CN109450590A - 用于qkd的基于准循环ldpc的自适应密钥协商方法 - Google Patents

用于qkd的基于准循环ldpc的自适应密钥协商方法 Download PDF

Info

Publication number
CN109450590A
CN109450590A CN201810971916.XA CN201810971916A CN109450590A CN 109450590 A CN109450590 A CN 109450590A CN 201810971916 A CN201810971916 A CN 201810971916A CN 109450590 A CN109450590 A CN 109450590A
Authority
CN
China
Prior art keywords
quasi
decoding
code
cyclic ldpc
decoded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810971916.XA
Other languages
English (en)
Inventor
李丽仙
解女兰
卢潇鸣
宋萧天
赵义博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd
Original Assignee
Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd filed Critical Zhejiang Kyushu Quantum Information Technology Ltd By Share Ltd
Priority to CN201810971916.XA priority Critical patent/CN109450590A/zh
Publication of CN109450590A publication Critical patent/CN109450590A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0838Key agreement, i.e. key establishment technique in which a shared key is derived by parties as a function of information contributed by, or associated with, each of these
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Artificial Intelligence (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

一种用于QKD的基于准循环LDPC码的自适应密钥协商方法,包括以下步骤:1)设置准循环LDPC码H及打孔比特位置P;2)将待协商密钥进行扩展,得到待编码数据序列;3)对待编码数据序列进行双向编码操作,发送给译码端进行译码操作;4)进行译码;5)缩短;6)进行新一轮的译码操作,跳转到第4)步,更新所收到的比特初始信息并执行译码;7)重复进行第4)、5)、6)步直到译码成功或达到密钥协商流程的终止条件。与现有技术相比,本发明采用准循环LDPC码,基于软信息译码的LDPC纠错算法以及动态自适应交互机制三大部分内容。采用双向协商的机制进行,发送端和接收端根据系统实际密钥处理速率进行不同程度的编码和译码操作,提高数据处理速率。

Description

用于QKD的基于准循环LDPC的自适应密钥协商方法
技术领域
本发明涉及QKD系统的密钥协商技术领域,特别涉及一种用于QKD的基于 准循环LDPC的自适应密钥协商方法。
背景技术
QKD系统(量子密钥分配系统)由一个发送端和一个接收端构成,其光学与 硬件数据处理部分获得原始密钥信息,这些原始密钥信息通过数据后处理工作, 包括对基、密钥协商、保密放大等环节获得一致且安全的最终密钥。
在密钥后处理工作中密钥协商的目的是将发送端与接收端密钥中因器件不 完善、信道和环境的影响、Eve的窃听等因素造成的随机错误比特进行纠正, 最终获得一致的密钥。
密钥协商方法的评价主要关注三个指标:协商准确度,协商效率,交互通 信次数。其中协商准确程度衡量协商过程能否有效降低残留误差,用协商后密 钥帧中残留误差比特出现的概率BER及协商后有残留误差比特的密钥帧出现的 概率FER来评价,范围在[0,1]取值越低,残留误差越少,协商准确度越高;在 密钥协商过程中,公开信道传输的冗余信息中包含着密钥本身的信息,该信息 为泄露比特,协商效率则是实际泄露比特数和泄露比特数量的理论下界的比值 (大于1),在给定误码率的情况下,该值越小,表示协商效率表现越好;密钥 协商中,通信双方在公开信道中相互发送信息,为减少维护专用公开信道资源,需要减少公开信道使用次数。
现有技术情况:
密钥协商过程需要与经典信道进行通信,交互以获取数据发生了错误的位 置信息。这部分信息可以使用原始密钥进行加密,或者通过计算协商效率在后 续操作中进行密钥蒸馏处理。
现有QKD系统中的密钥协商过程主要采用后一种做法,但针对后一种做法 的基于LDPC码的密钥协商方法存在下面几个问题:
1、采用无结构LDPC码不易于硬件实现和扩展,需存储整个纠错码,且编 译码算法简化或并行度设计困难,从软件及硬件层面实现都存在资源开销大, 实用性差的缺点。
2、整个密钥协商过程中使用多个纠错码来适应误码率的大范围变化,且纠 错码的选择严格依赖于误码参数,协商准确度和协商效率严格依赖于误码参数 估计的准确率,容错能力较差,实际应用中性能成阶梯性波动。
3、方法中提供的实验条件不利于实际应用且性能结果基于较低的协商准确 度(FER在10-2或10-3量级)条件下给出,在实际应用中协商失败的概率较高, 直接影响QKD系统的整体性能。
发明内容
本发明目的在于提供一种用于QKD的基于准循环LDPC的自适应密钥协商方 法,以解决现有技术中在密钥协商过程中编译码算法简化或并行度设计困难, 从软件及硬件层面实现都存在资源开销大,实用性差的缺点以及协商准确度和 协商效率依赖于误码参数估计的准确率,容错能力较差,实际应用中性能成阶 梯性波动的技术性缺陷。
本发明的技术方案是这样实现的:
一种用于QKD的基于准循环LDPC的自适应密钥协商方法,该方法包括以下 步骤:
1)设置准循环LDPC码H及打孔比特位置P;
2)将待协商密钥按照已设置的LDPC码H及打孔位置P进行扩展,得到待 编码数据序列;
3)对待编码数据序列进行双向编码操作,双向计算校验子S并通过经典信 道发送给译码端进行译码操作;
4)进行译码,译码成功则完成密钥协商过程,若译码失败则跳转到第5) 步骤;
5)缩短,根据当前译码失败后的变量节点的对数似然比信息的绝对值大小 进行比特缩短的选择,并将选择的比特位置信息经过经典信道发送给编码端, 并执行第6)步;
6)根据收到的缩短比特位置将编码序列对应位置的比特信息经经典信道发 送给译码端进行新一轮的译码操作,跳转到第4)步,更新所收到的比特初始信 息并执行译码;
7)重复进行第4)、5)、6)步直到译码成功或达到密钥协商流程的终止条 件。
优选地,所述准循环LDPC码H的设置为基于有限域构造,辅以掩模、散列、 叠加,并对码H进行了消环操作,根据使用码H的规模大小进行最小环长的约 束和限制,构造性能和结构上优化的码。
优选地,所述打孔采用有意删除算法进行LDPC码的打孔,对所有可能的位 置进行打孔,该打孔方式添加评估打孔图样的价值函数来针对性的进行打孔位 置的取舍。
优选地,所述缩短方法根据译码收敛情况选择最不确定的比特位进行公开, 单次缩短的比特公开数量基于准循环LDPC的基础矩阵码率及单次处理密钥量进 行优化选择,避免公开多余的比特信息。
优选地,所述译码采用经典通信中的修正的最小和译码算法,采用软信息 进行译码。
与现有技术相比,本发明有以下有益效果:
1、在QKD密钥协商中采用准循环LDPC码作为纠错码,硬件实现复杂度低, 存储资源开销小,并行度高,例如设计0.5码率12700码长的码,采用基矩阵 50x100,扩展127倍即可,整体上硬件实现只需要计算或者存储50x100的基矩 阵(基矩阵为稀疏矩阵),可以达到127的计算并行度,并且硬件逻辑资源可以 灵活调整,根据吞吐量需求进行并行度设计;
2、本发明的密钥协商过程中采用自适应交互设计,容错能力强,算法稳定 性高,无需对参数估计的依赖等特点,整个密钥协商过程中使用一个纠错码就 可以适应QKD应用中的误码率的大范围变化(0.5%~11%),整个系统中只需要存 储一个纠错码的基矩阵即可,纠错不需要依赖于误码参数的估计,且协商效率 在各个误码区间基本在同等水平,容错能力强,适用性高;
3、本发明的密钥协商过程是根据实时的协商准确度情况动态控制双方的通 信交互,在实际应用中协商效率,密钥处理速率可动态调节,算法灵活性高, 普适性强。
附图说明
图1为本发明用于QKD的基于准循环LDPC的自适应密钥协商方法的流程图;
图2为本发明实施例的密钥协商过程中信息序列变化示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明进行清楚、完整地描述。
如图1所示,一种用于QKD的基于准循环LDPC的自适应密钥协商方法,该 方法包括以下步骤:
1)设置准循环LDPC码H及打孔比特位置P;
2)将待协商密钥(筛后密钥)按照已设置的LDPC码H及打孔位置P进行 扩展,得到待编码数据序列;
3)对待编码数据序列进行双向编码操作,双向计算校验子S并通过经典信 道发送给对端(译码端)进行译码操作;
4)进行译码,译码成功则完成密钥协商过程,若译码失败则跳转到第5) 步骤;
5)缩短,根据当前译码失败后的变量节点的对数似然比信息的绝对值大小 进行比特缩短的选择,并将选择的比特位置信息经过经典信道发送给编码端, 并执行第6)步;
6)根据收到的缩短比特位置将编码序列对应位置的比特信息经经典信道发 送给译码端进行新一轮的译码操作,跳转到第4)步,更新所收到的比特初始信 息并执行译码;
7)重复进行第4)、5)、6)步直到译码成功或达到密钥协商流程的终止条件。
针对准循环LDPC码设计
准循环LDPC码的设计基于有限域构造,辅以掩模(masking)、散列 (dispersion)、叠加(superposition),在该基础上本方案中对于码的设计加 上了消环操作,根据使用码的规模大小进行最小环长的约束和限制,来构造性 能和结构上更好的码。
针对掩模矩阵M的设计,本方案采用基于密度进化的方法优化度序列(λ,ρ), 利用这个度序列采用PEG算法生成掩模矩阵。表1给出针对100次迭代优化的 一组不同码率的度序列分布实例。
表1:准循环LDPC码掩模矩阵的度分布(100迭代)
码率 度分布(点的分布) Threshold
0.5 L(x)=0.3x<sup>2</sup>+0.52x<sup>3</sup>+0.12x<sup>6</sup>+0.02x<sup>15</sup>+0.04x<sup>31</sup> 0.9631
0.55 L(x)=0.3x<sup>2</sup>+0.52x<sup>3</sup>+0.12x<sup>6</sup>+0.02x<sup>15</sup>+0.03x<sup>31</sup>+0.01x<sup>35</sup> 0.08206
0.60 L(x)=0.34x<sup>2</sup>+0.27x<sup>3</sup>+0.25x<sup>4</sup>+0.07x<sup>9</sup>+0.03x<sup>15</sup>+0.04x<sup>20</sup> 0.07098
0.65 L(x)=0.34x<sup>2</sup>+0.21x<sup>3</sup>+0.25x<sup>4</sup>+0.12x<sup>6</sup>+0.04x<sup>15</sup>+0.04x<sup>20</sup> 0.05789
0.70 L(x)=0.34x<sup>2</sup>+0.21x<sup>3</sup>+0.25x<sup>4</sup>+0.10x<sup>5</sup>+0.05x<sup>15</sup>+0.05x<sup>20</sup> 0.04594
0.75 L(x)=0.14x<sup>2</sup>+0.46x<sup>3</sup>+0.27x<sup>4</sup>+0.04x<sup>9</sup>+0.09x<sup>20</sup> 0.03484
0.80 L(x)=0.12x<sup>2</sup>+0.49x<sup>3</sup>+0.23x<sup>4</sup>+0.06x<sup>9</sup>+0.10x<sup>15</sup> 0.02590
0.85 L(x)=0.10x<sup>2</sup>+0.46x<sup>3</sup>+0.21x<sup>4</sup>+0.08x<sup>7</sup>+0.08x<sup>8</sup>+0.02x<sup>12</sup>+0.05x<sup>15</sup> 0.01742
0.90 L(x)=0.10x<sup>2</sup>+0.32x<sup>3</sup>+0.34x<sup>4</sup>+0.09x<sup>7</sup>+0.08x<sup>8</sup>+0.07x<sup>9</sup> 0.00984
打孔方法的设计
采用基于一步到位的有意删除算法(intentional puncturing algorithm basedon one-step untainted)进行LDPC码的打孔,该方法对所有可能的位 置进行打孔,对于打孔位置选择的灵活性欠缺。在此基础上本方案中的打孔方 式在该方法的基础上添加了评估打孔图样的价值函数来针对性的进行打孔位置 的取舍。
定义r为LDPC码码率,度分布为(λ,ρ),打孔后码率为Ψ,Ψ{λ(x),ρ(x)} 表示所有可能的打孔矩阵的度分布的候选集合。评估打孔图样的价值函数为:其中c0是辅助参数,用于修正价值函数。对 所有打孔图样可以将评价上述价值函数的大小转换为求解的 优化问题。通过对可打孔位置进行价值大小的计算排序,灵活按照所需打孔的 数量优先选择具有更高价值的位置进行打孔。
针对表1中给出的实施例,表2给出了一组码长12700的各个码基于上述 改进的打孔方法得到的打孔个数实施例(表中给出所对应码可参考的最大打孔 个数及最小打孔数,实际应用可以根据需求按照价值权重选取所需打孔个数位 置)。
表2.上述方法得出的准循环LDPC码对应的打孔个数情况
码率R 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
P<sub>max</sub> 3148 2765 2397 2051 1805 1504 1220 905 597
P<sub>min</sub> 2119 1954 2021 1805 1664 1605 1253 956 726
基于LDPC的译码方法
本实施例中的译码算法采用现有的经典通信中的修正的最小和译码算法,采 用软信息进行译码。内部算法的处理基本一致,本方案中采用的译码算法在算 法的应用上在软信息的初始化及译码成功与否的判决上有差别:
1.初始化:用e表示量子信道估计的误码率,初始信道信息pi如下:
2.判决:在译码过程结束后,根据与编码端相同的校验矩阵H计算校验子S 并与编码端的S比较,若相同则译码成功,否则进行新的译码操作。
下面将介绍本方案中的其他模块。
编码方法
H和P分别表示根据上述对应实施例得到的校验矩阵和打孔位置序列,令X 表示对基后发送端的筛后密钥,X={x1,x2,…,xk}T(k<n),将X按照P位置插入随 机数补充至n阶向量:X'={x1,x2,…,xk,0,…,1}T。则发送端进行编码操作, 计算校正子S=HX'并通过经典可信信道直接发送校验子s到接收端。
该编码方案只需要进行一个稀疏矩阵的乘法操作来计算校验子,而不需要 像传统编码算法那样产生成生成矩阵进而与信息序列相乘产生码字,从而,避 免编码复杂度高的问题。同时由于H是通过基矩阵Bmxn进行循环扩展q-1倍得到 的,且Bmask也是一个稀疏的矩阵,设B中存在Nb个非0元素(远小于n),则该 编码方案的复杂度为(Nb-m)*(q-1)次异或操作,其中m,n分别表示为B矩阵的 行数和列数,q表示循环扩展因子。而相同校验矩阵规模下,无结构的纠错码采 用传统编码需要约(n-m)*n*(q-1)次异或操作。
缩短方法
本实施例中,缩短实质上是在密钥协商过程中基于译码过程中的收敛情况选 取一些特定位置的原始信息进行公开,以泄露尽量少的信息来帮助两端获取一 致的密钥。
实际应用中,根据变量节点对数似然比信息(log-likelihood ratio,LLR) 的绝对值大小作为缩短比特的选择依据。定义所需缩短数量为d,选择前d个序 号所代表的系统位进行缩短。在密钥协商过程中,对所使用的LDPC码进行译码 计算,根据译码迭代的LLR绝对值大小作为置信度特征,并对系统比特按照从 小到大进行排序,存入置信表T中,T=(t0,t1,t2,…,tK-1);发送端根据所需要缩 短的个数d,从待缩短的置信列表T中选择前d个位置的比特发送给接收端,接 收端根据所收到的信息执行译码,译码时将对应比特初始信息设置为无穷大。
编译码双方的自适应方式
在译码失败后输出最终译码迭代次数下各比特信息的对数似然比LLR,对 LLR绝对值进行统计排序,定义为L={L1,L2,…Lk},根据当前所使用的LDPC码码 率和对应的缩短比特个数z,选取前z个记录校验比特位置的序列D发送到发送 端,发送端根据收到的位置信息将对应位置的信息序列X[D]发送到译码端,译 码端在译码时将这些发送来的比特序列的初始信道信息设置为无穷大执行新的 译码过程。每次交互的缩短比特都作为纠错泄露信息量计入到协商效率的计算 中。实施例中采用的缩短比特个数根据实际应用中交互次数,性能等指标进行 优化调整。
根据本方案中的方法及策略,表3中给出采用两个纠错码实现本方案的初 步性能情况(在10^9数据量下残余误码BER及FER均为0)。
表3基于准循LDPC的自适应密钥协商方法实例性能
如图2中给出密钥协商算法中密钥在不同阶段的数据形式变化。
综合本发明的用于QKD的基于准循环LDPC码的自适应密钥协商方法可知, 本发明的在QKD密钥协商中采用准循环LDPC码作为纠错码,硬件实现复杂度低, 存储资源开销小,并行度高,例如设计0.5码率12700码长的码,采用基矩阵 50x100,扩展127倍即可,整体上硬件实现只需要计算或者存储50x100的基矩 阵,可以达到127的计算并行度,并且硬件逻辑资源可以灵活调整,根据吞吐 量需求进行并行度设计;本发明的密钥协商过程中采用自适应交互设计,容错 能力强,算法稳定性高,对参数估计无依赖等特点,整个密钥协商过程中使用 一个可以适应QKD应用中的误码率的大范围变化(0.5%~11%),整个系统中只需要存储一个纠错码的基矩阵即可,纠错不需要依赖于误码参数的估计,且协商 效率在各个误码区间基本在同等水平,容错能力强,适用性高;本发明的密钥 协商过程是根据实时的协商准确度情况动态控制双方的通信交互,在实际应用 中协商效率,密钥处理速率可动态调节,算法灵活性高,普适性强。

Claims (5)

1.一种用于QKD的基于准循环LDPC的自适应密钥协商方法,其特征在于,该方法包括以下步骤:
1)设置准循环LDPC码H及打孔比特位置P;
2)将待协商密钥按照已设置的LDPC码H及打孔位置P进行扩展,得到待编码数据序列;
3)对待编码数据序列进行双向编码操作,双向计算校验子S并通过经典信道发送给译码端进行译码操作;
4)进行译码,译码成功则完成密钥协商过程,若译码失败则跳转到第5)步骤;
5)缩短,根据当前译码失败后的变量节点的对数似然比信息的绝对值大小进行比特缩短的选择,并将选择的比特位置信息经过经典信道发送给编码端,并执行第6)步;
6)根据收到的缩短比特位置将编码序列对应位置的比特信息经经典信道发送给译码端进行新一轮的译码操作,跳转到第4)步,更新所收到的比特初始信息并执行译码;
7)重复进行第4)、5)、6)步直到译码成功或达到密钥协商流程的终止条件。
2.如权利要求1所述的用于QKD的基于准循环LDPC的自适应密钥协商方法,其特征在于,所述准循环LDPC码H的设置为基于有限域构造,辅以掩模、散列、叠加,并对码H进行了消环操作,根据使用码H的规模大小进行最小环长的约束和限制,构造性能和结构上优化的码。
3.如权利要求2所述的用于QKD的基于准循环LDPC的自适应密钥协商方法,其特征在于,所述打孔采用有意删除算法进行LDPC码的打孔,对所有可能的位置进行打孔,该打孔方式添加评估打孔图样的价值函数来针对性的进行打孔位置的取舍。
4.如权利要求1所述的用于QKD的基于准循环LDPC的自适应密钥协商方法,其特征在于,所述译码算法采用经典通信中的修正的最小和译码算法,基于软信息进行译码。
5.如权利要求1所述的用于QKD的基于准循环LDPC的自适应密钥协商方法,其特征在于,所述缩短步骤中:根据译码收敛情况选择最不确定的比特位进行公开,单次缩短的比特公开数量基于准循环LDPC的基础矩阵码率及单次处理密钥量进行优化选择。
CN201810971916.XA 2018-08-24 2018-08-24 用于qkd的基于准循环ldpc的自适应密钥协商方法 Pending CN109450590A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810971916.XA CN109450590A (zh) 2018-08-24 2018-08-24 用于qkd的基于准循环ldpc的自适应密钥协商方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810971916.XA CN109450590A (zh) 2018-08-24 2018-08-24 用于qkd的基于准循环ldpc的自适应密钥协商方法

Publications (1)

Publication Number Publication Date
CN109450590A true CN109450590A (zh) 2019-03-08

Family

ID=65530104

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810971916.XA Pending CN109450590A (zh) 2018-08-24 2018-08-24 用于qkd的基于准循环ldpc的自适应密钥协商方法

Country Status (1)

Country Link
CN (1) CN109450590A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996025A (zh) * 2019-04-16 2019-07-09 北京信而泰科技股份有限公司 基于量子通信的自适应音视频通信方法、装置和系统
CN110752918A (zh) * 2019-09-26 2020-02-04 中国电子科技集团公司第三十研究所 一种用于连续变量量子密钥分发的快速译码装置及方法
WO2021000328A1 (zh) * 2019-07-04 2021-01-07 深圳职业技术学院 可抗共谋的量子密钥协商方法、计算机终端及存储装置
CN112688780A (zh) * 2021-03-10 2021-04-20 浙江九州量子信息技术股份有限公司 一种基于离散变量的qkd密钥协商方法
CN113396556A (zh) * 2019-04-18 2021-09-14 杜塞尔多夫华为技术有限公司 用于在量子密钥分发系统中执行信息协调的装置和方法
CN113473460A (zh) * 2021-06-07 2021-10-01 西安电子科技大学 基于纠错码判决的无线物理层密钥协商方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070162814A1 (en) * 2006-01-09 2007-07-12 Broadcom Corporation, A California Corporation LDPC (low density parity check) code size adjustment by shortening and puncturing
CN101321043A (zh) * 2007-06-08 2008-12-10 大唐移动通信设备有限公司 低密度校验码编码的译码方法及译码装置
CN102904726A (zh) * 2012-11-08 2013-01-30 中国科学院信息工程研究所 用于量子密钥分配系统的经典信道消息认证方法和装置
CN105227191A (zh) * 2015-10-08 2016-01-06 西安电子科技大学 基于修正最小和算法的准循环ldpc码译码方法
WO2016070141A1 (en) * 2014-10-30 2016-05-06 Alibaba Group Holding Limited Method, apparatus, and system for quantum key distribution, privacy amplification, and data transmission
CN105978684A (zh) * 2016-04-29 2016-09-28 清华大学 基于公开有限反馈和动态矩阵编码的安全通信系统与方法
CN106230589A (zh) * 2016-09-19 2016-12-14 东华大学 一种基于低密度奇偶校验码的反向密钥协商方法
CN106452758A (zh) * 2016-11-14 2017-02-22 浙江神州量子网络科技有限公司 一种多方量子密钥分发系统及其纠错方法
CN107294543A (zh) * 2017-06-19 2017-10-24 电子科技大学 一种用于生成rc‑ldpc码校验矩阵的方法
WO2018103556A1 (zh) * 2016-12-09 2018-06-14 中兴通讯股份有限公司 准循环ldpc码数据处理装置及处理方法
WO2018107798A1 (zh) * 2016-12-16 2018-06-21 普天信息技术有限公司 高码率数据发送方法和装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070162814A1 (en) * 2006-01-09 2007-07-12 Broadcom Corporation, A California Corporation LDPC (low density parity check) code size adjustment by shortening and puncturing
CN101321043A (zh) * 2007-06-08 2008-12-10 大唐移动通信设备有限公司 低密度校验码编码的译码方法及译码装置
CN102904726A (zh) * 2012-11-08 2013-01-30 中国科学院信息工程研究所 用于量子密钥分配系统的经典信道消息认证方法和装置
WO2016070141A1 (en) * 2014-10-30 2016-05-06 Alibaba Group Holding Limited Method, apparatus, and system for quantum key distribution, privacy amplification, and data transmission
CN105227191A (zh) * 2015-10-08 2016-01-06 西安电子科技大学 基于修正最小和算法的准循环ldpc码译码方法
CN105978684A (zh) * 2016-04-29 2016-09-28 清华大学 基于公开有限反馈和动态矩阵编码的安全通信系统与方法
CN106230589A (zh) * 2016-09-19 2016-12-14 东华大学 一种基于低密度奇偶校验码的反向密钥协商方法
CN106452758A (zh) * 2016-11-14 2017-02-22 浙江神州量子网络科技有限公司 一种多方量子密钥分发系统及其纠错方法
WO2018103556A1 (zh) * 2016-12-09 2018-06-14 中兴通讯股份有限公司 准循环ldpc码数据处理装置及处理方法
WO2018107798A1 (zh) * 2016-12-16 2018-06-21 普天信息技术有限公司 高码率数据发送方法和装置
CN107294543A (zh) * 2017-06-19 2017-10-24 电子科技大学 一种用于生成rc‑ldpc码校验矩阵的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU J, DE LAMARE R C: "Rate-compatible LDPC codes with short block lengths based on puncturing and extension techniques" *
李福生: "LDPC码研究及其在密钥分配中的应用", 中国优秀硕士学位论文全文数据库 信息科技辑 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109996025A (zh) * 2019-04-16 2019-07-09 北京信而泰科技股份有限公司 基于量子通信的自适应音视频通信方法、装置和系统
CN109996025B (zh) * 2019-04-16 2021-02-19 北京信而泰科技股份有限公司 基于量子通信的自适应音视频通信方法、装置和系统
CN113396556A (zh) * 2019-04-18 2021-09-14 杜塞尔多夫华为技术有限公司 用于在量子密钥分发系统中执行信息协调的装置和方法
CN113396556B (zh) * 2019-04-18 2024-05-17 杜塞尔多夫华为技术有限公司 用于在量子密钥分发系统中执行信息协调的装置和方法
WO2021000328A1 (zh) * 2019-07-04 2021-01-07 深圳职业技术学院 可抗共谋的量子密钥协商方法、计算机终端及存储装置
CN110752918A (zh) * 2019-09-26 2020-02-04 中国电子科技集团公司第三十研究所 一种用于连续变量量子密钥分发的快速译码装置及方法
CN110752918B (zh) * 2019-09-26 2022-03-18 中国电子科技集团公司第三十研究所 一种用于连续变量量子密钥分发的快速译码装置及方法
CN112688780A (zh) * 2021-03-10 2021-04-20 浙江九州量子信息技术股份有限公司 一种基于离散变量的qkd密钥协商方法
CN113473460A (zh) * 2021-06-07 2021-10-01 西安电子科技大学 基于纠错码判决的无线物理层密钥协商方法
CN113473460B (zh) * 2021-06-07 2022-07-01 西安电子科技大学 基于纠错码判决的无线物理层密钥协商方法

Similar Documents

Publication Publication Date Title
CN109450590A (zh) 用于qkd的基于准循环ldpc的自适应密钥协商方法
Babar et al. Fifteen years of quantum LDPC coding and improved decoding strategies
Haah et al. Codes and protocols for distilling $ t $, controlled-$ s $, and toffoli gates
Cheng et al. Deterministic document exchange protocols, and almost optimal binary codes for edit errors
US8413008B2 (en) Method for recovery of lost and/or corrupted data
CN101103533B (zh) 编码方法
CN109075803B (zh) 具有打孔、缩短和扩展的极化码编码
Silberstein et al. Error resilience in distributed storage via rank-metric codes
US20060262925A1 (en) Quantum key delivery method and communication device
Cheng et al. On the list and bounded distance decodability of Reed–Solomon codes
CN104092536A (zh) 便于硬件实现的量子密钥分发中的信息协调方法
Han et al. Exact regenerating codes for byzantine fault tolerance in distributed storage
CN106411511A (zh) 一种多方量子密钥分发系统的纠错方法
EP3602794B1 (en) Check bit concatenated polar codes
US20170047945A1 (en) Data sending method and apparatus
Tajeddine et al. Robust private information retrieval from coded systems with byzantine and colluding servers
Ashikhmin et al. Robust quantum error syndrome extraction by classical coding
Cruz et al. Quantum error correction via noise guessing decoding
Mitra et al. Communication-efficient LDPC code design for data availability oracle in side blockchains
CN102301603A (zh) 使用ldpc准循环码进行编码和解码
Saarela et al. Private information retrieval from colluding and byzantine servers with binary reed–muller codes
CN103368585A (zh) 一种ldpc码校验矩阵的构造方法
Gelles et al. Potent tree codes and their applications: Coding for interactive communication, revisited
Rengaswamy et al. A semiclassical proof of duality between the classical BSC and the quantum PSC
Reis Quantum Key Distribution Post Processing-A Study on the Information Reconciliation Cascade Protocol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination