CN109448947B - 一种碳纳米管掺杂铁基软磁复合粉末及其制备方法 - Google Patents
一种碳纳米管掺杂铁基软磁复合粉末及其制备方法 Download PDFInfo
- Publication number
- CN109448947B CN109448947B CN201811256159.4A CN201811256159A CN109448947B CN 109448947 B CN109448947 B CN 109448947B CN 201811256159 A CN201811256159 A CN 201811256159A CN 109448947 B CN109448947 B CN 109448947B
- Authority
- CN
- China
- Prior art keywords
- composite powder
- powder
- soft magnetic
- iron
- based soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/33—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
本发明公开了一种碳纳米管掺杂铁基软磁复合粉末及其制备方法,包括以下步骤:(1)高纯铁粉表面预处理;(2)碳纳米管与铁粉在V型混料机中预混合;(3)高能球磨预混合粉末,制备Fe/CNT复合粉末;(4)对Fe/CNT复合粉末进行热处理。与现有技术相比,上述制备工艺简单易操作,用时短,掺杂均匀,所得Fe/CNT软磁复合粉末具有较高的饱和磁化强度,掺杂量在1wt%时达到最大。
Description
技术领域
本发明属于铁基软磁复合材料制备技术领域,具体涉及一种掺杂碳纳米管的铁基软磁复合粉末及其制备方法。
背景技术
软磁复合材料通常由铁磁性颗粒和表面包覆的绝缘层组成,因此具有较高的电阻率,磁各向同性及相对较低的磁损耗。一般磁粉芯的损耗由三部分构成:磁滞损耗、涡流损耗和剩余损耗,其中约9%的损耗来自于电磁交换的涡流损耗,因此制备良好磁性能且损耗低的软磁复合材料仍然是难题。通常降低涡流损耗的方式,是在铁磁性颗粒表面包覆一层绝缘性介质,如有机材料、无机材料、原位钝化材料等,通过将铁颗粒进行绝缘处理,较好地提高粉末电阻率,从而降低中高频下电磁交换的损耗。但是,由于单位体积内磁性颗粒所占百分比下降,造成磁导率和饱和磁感应强度等性能降低。
发明内容
本发明所要解决的问题是针对现有技术的不足,提供一种碳纳米管掺杂铁基软磁复合粉末及其制备方法,采用高能球磨和高温退火处理,在铁颗粒中掺杂电磁性能优良的碳纳米管,改善经绝缘包覆后材料的磁化强度、磁导率和饱和磁感应强度下降的问题。
本发明的目的通过以下技术方案予以实现:
第一方面,上述碳纳米管掺杂铁基软磁复合粉末的制备方法,具体地,包括以下步骤:
(1)高纯铁粉表面预处理;
(2)碳纳米管与步骤(1)处理后的铁粉预混合;
(3)高能球磨步骤(2)预混合后的粉末,制得Fe/CNT复合粉末;
(4)对步骤(3)中Fe/CNT复合粉末进行高温热处理,即得;
具体过程为:
将所述高纯铁粉依次在丙酮和酒精中超声清洗10-20min去除表面油污,真空低温烘干;
将碳纳米管与经表面处理后的铁粉按照质量比为0.25-5:100进行预混粉处理10-20min;
将上述预混粉末和不锈钢球按质量比为1:20-50混合后,在氩气气氛保护下球磨1-3h;
将球磨后的粉末在550-650℃下退火1-3h,即得。
优选地,所述真空低温烘干的温度为120℃,时间为2h。
优选地,所述不锈钢球为304不锈钢磨球,直径为5mm。
优选地,所述碳纳米管与经表面处理后的铁粉按照质量比为0.5-2:100进行预混粉处理15min。
更优选地,所述碳纳米管与经表面处理后的铁粉按照质量比为1:100进行预混粉处理15min。
优选地,所述球磨后的粉末在600℃下退火2h。
第二方面,通过上述碳纳米管掺杂铁基软磁复合粉末的制备方法制得的碳纳米管掺杂铁基软磁复合粉末。
本发明的有益效果在于:
与现有技术相比,本发明通过高能球磨和高温热处理制备碳纳米管掺杂铁基软磁复合粉末,工艺简单易操作,用时短,掺杂均匀;制得的碳纳米管掺杂铁基软磁复合粉末具有较高的饱和磁化强度,当碳纳米管掺杂量在1wt%时达到最大值。
附图说明
图1为本发明碳纳米管掺杂铁基软磁复合粉末的磁化曲线。
具体实施方式
以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例1
S1.称取5.00g高纯水雾化铁粉,依次在丙酮、酒精中超声清洗15min,去除铁粉表面油污,然后在置于真空干燥箱中,低温120℃,干燥2h,取出备用。
S2.按照1.00wt%,称量0.0500gCNT,与S1中铁粉在V型混料机中预混粉15min。
S3.按照球粉比为50:1称取250g不锈钢磨球,将磨球和S2中预混合粉放入不锈钢球磨罐中,在氩气气氛保护下,高能球磨2h,采用304不锈钢球磨罐和304不锈钢磨球。
S4.将球磨后所得复合粉末取出,在600℃下退火2h,消除内应力,得到掺杂1.00wt%碳纳米管的Fe/CNT软磁复合粉末。
下面结合附图及上述实施例进一步说明本发明。除非特别说明,本发明实施所采用的试剂原料为常规的试剂原料,采用的方法设备为本领域常规的方法和设备,在相同条件下制备没有掺杂CNT的铁基软磁粉末作为对照。
将上述实施例1中所制备的Fe/CNT软磁复合粉末和没有掺杂CNT的铁基软磁粉末进行磁性能测试,磁化曲线如图1所示。由图可知,1wt%的碳纳米管掺杂的复合粉末的饱和磁化强度值最大,3wt%碳纳米管掺杂的复合粉末的饱和磁化强度值最小,结合掺杂量为0.25wt%,0.5wt%,2wt%时的磁化曲线可知,随着碳纳米管掺杂量的增加,饱和磁化强度呈现先增加后下降的趋势,在1wt%处达到最大值,掺杂量为1wt%时效果最优。
与现有技术相比,本发明利用高能球磨和高温热处理制备掺杂碳纳米管的铁基软磁复合粉末,工艺简单易操作,用时短,掺杂均匀,且当掺杂量在1wt%时,复合粉末的饱和磁化强度达到最大,改善经绝缘包覆后材料磁化强度、磁导率和饱和磁感应强度下降的问题。
以上所述内容,仅是本发明的较佳实验实例结果而已,并非对本发明作任何形式上的限制,故凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何修改、等同变化与修饰,均仍属于本发明权利要求书所限定技术方案的范围内。
Claims (6)
1.碳纳米管掺杂铁基软磁复合粉末的制备方法,其特征在于,包括以下步骤:
(1)将高纯水雾化铁粉依次经丙酮和酒精中超声清洗10-20min去除油污和120℃真空低温烘干2h的表面处理;
(2)碳纳米管与上述经表面处理后的铁粉按照质量比为0.25-5:100预混合处理10-20min,得到预混粉末;
(3)将上述预混粉末和直径为5mm的不锈钢球按质量比为1:20-50混合后,在氩气气氛保护下高能球磨1-3h,得到Fe/CNT复合粉末;
(4)所得Fe/CNT复合粉末于550-650℃高温退火1-3h。
2.根据权利要求1所述碳纳米管掺杂铁基软磁复合粉末的制备方法,其特征在于,所述不锈钢球为304不锈钢磨球。
3.根据权利要求1所述碳纳米管掺杂铁基软磁复合粉末的制备方法,其特征在于,所述碳纳米管与经表面处理后的铁粉按照质量比为0.5-2:100预混合处理15min。
4.根据权利要求1或3所述碳纳米管掺杂铁基软磁复合粉末的制备方法,其特征在于,所述碳纳米管与经表面处理后的铁粉按照质量比为1:100预混合处理15min。
5.根据权利要求1所述碳纳米管掺杂铁基软磁复合粉末的制备方法,其特征在于,所述Fe/CNT复合粉末600℃退火2h。
6.碳纳米管掺杂铁基软磁复合粉末,其特征在于,通过权利要求1-5任一项所述碳纳米管掺杂铁基软磁复合粉末的制备方法制得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811256159.4A CN109448947B (zh) | 2018-10-26 | 2018-10-26 | 一种碳纳米管掺杂铁基软磁复合粉末及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811256159.4A CN109448947B (zh) | 2018-10-26 | 2018-10-26 | 一种碳纳米管掺杂铁基软磁复合粉末及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109448947A CN109448947A (zh) | 2019-03-08 |
CN109448947B true CN109448947B (zh) | 2020-09-15 |
Family
ID=65547554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811256159.4A Active CN109448947B (zh) | 2018-10-26 | 2018-10-26 | 一种碳纳米管掺杂铁基软磁复合粉末及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109448947B (zh) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207254529U (zh) * | 2017-10-14 | 2018-04-20 | 朝阳市金麟铁精粉有限公司 | 超纯铁粉电磁脱水装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103343250B (zh) * | 2013-07-09 | 2015-06-17 | 北京工业大学 | 一种分步掺杂提高Sm5Co19合金矫顽力的方法 |
CN104124022B (zh) * | 2014-07-23 | 2016-08-17 | 上海第二工业大学 | 一种碳纳米管基磁性纳米复合材料及其制备方法 |
CN105499561B (zh) * | 2015-12-09 | 2017-08-11 | 西南交通大学 | 一种磁性碳纳米管的制备方法 |
-
2018
- 2018-10-26 CN CN201811256159.4A patent/CN109448947B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207254529U (zh) * | 2017-10-14 | 2018-04-20 | 朝阳市金麟铁精粉有限公司 | 超纯铁粉电磁脱水装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109448947A (zh) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhong et al. | Properties of FeSiAl-based soft magnetic composites with AlN/Al2O3 and hybrid phosphate–silane insulation coatings | |
Zhao et al. | Evolution of the insulation matrix and influences on the magnetic performance of Fe soft magnetic composites during annealing | |
Xia et al. | The magnetic properties and microstructure of phosphated amorphous FeSiCr/silane soft magnetic composite | |
Peng et al. | Effect of the addition of Al2O3 nanoparticles on the magnetic properties of Fe soft magnetic composites | |
Zhao et al. | Fabrication and growth mechanism of iron oxide insulation matrix for Fe soft magnetic composites with high permeability and low core loss | |
Ding et al. | Effect of iron particle size and volume fraction on the magnetic properties of Fe/silicate glass soft magnetic composites | |
Yang et al. | Oxidation fabrication and enhanced soft magnetic properties for core-shell FeCo/CoFe2O4 micron-nano composites | |
Luo et al. | Incorporation of the Fe3O4 and SiO2 nanoparticles in epoxy-modified silicone resin as the coating for soft magnetic composites with enhanced performance | |
Li et al. | In-situ formation of Fe3O4 and ZrO2 coated Fe-based soft magnetic composites by hydrothermal method | |
Wang et al. | Controlled synthesis and microwave absorption properties of Ni0. 6Zn0. 4Fe2O4/PANI composite via an in-situ polymerization process | |
AU2020103177A4 (en) | Method For Preparing FeSiBCr/SiO2 Nanocrystalline Soft Magnetic Composite Iron Core | |
Zhao et al. | Construction of SiCNWS@ NiCo2O4@ PANI 1D hierarchical nanocomposites toward high-efficiency microwave absorption | |
Hu et al. | Low melting glass as adhesive and insulating agent for soft magnetic composites: Case in FeSi powder core | |
US7556838B2 (en) | Soft magnetic material, powder magnetic core, method for manufacturing soft magnetic material, and method for manufacturing powder magnetic core | |
CN106782982B (zh) | 一种软磁复合材料及其制备方法 | |
CN103489555A (zh) | 一种铁基纳米晶软磁合金及制备方法 | |
CN110246675B (zh) | 一种高饱和磁通密度、低损耗软磁复合材料及其制备方法 | |
Sun et al. | Magnetic properties of iron-based soft magnetic composites prepared by utilizing polyimide insulating layer | |
Zhang et al. | Microstructure and magnetic properties of MnO2 coated iron soft magnetic composites prepared by ball milling | |
CN109590460A (zh) | 一种软磁复合材料及其制备方法 | |
Tian et al. | Effects of heat treatment and compaction pressure on the microstructure and magnetic properties of core-shell structured FeSiBNbCu/SiO2 soft magnetic composites | |
CN109887698A (zh) | 一种复合磁粉芯及其制备方法 | |
Zhao et al. | The influence of FeNi nanoparticles on the microstructures and soft magnetic properties of FeSi soft magnetic composites | |
Li et al. | Microstructure and magnetic properties of the FeSiAl soft magnetic composite with a NiFe2O4-doped phosphate insulation coating | |
Wang et al. | Performance improvement of Fe− 6.5 Si soft magnetic composites with hybrid phosphate-silica insulation coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |