟
何涛
楼铁炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou University
Original Assignee
Lanzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou University filed Critical Lanzhou University
Priority to CN201811273437.7A priority Critical patent/CN109457992B/en
Publication of CN109457992A publication Critical patent/CN109457992A/en
Application granted granted Critical
Publication of CN109457992B publication Critical patent/CN109457992B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G23/0244Increasing or restoring the load-bearing capacity of building construction elements of beams at places of holes, e.g. drilled in them
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G2023/0251Increasing or restoring the load-bearing capacity of building construction elements by using fiber reinforced plastic elements
    • E04G2023/0262Devices specifically adapted for anchoring the fiber reinforced plastic elements, e.g. to avoid peeling off

Abstract

The invention discloses methods and application that a kind of external bonding of band anchoring reinforces concrete structure.Aperture is carried out in beam tension side;Prepare carbon fiber patch and carbon fibre bar;Hole is filled with deployed epoxide-resin glue and slot inner surface is spread into epoxy resin;The carbon fiber patch infiltrated is pasted at design position i.e. bottom patch first;Iron wire is bent to U-shaped, the carbon fibre bar made is subjected to doubling at anchoring, fold position is placed at the hole that beam has been accomplished fluently, carbon fibre bar is slowly pressed into hole using iron wire, another side cavities also carry out same operation, it tenses carbon fibre bar in alignment to guarantee, fiber bar is depressed into behind the bottom of hole and slowly extracts iron wire, the carbon fiber patch infiltrated covering is finally pasted at anchoring i.e. top layer patch again;Mounted beam is waited to the solidification of glue.The method of present invention simplicity joined the anchor system being easily installed, and the tensile strength of CFRP is given full play to.

Description

A kind of external bonding of band anchoring reinforces the method and application of concrete structure
Technical field
The present invention relates to methods and application that a kind of external bonding of band anchoring reinforces concrete structure, belong to construction Technical field.
Background technique
Carbon fibre material starts from the beauty eighties, Deng developed country, China for the research of concrete structure reinforcement repairing This technology start late.1997, State Industrial Building Diagnostic and Reform Engineering Technology Research carried out use earliest The research of CFRP reinforced concrete member, obtains certain research achievement.Hereafter, domestic experts and scholars have carried out a large amount of theoretical point Analysis and experimental study.
Carbon fibre reinforced composite is due to having obtained building row with high-strength mechanical property and excellent endurance quality Industry is widely recognized as.External Bonded (abbreviation EB) technology, also known as external bonding method for strengthening, carbon cloth or plate are glued The stress surface that structure needs reinforcement is labelled to reinforce to structure.EB technology is received because of its simple process, easy for construction The favor of engineering circles.But as research and application are goed deep into, the defect of EB technology gradually exposes.On the one hand, outer patch technique is difficult to send out Wave the high-strength performance of this material;On the other hand, often there is the destruction shape of CFRP- concrete removing in outer patch CFRP ruggedized construction State, this destruction that Brittleness is presented cause structure to lose bearing capacity before giving full play to CFRP material property.
External Bonded (abbreviation EB): external bonding method for strengthening.The disadvantage is that the outer patch technique that this method uses is difficult to Play the tensile strength of CFRP.The present invention is compared to EB technology, it is therefore an objective to which guarantee construction procedure as far as possible does not increase too much and significantly The tensile strength of CFRP is played in the case where the polishing area for reducing concrete surface completely.
Near Surfae Mounted (abbreviation NSM): Strengthened With Near Surface Mounted method for strengthening.The disadvantages of the method are as follows NSM system can not be made CFRP material in system reaches its tensile strength, and construction is needed with a large amount of epoxide-resin glue.The present invention is compared to NSM technology The tensile strength of CFRP can be given full play to first, while reduce the usage amount of epoxide-resin glue, and complexity of constructing has It is reduced.
Summary of the invention
In view of this, the present invention provides method and application that a kind of external bonding of band anchoring reinforces concrete structure, In order to make full use of the strength of materials of CFRP, the present invention will improve existing reinforcement technique to reach this purpose.
The present invention solves above-mentioned technical problem by following technological means:
The method that a kind of external bonding of band anchoring of the invention reinforces concrete structure, is following steps:
(1) aperture is carried out in beam tension side, is cleaned out dust in beam surface and hole using compressed air;
(2) carbon fibre bar is prepared, is infiltrated the carbon cloth cut 3 minutes with epoxide-resin glue, so that sufficiently infiltration, Extra glue is scraped off later, then carbon cloth is subjected to doubling three times in the width direction, needs to be compacted catch up with repeatedly after each doubling Bubble is out to guarantee to fit closely between carbon cloth;Carbon fiber patch is prepared, the carbon fiber patch asphalt mixtures modified by epoxy resin that will be cut Rouge glue infiltrates 3 minutes, scrapes off extra glue later;
(3) it deploys epoxide-resin glue: usingS epoxide-resin glue mixes A glue and B glue volume proportion for 100:42 It closes, stirs five minutes, AB glue is uniformly mixed, with deployed asphalt mixtures modified by epoxy resin using blender and using the revolving speed of 400-600RPM Hole is filled and slot inner surface is spread epoxy resin by rouge glue;
(4) carbon fiber patch is pasted onto hole left or right side first and makes carbon fiber patch edge and hole edge phase Cut place i.e. bottom patch;An iron leg silk is cut, iron wire is bent to U-shaped, it will be in the midpoint and slot of the carbon fibre bar that made Point alignment reuses iron wire and is slowly pressed into carbon fibre bar in hole, meanwhile, another side cavities also carry out same operation, make carbon Fiber bar tenses in alignment to guarantee, fiber bar is depressed into behind the bottom of hole slowly extracts iron wire, will finally infiltrate again The covering of carbon fiber patch is pasted at anchoring i.e. top layer patch;
(5) mounted beam is placed to the solidification for waiting glue in clean environments, the adhesive curing time is 1-2 weeks).
The hole depth 100-150mm of aperture in the step (1).
Carbon cloth a length of 1000-1300mm that the step (2) uses, width 100-150mm, the length of carbon fiber patch For 130-170mm, width 80-120mm.
Its beam, plate, column for being applied to industry or civil buildings, and the reinforcing of bridge, tunnel and culvert.
EB method uses outer patch technique, therefore failure mode is generally CFRP stripping damage, therefore is difficult to give full play to CFRP's Tensile strength, EB technology can only play 40%-50% of its tensile strength or so.The present invention, can be complete compared to EB technology The tensile strength for playing material makes CFRP reinforcement material rupture failure.
NSM method is the development and innovation in original EB technical foundation, and principle is opened on reinforced concrete member surface Slot is tightly combined in CFRP tendons embedded groove it with component using binder (epoxide-resin glue), reaches reinforcing and benefit with this Strong purpose.The disadvantages of the method are as follows being difficult to give full play to the tensile strength of CFRP, the CFRP material in NSM system can not be made to reach Its tensile strength, and construction is needed with a large amount of epoxide-resin glue.The present invention first can be by the tension of CFRP compared to NSM technology Intensity gives full play to, while reducing the usage amount of epoxide-resin glue, and complexity of constructing decreases.
It is compared with EB technology, method of the present invention due to using anchoring can give full play to the tensile strength of CFRP, EB skill The structure that art is reinforced is only capable of playing the 40%-50% of CFRP tensile strength, and the structure that the present invention reinforces then can be by CFRP tension Intensity plays completely.
Compared to NSM technology, the tensile strength of CFRP has been given full play to present invention employs the method for anchoring.And Construction procedure compared to NSM, the present invention is without fluting, it is only necessary to and a small amount of hole is opened, construction procedure is simplified, due to being not necessarily to fluting, The present invention reduces the usage amount of epoxide-resin glue without the encapsulating into slot.
EB technology is widely used in China, and such as Taizhou of Zhejiang ACE Semi JinRong Building in 2015 uses system because changing structure, Increase load, project need to be reinforced, is reinforced with regard to using the technology;NSM technology is then more in foreign applications, such as: 1999, a pre-tensioned prestressing T steel Concrete Beam Reinforced on southern German Tobel bridge was in a traffic accident by truck It breaks, and reinforcing is carried out using NSM technology.
The present invention can then substitute EB and NSM technology in many practical applications, and since the present invention compares both skills Art can more give full play to the tensile strength of carbon cloth, therefore the building that the present invention is reinforced has higher reliability;And phase Compared with NSM technology, present invention decreases construction complexities.As it can be seen that application prospect of the invention is extensive.
Beneficial effects of the present invention: the method for present invention simplicity joined the anchor system being easily installed, so that CFRP Tensile strength can give full play to.
Detailed description of the invention
The invention will be further described with reference to the accompanying drawings and examples.
Fig. 1 is the top view of 1 sample beam of the embodiment of the present invention.
Fig. 2 is the side view of 1 sample beam of the embodiment of the present invention.
Fig. 3 is that the embodiment of the present invention 1 makes carbon fiber reinforcement part schematic diagram.
Fig. 4 is 1 scheme of installation of the embodiment of the present invention.
Fig. 5 is the breaking test result of mounted beam in the embodiment of the present invention 1.
Fig. 6 is the breaking test result that EB technology reinforced concrete beam is used in the embodiment of the present invention 1.
Fig. 7 is to carry out breaking test result using NSM technology reinforced concrete beam in the embodiment of the present invention 1.
Specific embodiment
Below with reference to attached drawing, the present invention is described in detail, as shown in Figure 1: a kind of band of the invention of the present embodiment The method that the external bonding of anchoring reinforces concrete structure, is following steps:
(1) aperture is carried out in beam tension side, is cleaned out dust in beam surface and hole using compressed air;
(2) carbon fibre bar is prepared, is infiltrated the carbon cloth cut 3 minutes with epoxide-resin glue, so that sufficiently infiltration, Extra glue is scraped off later, then carbon cloth is subjected to doubling three times in the width direction, needs to be compacted catch up with repeatedly after each doubling Bubble is out to guarantee to fit closely between carbon cloth;Carbon fiber patch is prepared, the carbon fiber patch asphalt mixtures modified by epoxy resin that will be cut Rouge glue infiltrates 3 minutes, scrapes off extra glue later;
(3) it deploys epoxide-resin glue: usingS epoxide-resin glue mixes A glue and B glue volume proportion for 100:42 It closes, stirs five minutes, AB glue is uniformly mixed, with deployed asphalt mixtures modified by epoxy resin using blender and using the revolving speed of 400-600RPM Hole is filled and slot inner surface is spread epoxy resin by rouge glue;
(4) carbon fiber patch is pasted onto hole left or right side first and makes carbon fiber patch edge and hole edge phase Cut place i.e. bottom patch;An iron leg silk is cut, iron wire is bent to U-shaped, it will be in the midpoint and slot of the carbon fibre bar that made Point alignment reuses iron wire and is slowly pressed into carbon fibre bar in hole, meanwhile, another side cavities also carry out same operation, make carbon Fiber bar tenses in alignment to guarantee, fiber bar is depressed into behind the bottom of hole slowly extracts iron wire, will finally infiltrate again The covering of carbon fiber patch is pasted at anchoring i.e. top layer patch;
(5) mounted beam is placed to the solidification for waiting glue in clean environments, the adhesive curing time is 1-2 weeks).
The hole depth 100-150mm of aperture in the step (1).
Carbon cloth a length of 1000-1300mm that the step (2) uses, width 100-150mm, the length of carbon fiber patch For 130-170mm, width 80-120mm.
Its beam, plate, column for being applied to industry or civil buildings, and the reinforcing of bridge, tunnel and culvert.
Embodiment 1
As shown in Figs. 1-2, aperture, hole depth 127mm are carried out in beam tension side.It will be in beam surface and hole using air compressor Dust cleans out
As shown in figure 3, the carbon cloth used in test is having a size of 1116mm × 127mm, the size of carbon fiber patch is 152mm×100mm.The carbon cloth cut is infiltrated 3 minutes to guarantee sufficiently infiltration with epoxide-resin glue, is scraped off later more Remaining glue, then carbon cloth is subjected to doubling three times in the width direction, it needs to be compacted drive bubble out of repeatedly after each doubling to protect It is fitted closely between card carbon cloth.
Hole is filled with deployed epoxy glue and slot inner surface is spread into epoxy resin.
As shown in figure 4, the carbon fiber patch infiltrated is pasted at design position i.e. bottom patch first.Cut one section Iron wire is bent to U-shaped by iron wire, and the carbon fibre bar made is carried out doubling at experimental design anchoring, fold position is placed on At the hole that beam has been accomplished fluently, carbon fibre bar is slowly pressed into hole using iron wire, meanwhile, another side cavities also carry out identical Operation, can be such that carbon fibre bar tenses in alignment to guarantee by the operation.Fiber bar is depressed into behind the bottom of hole and is slowly pulled out Iron wire out.The carbon fiber patch infiltrated covering is finally pasted at anchoring i.e. top layer patch again.
Mounted beam is placed the solidification for waiting glue in clean environments by the sample beam after being installed later.
By beam mounted in the present embodiment 1 and using EB technology reinforced concrete beam, NSM technology reinforced concrete beam into Row breaking test, as a result such as Fig. 5,6 and 7.Fig. 5 is using laboratory result of the invention, and average bearing capacity can reach 79kN, Highest bearing capacity is 87kN, by calculating, the stress level average out to 117% that fiber cloth is played, and up to 128%;Fig. 6 is Using the laboratory result of EB technology, average bearing capacity can reach 41kN, and highest bearing capacity is 44kN, by calculating, fiber The stress level average out to 58% that cloth is played, up to 62%;Fig. 7 is the laboratory result using NSM technology, is averagely held 51kN can be reached by carrying power, and highest bearing capacity is 58kN, by calculating, the stress level average out to 81% that fiber cloth is played, most A height of 94%.As it can be seen that the present invention can efficiently use the high-strength pulling-resisting intensity of fiber cloth, make its tension compared to EB and NSM technology Intensity can give full play to.
Finally, it is stated that the above examples are only used to illustrate the technical scheme of the present invention and are not limiting, although referring to compared with Good embodiment describes the invention in detail, those skilled in the art should understand that, it can be to skill of the invention Art scheme is modified or replaced equivalently, and without departing from the objective and range of technical solution of the present invention, should all be covered at this In the scope of the claims of invention.

Claims (4)

1. a kind of method that external bonding of band anchoring reinforces concrete structure, which is characterized in that be following steps:
(1) aperture is carried out in beam tension side, is cleaned out dust in beam surface and hole using compressed air;
(2) carbon fibre bar is prepared, is infiltrated the carbon cloth cut 3 minutes with epoxide-resin glue, so that sufficiently infiltration, later Extra glue is scraped off, then carbon cloth is subjected to doubling three times in the width direction, needs to be compacted drive gas out of repeatedly after each doubling Bubble is to guarantee to fit closely between carbon cloth;Carbon fiber patch is prepared, the carbon fiber patch epoxide-resin glue that will be cut Infiltration 3 minutes, scrapes off extra glue later;
(3) it deploys epoxide-resin glue: usingA glue and B glue volume proportion are mixed for 100:42, are made by S epoxide-resin glue It stirs five minutes, AB glue is uniformly mixed, with deployed epoxide-resin glue with blender and using the revolving speed of 400-600RPM Hole is filled and slot inner surface is spread into epoxy resin;
(4) carbon fiber patch is pasted onto hole left or right side first and makes carbon fiber patch edge and hole edge the tangent That is bottom patch;An iron leg silk is cut, iron wire is bent to U-shaped, by the midpoint pair at the midpoint for the carbon fibre bar made and slot Together, it reuses iron wire and is slowly pressed into carbon fibre bar in hole, meanwhile, another side cavities also carry out same operation, make carbon fiber Muscle tension is in alignment to guarantee, fiber bar is depressed into behind the bottom of hole and slowly extracts iron wire, the carbon fiber that will finally infiltrate again Dimension patch covering is pasted at anchoring i.e. top layer patch;
(5) mounted beam is placed to the solidification for waiting glue in clean environments, the adhesive curing time is 1-2 weeks).
2. the method that a kind of external bonding of band anchoring according to claim 1 reinforces concrete structure, it is characterised in that: The hole depth 100-150mm of aperture in the step (1).
3. the method that a kind of external bonding of band anchoring according to claim 1 reinforces concrete structure, it is characterised in that: The carbon cloth a length of 1000-1300mm, width 100-150mm, a length of 130- of carbon fiber patch that the step (2) uses 170mm, width 80-120mm.
4. the application that a kind of external bonding of band anchoring reinforces concrete structure, it is characterised in that: it is applied to industry or the people With the beam, plate, column of building, and the reinforcing of bridge, tunnel and culvert.
CN201811273437.7A 2018-10-30 2018-10-30 Method for sticking reinforced concrete structure outside body with anchor Active CN109457992B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811273437.7A CN109457992B (en) 2018-10-30 2018-10-30 Method for sticking reinforced concrete structure outside body with anchor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811273437.7A CN109457992B (en) 2018-10-30 2018-10-30 Method for sticking reinforced concrete structure outside body with anchor

Publications (2)

Publication Number Publication Date
CN109457992A true CN109457992A (en) 2019-03-12
CN109457992B CN109457992B (en) 2021-10-08

Family

ID=65608799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811273437.7A Active CN109457992B (en) 2018-10-30 2018-10-30 Method for sticking reinforced concrete structure outside body with anchor

Country Status (1)

Country Link
CN (1) CN109457992B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251152A (en) * 1997-07-31 2000-04-19 塞卡股份公司,原卡斯帕魏克拉及两合公司 Flat strip lamella for reinforcing building components and method for placing flat strip lamella on component
CN101240662A (en) * 2008-03-13 2008-08-13 山东省建筑科学研究院 Inner binding outer cramping method architecture structural crack comprehensive processing method
CN101691817A (en) * 2009-09-14 2010-04-07 华东交通大学 Method for additionally anchoring reinforced concrete beam strengthened with FRP cloth material in anti-bending way
CN101696589A (en) * 2009-10-13 2010-04-21 华侨大学 Novel combined stone beam
CN201460025U (en) * 2009-07-02 2010-05-12 广厦建设集团有限责任公司 Concrete member embedded with FRP slat or rib on surface layer
CN201962964U (en) * 2011-03-24 2011-09-07 广西工学院 Prestressed fiber resin compound rib-embedded and adhered reinforced concrete structure
CN103993752A (en) * 2014-05-26 2014-08-20 中国矿业大学 Method for repairing and reinforcing concrete structure under severe environment
CN105952180A (en) * 2016-05-31 2016-09-21 广东工业大学 Method for reinforcing concrete structure through embedded wet and sticky FRP strips and component of method
CN106978906A (en) * 2017-03-29 2017-07-25 北京建筑大学 A kind of anchoring process of new type FRP cloth reinforcing masonry structure end

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1251152A (en) * 1997-07-31 2000-04-19 塞卡股份公司,原卡斯帕魏克拉及两合公司 Flat strip lamella for reinforcing building components and method for placing flat strip lamella on component
CN101240662A (en) * 2008-03-13 2008-08-13 山东省建筑科学研究院 Inner binding outer cramping method architecture structural crack comprehensive processing method
CN201460025U (en) * 2009-07-02 2010-05-12 广厦建设集团有限责任公司 Concrete member embedded with FRP slat or rib on surface layer
CN101691817A (en) * 2009-09-14 2010-04-07 华东交通大学 Method for additionally anchoring reinforced concrete beam strengthened with FRP cloth material in anti-bending way
CN101696589A (en) * 2009-10-13 2010-04-21 华侨大学 Novel combined stone beam
CN201962964U (en) * 2011-03-24 2011-09-07 广西工学院 Prestressed fiber resin compound rib-embedded and adhered reinforced concrete structure
CN103993752A (en) * 2014-05-26 2014-08-20 中国矿业大学 Method for repairing and reinforcing concrete structure under severe environment
CN105952180A (en) * 2016-05-31 2016-09-21 广东工业大学 Method for reinforcing concrete structure through embedded wet and sticky FRP strips and component of method
CN106978906A (en) * 2017-03-29 2017-07-25 北京建筑大学 A kind of anchoring process of new type FRP cloth reinforcing masonry structure end

Also Published As

Publication number Publication date
CN109457992B (en) 2021-10-08

Similar Documents

Publication Publication Date Title
Bahar et al. Performance of compacted cement-stabilised soil
CN105781141B (en) A kind of fiber knitted net enhancing cement base composite board reinforced for concrete flexural member and preparation method thereof
CN1978843A (en) Construction method for reinforcing steel-bar net mortar thin layer
CN103998687B (en) By composite make for being incorporated to the manufacture object to civil engineering structure
KR101014230B1 (en) Method for reparing and reinforcing outer wall of building
CN1936206A (en) Steel-continuous-fiber composite-rib reinforced concrete earthquake-resisting structure
CN108396637A (en) Based on short-line prefabrication assembly girder construction and its construction method
CN103993752A (en) Method for repairing and reinforcing concrete structure under severe environment
AU2014276778A1 (en) Arrangement and method for reinforcing supporting structures
CN102425311A (en) Concrete structure reinforcing method based on near surface mounted prestressed FRP (Fiber Reinforced Polymer)
JPH11302061A (en) Concrete for placing joint and method for placing joint using the concrete for placing joint
CN109441505A (en) Based on clad steel plate or steel band highway tunnel lining thickness deficiency quick reinforcement method
CN109457992A (en) A kind of external bonding of band anchoring reinforces the method and application of concrete structure
CN109457991B (en) Method for embedding reinforced concrete structure on surface layer of anchored carbon fiber
CN110748185A (en) In-situ bar planting pouring and reinforcing method for partially rotten ancient building wood beam
CN109610337A (en) The construction and construction method for widening bridge flange plate are reinforced using UHPC in-situ layer
CN205421038U (en) A integrated configuration for combination strengthening T roof beam
JP2010065384A (en) Structure and method for reinforcing concrete foundation of dwelling house
CN108868189A (en) A kind of bamboo clappers curved scissors reinforced concrete beam and manufacturing method
CN108570896A (en) A method of repairing sleeper hole
JP2001279814A (en) Reinforcement structure of connection part of wooden member, method of execution thereof and adhesive using upon execution thereof
Miccoli et al. In-plane shear behaviour of earthen materials panels strengthened with polyester fabric strips
JP2001193286A (en) Repair and reinforcing method for surface of structure
CN219992554U (en) Waterproof coiled material with square ribs on surface
CN110616645A (en) Reinforcing method and reinforcing structure of old concrete bridge

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant