CN109446619B - Optimization method of design parameters of lithium ion battery electrode - Google Patents
Optimization method of design parameters of lithium ion battery electrode Download PDFInfo
- Publication number
- CN109446619B CN109446619B CN201811215319.0A CN201811215319A CN109446619B CN 109446619 B CN109446619 B CN 109446619B CN 201811215319 A CN201811215319 A CN 201811215319A CN 109446619 B CN109446619 B CN 109446619B
- Authority
- CN
- China
- Prior art keywords
- model
- battery
- electrode
- electrochemical
- design parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013461 design Methods 0.000 title claims abstract description 56
- 238000005457 optimization Methods 0.000 title claims abstract description 56
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 32
- 238000010168 coupling process Methods 0.000 claims abstract description 22
- 230000008878 coupling Effects 0.000 claims abstract description 21
- 238000005859 coupling reaction Methods 0.000 claims abstract description 21
- 238000002474 experimental method Methods 0.000 claims abstract description 14
- 239000011149 active material Substances 0.000 claims abstract description 3
- 239000002245 particle Substances 0.000 claims abstract description 3
- 238000004422 calculation algorithm Methods 0.000 claims description 23
- 238000004088 simulation Methods 0.000 claims description 16
- 230000008859 change Effects 0.000 claims description 14
- 238000012795 verification Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 8
- 239000003792 electrolyte Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000004134 energy conservation Methods 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- -1 separator Substances 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2111/00—Details relating to CAD techniques
- G06F2111/06—Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种锂离子电池电极设计参数的优化方法,涉及锂离子电池内部结构设计领域,电极设计参数可包括电极厚度、孔隙率、活性材料颗粒粒径、压实密度和面密度等。具体的优化步骤如下:(1)选择要进行优化的电池,测出可实际测量的电极设计参数;(2)依据实测参数以及估计参数建立锂离子电池的电化学‑热耦合模型,通过实验验证调整估计参数;(3)以能量密度最大化和能量密度与功率密度乘积最大化为优化目标,通过两种优化方法得到优化后的电极设计参数。本发明能够在电池设计阶段选择优化的电极设计参数,降低开发成本,提高电池的能量密度和功率密度,为电极的设计提供指导依据。
The invention discloses a method for optimizing electrode design parameters of lithium ion batteries, and relates to the field of internal structure design of lithium ion batteries. The electrode design parameters may include electrode thickness, porosity, active material particle size, compacted density, surface density, and the like. The specific optimization steps are as follows: (1) Select the battery to be optimized, and measure the actual measurable electrode design parameters; (2) Establish an electrochemical-thermal coupling model of the lithium-ion battery based on the measured parameters and estimated parameters, and verify it through experiments Adjust the estimated parameters; (3) Taking the maximization of energy density and the maximization of the product of energy density and power density as the optimization goals, the optimized electrode design parameters are obtained through two optimization methods. The invention can select the optimized electrode design parameters in the battery design stage, reduce the development cost, improve the energy density and power density of the battery, and provide a guiding basis for the design of the electrode.
Description
技术领域technical field
本发明属于锂离子电池内部结构设计领域,具体涉及一种锂离子电池电极设计参数的优化方法。The invention belongs to the field of internal structure design of lithium ion batteries, and in particular relates to an optimization method of electrode design parameters of lithium ion batteries.
背景技术Background technique
目前人们都追求高能量密度和功率密度的锂离子电池,然而二者之间存在一定的矛盾。一般来说,能量密度越高,其功率密度越低。例如对于电动汽车来说,能量密度决定了其最大行驶里程,而功率密度决定了其最大行驶速度,因此如何能够实现既“跑得快”,又“跑得远”也是如今面临的挑战。锂离子电池的电极作为整个电池中最重要的组成部件,其设计决定了电池最终的容量、能量密度、功率密度以及其他性能的优劣。At present, people are pursuing lithium-ion batteries with high energy density and power density, but there is a certain contradiction between the two. In general, the higher the energy density, the lower its power density. For example, for an electric vehicle, the energy density determines its maximum mileage, and the power density determines its maximum driving speed. Therefore, how to achieve both "running fast" and "running far" is also a challenge today. The electrode of a lithium-ion battery is the most important component of the entire battery, and its design determines the final capacity, energy density, power density, and other performance of the battery.
采用传统的实验方法对锂离子电池的电极进行设计优化耗费大量的人力物力财力以及时间,而模拟则显现出了诸多优点,可任意改变设计参数和材料等进行设计优化,可减少电极设计周期提高效率等。从早期Newman等人建立的电化学-热耦合模型经过多年的完善,也日益成熟,如Wenxin Mei等人(Applied Thermal Engineering,142(2018)148-165)基于COMSOL Multiphysics多物理场仿真平台建立的电化学-热耦合模型,对锂离子电池的极耳尺寸进行了优化设计。Using traditional experimental methods to design and optimize the electrodes of lithium-ion batteries consumes a lot of manpower, material and financial resources as well as time, while the simulation shows many advantages. Design parameters and materials can be changed arbitrarily for design optimization, which can reduce the electrode design cycle and improve efficiency etc. The electrochemical-thermal coupling model established by Newman et al. has been perfected for many years and has become increasingly mature. For example, the model established by Wenxin Mei et al. (Applied Thermal Engineering, 142(2018) 148-165) based on the COMSOL Multiphysics multiphysics simulation platform The electrochemical-thermal coupling model optimizes the design of the lug size of the lithium-ion battery.
中国专利CN 107145629A公开了一种优化锂离子电池电极厚度的方法,通过顾客要求获取电池基础设计参数,通过建立电化学-热耦合模型,以能量密度最大化为优化目标,最终得出了最优的电极厚度。该专利只适用于给定电池电极厚度的优化,不能适用于其他的电极设计参数,而且该专利只是针对单一的能量密度最大化为优化目标,未综合考虑能量密度和功率密度两个因素,而人们不应在追求高能量密度的同时忽略功率密度,因此综合考虑能量密度和功率密度至关重要。Chinese patent CN 107145629A discloses a method for optimizing the electrode thickness of lithium-ion batteries. The basic design parameters of the battery are obtained through customer requirements, and the electrochemical-thermal coupling model is established. The optimization goal is to maximize the energy density, and finally the optimal the electrode thickness. This patent is only applicable to the optimization of a given battery electrode thickness, not applicable to other electrode design parameters, and this patent is only aimed at maximizing a single energy density as the optimization goal, without comprehensively considering the two factors of energy density and power density, while One should not ignore power density while pursuing high energy density, so it is important to consider energy density and power density comprehensively.
发明内容Contents of the invention
本发明提供了一种锂离子电池电极设计参数的优化方法,通过建立电化学-热耦合模型并基于能量密度和功率密度对给定电池的电极设计参数(例如电极厚度,孔隙率,压实密度和面密度等)进行设计优化,从而选取最优的电极设计参数,获得最大化的能量密度和功率密度,提高电池性能。The invention provides a method for optimizing electrode design parameters of a lithium-ion battery, by establishing an electrochemical-thermal coupling model and analyzing the electrode design parameters (such as electrode thickness, porosity, compaction density) of a given battery based on energy density and power density and surface density, etc.) to optimize the design, so as to select the optimal electrode design parameters, obtain the maximum energy density and power density, and improve battery performance.
本发明采用了以下技术方案:The present invention adopts following technical scheme:
一种锂离子电池电极设计参数的优化方法,包含以下步骤:A method for optimizing electrode design parameters of a lithium-ion battery, comprising the following steps:
步骤一,选择要进行优化的电池,测量其可测的电极设计参数和热物性参数,并获取其他的电极设计参数以及电极动力学参数;Step 1: Select the battery to be optimized, measure its measurable electrode design parameters and thermophysical parameters, and obtain other electrode design parameters and electrode kinetic parameters;
步骤二,建立锂离子电池的电化学-热耦合模型;
步骤三,通过实验进行模型验证以及参数校正;Step 3: Carry out model verification and parameter correction through experiments;
步骤四,通过校正后的模型获取目标函数以及约束条件,依据两种优化算法对电极设计参数进行优化;Step 4, obtain the objective function and constraint conditions through the corrected model, and optimize the electrode design parameters according to two optimization algorithms;
步骤五,通过比较两种优化算法得出的结果,得到最优的电极设计参数。In step five, the optimal electrode design parameters are obtained by comparing the results obtained by the two optimization algorithms.
其中,电化学-热耦合模型包含了一个伪二维(P2D)电化学模型和一个三维(3D)热模型;Among them, the electrochemical-thermal coupling model includes a pseudo-two-dimensional (P2D) electrochemical model and a three-dimensional (3D) thermal model;
(1)P2D电化学模型:电化学模型依据浓溶液理论和多孔电极理论,模型包含电极厚度(L)和活性材料颗粒粒径(r)两部分,由于L>>r,因此在模型几何中忽略r,只有沿电极厚度方向的一条线段,因此被称为伪二维模型,依据有限元思想对网格进行剖分,然后求解电化学过程中的偏微分方程,可以得到电极电位、电解质电位、电解质浓度等电化学性能;(1) P2D electrochemical model: The electrochemical model is based on concentrated solution theory and porous electrode theory. The model includes two parts: electrode thickness (L) and active material particle size (r). Since L>>r, in the model geometry Neglecting r, there is only a line segment along the thickness direction of the electrode, so it is called a pseudo-two-dimensional model. The grid is divided according to the finite element idea, and then the partial differential equation in the electrochemical process can be solved to obtain the electrode potential and electrolyte potential , electrolyte concentration and other electrochemical properties;
(2)3D热模型根据电池实际尺寸构建三维几何模型,将P2D电化学模型计算得到的热源作为整体耦合进3D热模型中,这将会引起3D热模型中温度的变化,而温度的变化又反馈到P2D电化学模型中,引起电化学模型中与温度相关参数的变化,这些参数的变化进一步引发热源的变化,以此来实现电化学模型与热模型的耦合。(2) 3D thermal model Construct a three-dimensional geometric model according to the actual size of the battery, and couple the heat source calculated by the P2D electrochemical model into the 3D thermal model as a whole, which will cause the temperature change in the 3D thermal model, and the temperature change in turn Feedback to the P2D electrochemical model causes changes in the temperature-related parameters in the electrochemical model, and changes in these parameters further trigger changes in the heat source, thereby realizing the coupling between the electrochemical model and the thermal model.
其中,通过实验方法进行了模型验证以及参数校正,实验采取以下步骤:(1)通过先恒流后恒压的充电方法将电池充满电;(2)对电池进行恒流放电,截止电压设置为2.75V;(3)将实验得到的放电曲线与模拟值进行比较;(4)用红外热像仪拍摄电池放电结束时表面的温度分布,与模拟结果相比较;(5)根据上述步骤(3)和(4)的结果进行参数校正,得到校正后的电化学-热耦合模型。Among them, the model verification and parameter correction are carried out through the experimental method, and the following steps are taken in the experiment: (1) the battery is fully charged by the charging method of constant current and then constant voltage; (2) the constant current discharge is performed on the battery, and the cut-off voltage is set to 2.75V; (3) compare the discharge curve obtained by the experiment with the simulated value; (4) shoot the temperature distribution on the surface of the battery at the end of the battery discharge with an infrared thermal imager, and compare it with the simulated result; (5) according to the above steps (3) ) and (4) were corrected to get the corrected electrochemical-thermal coupling model.
其中,该优化方法采用多目标优化,综合考虑能量密度和功率密度两个因素,对锂离子电池的电极设计参数进行优化,最终得出最优的电极设计参数。Among them, the optimization method adopts multi-objective optimization, comprehensively considers the two factors of energy density and power density, optimizes the electrode design parameters of lithium-ion batteries, and finally obtains the optimal electrode design parameters.
其中,该优化步骤采用两种优化算法以提高精确度,并且根据两种优化算法的优化结果选取最优解。Wherein, the optimization step adopts two optimization algorithms to improve accuracy, and selects the optimal solution according to the optimization results of the two optimization algorithms.
本发明与现有技术相比的优点:Advantage of the present invention compared with prior art:
1,建立锂离子电池的电化学-热耦合模型,并且通过实验验证和参数校正提高了模型的精确性;1. Establish an electrochemical-thermal coupling model of lithium-ion batteries, and improve the accuracy of the model through experimental verification and parameter correction;
2,该模型适用于不同容量的电池在不同放电倍率下的循环充放电;2. This model is suitable for the cycle charge and discharge of batteries with different capacities at different discharge rates;
3,综合能量密度和功率密度两个因素对锂离子电池的电极设计参数进行优化,能够给出迭代后的最优解;3. The electrode design parameters of lithium-ion batteries are optimized by combining the two factors of energy density and power density, and the optimal solution after iteration can be given;
4,本方法能够通过数值模拟的方式对电池的能量密度和功率密度进行优化,既可有效地评估电池的性能,又可节约资源;4. This method can optimize the energy density and power density of the battery through numerical simulation, which can not only effectively evaluate the performance of the battery, but also save resources;
5,本方法能够对多种电极设计参数(如电极厚度,电极材料面密度、孔隙率等)进行优化以寻求最高能量密度以及功率密度,弥补了优化单一参数的不足;5. This method can optimize a variety of electrode design parameters (such as electrode thickness, electrode material surface density, porosity, etc.) to seek the highest energy density and power density, making up for the lack of optimizing a single parameter;
6,只需制备少量的所需电池进行模型的验证,在此基础上通过模拟的方法进行电极设计参数的优化,然后根据优化的参数进行大量电池的制作,既可节省人力物力财力,减少电池设计周期又可提高电池性能。6. It is only necessary to prepare a small amount of required batteries for model verification. On this basis, the electrode design parameters are optimized through simulation methods, and then a large number of batteries are produced according to the optimized parameters, which can save manpower, material and financial resources, and reduce battery costs. The design cycle in turn improves battery performance.
附图说明Description of drawings
图1为本发明一种基于能量密度和功率密度的锂离子电池电极设计参数的优化方法流程图。Fig. 1 is a flow chart of an optimization method of lithium-ion battery electrode design parameters based on energy density and power density in the present invention.
图2为本发明中伪二维(P2D)电化学模型示意图。Fig. 2 is a schematic diagram of a pseudo two-dimensional (P2D) electrochemical model in the present invention.
图3为本发明的实施例一中电池外观以及电池尺寸,其中,图3(a)为电池外观,图3(b)为电池尺寸。Fig. 3 is the appearance and size of the battery in
图4为本发明的实施例一中三维热模型几何及其网格示意图,其中,图4(a)为三维热模型几何示意图,图4(b)为网格示意图。Fig. 4 is a schematic diagram of the geometry of the three-dimensional thermal model and its grid in
图5为本发明的实施例一中四个不同放电倍率下电池放电曲线的模拟与实验结果对比。FIG. 5 is a comparison of simulation and experimental results of battery discharge curves at four different discharge rates in Example 1 of the present invention.
图6为本发明的实施例一中四个不同放电倍率下电池表面平均温度的模拟结果与实验结果对比,其中,图6(a-1)为0.5C放电下电池表面平均温度的模拟结果,图6(a-2)为0.5C放电下电池表面平均温度的实验结果;图6(b-1)为1C放电下电池表面平均温度的模拟结果,图6(b-2)为1C放电下电池表面平均温度的实验结果;图6(c-1)为1.5C放电下电池表面平均温度的模拟结果,图6(c-2)为1.5C放电下电池表面平均温度的实验结果;图6(d-1)为2C放电下电池表面平均温度的模拟结果,图6(d-2)为2C放电下电池表面平均温度的实验结果。Fig. 6 is the comparison between the simulated results and the experimental results of the average temperature of the battery surface under four different discharge rates in Example 1 of the present invention, wherein Fig. 6 (a-1) is the simulated result of the average temperature of the battery surface under 0.5C discharge, Figure 6(a-2) is the experimental result of the average temperature of the battery surface under 0.5C discharge; Figure 6(b-1) is the simulation result of the average temperature of the battery surface under 1C discharge, and Figure 6(b-2) is the simulation result of the average temperature of the battery surface under 1C discharge The experimental results of the average battery surface temperature; Figure 6(c-1) is the simulation result of the battery surface average temperature under 1.5C discharge, and Figure 6(c-2) is the experimental result of the battery surface average temperature under 1.5C discharge; Figure 6 (d-1) is the simulation result of the average temperature of the battery surface under 2C discharge, and Fig. 6(d-2) is the experimental result of the average temperature of the battery surface under 2C discharge.
图7为本发明的实施例一中正负极半电池的熵系数随荷电状态的变化曲线。Fig. 7 is a graph showing the variation curve of the entropy coefficient of the positive and negative half-cells with the state of charge in the first embodiment of the present invention.
具体实施方式detailed description
为了便于理解本发明,下文将结合较佳的实施例对本发明作更全面、细致的描述,但本发明的保护范围并不限于以下具体的实施例。In order to facilitate the understanding of the present invention, the following will describe the present invention more comprehensively and in detail in conjunction with preferred embodiments, but the protection scope of the present invention is not limited to the following specific embodiments.
本发明一种基于能量密度和功率密度的锂离子电池电极设计参数的优化方法,包含以下步骤:步骤一,选择要进行优化的电池,测量其可测的电极设计参数和热物性参数等,并获取其他的电极设计参数以及电极动力学参数等;步骤二,建立锂离子电池的电化学-热耦合模型;步骤三,通过实验进行模型验证以及参数校正;步骤四,通过校正后的模型获取目标函数以及约束条件,依据两种优化算法对电极设计参数进行优化;步骤五,通过比较两种优化算法得出的结果,得到最优的电极设计参数。A method for optimizing electrode design parameters of a lithium-ion battery based on energy density and power density in the present invention comprises the following steps:
步骤二中模型为伪二维(P2D)电化学模型与三维(3D)热模型的耦合模型,其中电化学模型采用的是Newman等人(Journal of the Electrochemical Society,1993,DOI:10.1149/1.2221597)的电化学模型。下面分别叙述P2D电化学模型和3D热模型的建立过程:The model in
(1)P2D电化学模型(1) P2D electrochemical model
锂离子软包电池内部为层叠式结构,由以下重复单元构成:隔膜,负极活性材料,负极集流体,负极活性材料,隔膜,正极活性材料,正极集流体,正极活性材料,隔膜……,由于各单元的重复性以及等效性,因此只选择一个单元在其厚度方向进行建模。其中一个单元包含以下五部分:负极集流体(简化为一点),负极活性材料(厚度为Ln),隔膜(厚度为Ls),正极活性材料(厚度为Lp),正极集流体(简化为一点)。The interior of the lithium-ion pouch battery is a laminated structure, which is composed of the following repeating units: separator, negative electrode active material, negative electrode current collector, negative electrode active material, separator, positive electrode active material, positive electrode current collector, positive electrode active material, separator..., due to The repeatability and equivalence of each unit, so only one unit is selected for modeling in its thickness direction. One of the units contains the following five parts: negative electrode current collector (simplified to one point), negative electrode active material (thickness L n ), separator (thickness L s ), positive electrode active material (thickness L p ), positive electrode current collector (simplified for one point).
P2D电化学模型的控制方程主要包含以下几部分:质量守恒方程,电荷守恒方程,电化学动力学方程(Butler-Volmer方程),对于该模型的控制方程以及边界条件均列于表1中。The governing equation of the P2D electrochemical model mainly includes the following parts: mass conservation equation, charge conservation equation, electrochemical kinetic equation (Butler-Volmer equation), and the governing equation and boundary conditions for this model are listed in Table 1.
(2)热模型的建立(2) Establishment of thermal model
热模型是基于能量守恒方程进行建立。电池的产热包含两部分:可逆热和不可逆热。其中可逆热是电化学反应过程的产热,由电极材料熵变造成的产热;不可逆热又可进一步分为极化热和欧姆热,其中前者是由于过电位造成极化产热,后者是由于欧姆内阻造成的欧姆产热。对于热模型中的边界条件,即散热部分,考虑了对流换热和辐射换热两部分。热模型中的控制方程和边界条件均列于表2中。The thermal model is established based on the energy conservation equation. The heat generation of the battery consists of two parts: reversible heat and irreversible heat. Among them, reversible heat is the heat generated during the electrochemical reaction process, which is caused by the entropy change of the electrode material; irreversible heat can be further divided into polarization heat and ohmic heat, of which the former is due to the polarization heat generated by the overpotential, and the latter It is ohmic heat generation due to ohmic internal resistance. For the boundary conditions in the thermal model, that is, the heat dissipation part, two parts of convective heat transfer and radiation heat transfer are considered. The governing equations and boundary conditions in the thermal model are listed in Table 2.
(3)电化学-热耦合模型的建立(3) Establishment of electrochemical-thermal coupling model
电化学模型和热模型通过Arrhenius方程进行耦合: The electrochemical and thermal models are coupled via the Arrhenius equation:
其中,Φ为与温度相关的参数,Ea为活化能。Among them, Φ is a parameter related to temperature, and E a is the activation energy.
耦合过程如下:将P2D电化学模型计算得到的热源作为整体耦合进3D热模型中,这将会引起3D热模型中温度的变化,而温度的变化又反馈到P2D电化学模型中,引起电化学模型中与温度相关参数的变化,这些参数的变化进一步引发热源的变化,以此来实现电化学模型与热模型的耦合。The coupling process is as follows: the heat source calculated by the P2D electrochemical model is coupled into the 3D thermal model as a whole, which will cause the temperature change in the 3D thermal model, and the temperature change will be fed back to the P2D electrochemical model, causing the electrochemical The change of the temperature-related parameters in the model, the change of these parameters further triggers the change of the heat source, so as to realize the coupling of the electrochemical model and the thermal model.
表1.P2D模型中的控制方程以及边界条件Table 1. Governing equations and boundary conditions in the P2D model
表2. 3D热模型中的控制方程以及边界条件Table 2. Governing equations and boundary conditions in the 3D thermal model
文中出现的符号及术语见表3。The symbols and terminology appearing in the text are listed in Table 3.
表3.文中出现的符号以及术语Table 3. Symbols and terms appearing in the text
步骤三中对模型的验证是通过下述步骤进行:The verification of the model in step 3 is carried out through the following steps:
(1)通过先恒流后恒压的充电方法将电池充满电;(2)对电池进行恒流放电,截止电压设置为2.75V;(3)将实验得到的放电曲线与模拟值进行比较;(4)用红外热像仪拍摄电池放电结束时表面的温度分布,与模拟结果相比较;(5)根据上述步骤(3)和(4)的结果进行参数校正,得到校正后的电化学-热耦合模型。(1) Fully charge the battery by charging with constant current and then constant voltage; (2) Discharge the battery with constant current, and set the cut-off voltage to 2.75V; (3) Compare the discharge curve obtained from the experiment with the simulated value; (4) Use an infrared thermal imager to shoot the temperature distribution on the surface of the battery at the end of discharge, and compare it with the simulation results; (5) Perform parameter correction according to the results of the above steps (3) and (4), and obtain the corrected electrochemical- thermal coupling model.
实施例一Embodiment one
以商用18.5Ah的镍钴锰/石墨(NCM/C)软包电池为例,对该锂离子电池的代表性电极设计参数--电极厚度进行优化,全面、详细地对本发明作出描述,该优化方法不只局限于对该电池以及电极厚度的优化,也适用于其他电极设计参数。电池外形以及实际测量尺寸如图3所示。该优化分为两部分优化:(1)以能量密度最大化为目标函数。(2)以能量密度和功率密度的乘积最大化为目标函数。并且分别采用两种优化算法,最终将得到4组优化后的电极厚度,再从中选择最优的电极厚度。Taking the nickel-cobalt-manganese/graphite (NCM/C) pouch battery of commercial 18.5Ah as an example, the representative electrode design parameter of this lithium-ion battery--electrode thickness is optimized, and the present invention is described comprehensively and in detail. The method is not limited to the optimization of this cell and electrode thickness, but is applicable to other electrode design parameters as well. The appearance and actual measurement dimensions of the battery are shown in Figure 3. The optimization is divided into two parts: (1) The objective function is to maximize the energy density. (2) The objective function is to maximize the product of energy density and power density. And two optimization algorithms are used respectively, and finally 4 groups of optimized electrode thicknesses will be obtained, and then the optimal electrode thickness will be selected.
1.首先对实验部分进行描述:1. First describe the experimental part:
实验方法为对电池进行充放电测试,并且用红外热像仪拍摄电池表面的温度。实验共选择在4个放电倍率(0.5C,1C,1.5C,2C)下进行,与模拟结果进行对比,以提高模拟的精确性。下面以1C为例进行描述:(1)电池搁置5分钟;(2)以1C倍率(18.5A)恒流充电至4.2V;(3)以4.2V电压进行恒压充电,设置充电截止电流为0.185A;(3)电池搁置10分钟;(4)以1C倍率进行恒流放电,截止电压为2.75V;(5)得到电池的放电曲线,即电压对时间的曲线(6)在放电结束的时刻用红外热像仪拍摄电池表面的温度分布。The experimental method is to charge and discharge the battery, and use an infrared thermal imager to capture the temperature of the battery surface. The experiment was carried out at 4 discharge rates (0.5C, 1C, 1.5C, 2C) and compared with the simulation results to improve the accuracy of the simulation. The following is described by taking 1C as an example: (1) The battery is left on hold for 5 minutes; (2) Charge to 4.2V with a constant current at a rate of 1C (18.5A); (3) Charge with a constant voltage of 4.2V, and set the charging cut-off current to 0.185A; (3) The battery is left on hold for 10 minutes; (4) Constant current discharge is performed at a rate of 1C, and the cut-off voltage is 2.75V; (5) The discharge curve of the battery is obtained, that is, the curve of voltage versus time (6) at the end of discharge The temperature distribution on the surface of the battery is captured with an infrared camera at all times.
2.然后对数值模拟部分进行描述,共分为5个步骤,如下所述:2. Then describe the numerical simulation part, which is divided into 5 steps, as follows:
步骤一,参数获取。根据实验测量以及文献调研的方法获取电池电化学-热耦合模型参数,温度相关参数和电池整体热参数以及电极材料热物性参数分别列于表3,表4和表5。
步骤二,模型建立。根据质量守恒、电荷守恒、电化学动力学建立该电池简化的伪二维(P2D)电化学模型;然后根据能量守恒方程建立电池的三维(3D)热模型;将P2D电化学模型计算得到的热源作为整体耦合进3D热模型中,这将会引起3D热模型中温度的变化,而温度的变化又反馈到P2D电化学模型中,引起电化学模型中与温度相关参数的变化,这些参数的变化进一步引发热源的变化,以此来实现电化学模型与热模型的耦合。Step two, model establishment. A simplified pseudo two-dimensional (P2D) electrochemical model of the battery is established according to mass conservation, charge conservation, and electrochemical kinetics; then a three-dimensional (3D) thermal model of the battery is established according to the energy conservation equation; the heat source calculated by the P2D electrochemical model is Coupled into the 3D thermal model as a whole, this will cause a change in temperature in the 3D thermal model, and the temperature change will be fed back into the P2D electrochemical model, causing changes in the temperature-related parameters in the electrochemical model, changes in these parameters The change of the heat source is further triggered to realize the coupling of the electrochemical model and the thermal model.
表4.电化学-热耦合模型参数Table 4. Electrochemical-thermal coupled model parameters
注:“-”表示该项不存在或不考虑Note: "-" indicates that the item does not exist or is not considered
表5.温度相关参数以及电池整体热参数Table 5. Temperature-related parameters and overall thermal parameters of the battery
表6.电池材料热物性参数Table 6. Thermophysical parameters of battery materials
步骤三,模型验证以及参数校对。基于COMSOL Multiphysics多物理场仿真平台,建立了如步骤二所述的电化学-热耦合模型,模型开始认为电池是满电状态,因此只对电池进行放电,与实验工况相同,依然在4个放电倍率(0.5C,1C,1.5C,2C)下进行,最终得到放电曲线以及各时段的温度场分布,与实验结果进行对比,其对比图见图5和图6。Step three, model verification and parameter calibration. Based on the COMSOL Multiphysics multiphysics simulation platform, the electrochemical-thermal coupling model as described in
步骤四,基于能量密度的锂离子电池电极厚度的优化。锂离子电池的能量密度由式(38)确定,其中M为电极质量,只包含正负材料、电解质、隔膜以及集流体,电池外壳以及导电剂等其他非活性材料未计算在内。这将导致计算得到的能量密度比实际偏高,但是由于这些未被计算在内的质量被认为是不变的,因此并不影响优化结果。Step 4, optimization of electrode thickness of lithium-ion battery based on energy density. The energy density of a lithium-ion battery is determined by formula (38), where M is the mass of the electrode, which only includes positive and negative materials, electrolytes, separators, and current collectors, and other inactive materials such as battery shells and conductive agents are not included. This will result in higher calculated energy densities than they actually are, but since these unaccounted masses are assumed to be constant, they do not affect the optimization results.
本步骤中对于电极厚度的优化采取两种优化算法,其一为Nelder-Mead算法,1965年由John Nelder和Roger Mead提出,是一种非线性优化方法,不需要求解目标函数的导数;其二为COBYLA法(线性近似的约束优化方法),1997年由Michael J.D.Powell提出,是一种线性优化方法,不需要求解目标函数的导数,可用来求解约束问题。两种优化算法均来自COMSOL Multiphysics中的优化模块,根据自定义的优化求解器进行求解。In this step, two optimization algorithms are adopted for the optimization of the electrode thickness, one of which is the Nelder-Mead algorithm, proposed by John Nelder and Roger Mead in 1965, which is a nonlinear optimization method that does not need to solve the derivative of the objective function; the second The COBYLA method (constrained optimization method for linear approximation), proposed by Michael J.D. Powell in 1997, is a linear optimization method that does not need to solve the derivative of the objective function, and can be used to solve constrained problems. Both optimization algorithms come from the optimization module in COMSOL Multiphysics, and are solved according to a custom optimization solver.
本步骤中的优化要采取一定的约束条件,认为有两个约束条件:其一为负极理论容量要略大于正极理论容量,以避免锂枝晶的产生,根据电池设计经验,根据式(40),定义电池NP比为负极理论容量与正极理论容量的比值,取电池NP比在1.1-1.2之间;其二认为锂离子电池的最佳工作温度为298K-313K,设定其工作温度在此范围之内。The optimization in this step needs to adopt certain constraints, and it is considered that there are two constraints: one is that the theoretical capacity of the negative electrode should be slightly larger than the theoretical capacity of the positive electrode to avoid the generation of lithium dendrites. According to the battery design experience, according to formula (40), The NP ratio of the battery is defined as the ratio of the theoretical capacity of the negative electrode to the theoretical capacity of the positive electrode, and the NP ratio of the battery is taken to be between 1.1-1.2; secondly, the optimal operating temperature of the lithium-ion battery is 298K-313K, and its operating temperature is set within this range within.
本步骤中的优化参数为正极厚度与负极厚度,其初始值通过实验测量分别为55μm和65μm,根据客户需要在体积和容量限定范围之内的估算,以及满足上下限之和为初始值的二倍,据此得到的取值范围为[30,80]和[30,100],单位为μm。The optimized parameters in this step are the thickness of the positive electrode and the thickness of the negative electrode. The initial values are 55 μm and 65 μm, respectively, according to the experimental measurement. According to the estimation of the customer’s needs within the volume and capacity limits, and the two parameters that satisfy the sum of the upper and lower limits as the initial value times, the value range obtained accordingly is [30,80] and [30,100], and the unit is μm.
以初始值首先带入模型进行计算,得到目标函数的值,然后反馈到优化算法中,优化程序见图,最后得到基于两种优化算法的优化结果,列于表6中,从中可以看出,两种优化算法得到的结果基本一致,能量密度较初始能量密度均有所提升,而功率密度降低。因此有必要综合考虑能量密度和功率密度得到最优的电极厚度。The initial value is first brought into the model for calculation, and the value of the objective function is obtained, and then fed back to the optimization algorithm. The optimization procedure is shown in the figure, and finally the optimization results based on the two optimization algorithms are obtained, which are listed in Table 6. It can be seen that, The results obtained by the two optimization algorithms are basically the same, and the energy density is improved compared with the initial energy density, while the power density is decreased. Therefore, it is necessary to comprehensively consider the energy density and power density to obtain the optimal electrode thickness.
M=(Lpccρpcc+Lnccρncc+Lpεpsρp+Lpεplρl+M=(L pcc ρ pcc +L ncc ρ ncc +L p ε ps ρ p +L p ε pl ρ l +
Lnεnsρn+Lnεnlρl+Lsεsρl+Lsρs)×Aelec L n ε ns ρ n +L n ε nl ρ l +L s ε s ρ l +L s ρ s )×A elec
表7.基于能量密度的电极厚度优化结果Table 7. Electrode Thickness Optimization Results Based on Energy Density
步骤五,基于能量密度和功率密度的锂离子电池电极厚度的优化。锂离子电池的功率密度由式(41)确定。本步骤中的目标函数为能量密度与功率密度的乘积,优化算法、约束条件以及参数取值范围均与步骤四中的一致,最终得到的优化结果列于表7中,从中可以看出虽然N-M算法得到的目标函数值高于COBYLA算法,但是N-M算法得到的能量密度偏低,而且正负极厚度均偏小,不满足电池在实际设计时的正负极材料冗余原则,因此不满足我们的优化目标,而经过COBYLA算法优化得到的能量密度和功率密度均有所提升,因此适宜求解约束问题的COBYLA算法更适合本发明的优化。最终认为正极厚度55.335μm以及负极厚度63.188μm为最优的电极厚度,其能量密度244.37Wh/kg较初始能量密度239.71Wh/kg有所提升,其功率密度247.11W/kg较初始功率密度244.46W/kg也有所提升,满足优化需求,可为锂离子电池的电极设计提供一定的指导依据,缩短电池设计周期。Step 5, optimization of lithium-ion battery electrode thickness based on energy density and power density. The power density of a lithium-ion battery is determined by Equation (41). The objective function in this step is the product of energy density and power density. The optimization algorithm, constraint conditions, and parameter value ranges are all consistent with those in step 4. The final optimization results are listed in Table 7, from which it can be seen that although N-M The objective function value obtained by the algorithm is higher than that of the COBYLA algorithm, but the energy density obtained by the N-M algorithm is relatively low, and the thickness of the positive and negative electrodes is relatively small, which does not meet the principle of redundancy of positive and negative materials in the actual design of the battery, so it does not meet our requirements. The optimization target, and the energy density and power density obtained through COBYLA algorithm optimization are improved, so the COBYLA algorithm suitable for solving constrained problems is more suitable for the optimization of the present invention. Finally, it is considered that the thickness of the positive electrode is 55.335 μm and the thickness of the negative electrode is 63.188 μm is the optimal electrode thickness. The energy density of 244.37Wh/kg is higher than the initial energy density of 239.71Wh/kg, and the power density of 247.11W/kg is higher than the initial power density of 244.46W. /kg has also been improved to meet the optimization requirements, which can provide a certain guiding basis for the electrode design of lithium-ion batteries and shorten the battery design cycle.
表8.基于能量密度和功率密度的电极厚度优化结果Table 8. Electrode Thickness Optimization Results Based on Energy Density and Power Density
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811215319.0A CN109446619B (en) | 2018-10-18 | 2018-10-18 | Optimization method of design parameters of lithium ion battery electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811215319.0A CN109446619B (en) | 2018-10-18 | 2018-10-18 | Optimization method of design parameters of lithium ion battery electrode |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109446619A CN109446619A (en) | 2019-03-08 |
CN109446619B true CN109446619B (en) | 2022-12-23 |
Family
ID=65546601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811215319.0A Active CN109446619B (en) | 2018-10-18 | 2018-10-18 | Optimization method of design parameters of lithium ion battery electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109446619B (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110457742A (en) * | 2019-06-26 | 2019-11-15 | 北京航空航天大学 | A lithium-ion battery electrochemical-thermo-mechanical coupling model and modeling method |
CN111475956B (en) * | 2020-04-13 | 2020-12-22 | 清华大学 | Battery design method, method for evaluating battery design, and computer apparatus |
CN113540571A (en) * | 2020-04-21 | 2021-10-22 | 北京新能源汽车股份有限公司 | Lithium ion battery preparation method and lithium ion battery |
CN111950161B (en) * | 2020-08-18 | 2021-07-20 | 清华大学 | Method for optimizing battery cathode parameters, battery design method and computer equipment |
CN112685882B (en) * | 2020-12-23 | 2024-05-14 | 惠州亿纬锂能股份有限公司 | Battery pole piece drying method |
CN112989574A (en) * | 2021-02-18 | 2021-06-18 | 北京理工大学 | Power battery and closed-loop joint design method of battery management system thereof |
CN113420486B (en) * | 2021-07-21 | 2022-08-26 | 中南大学 | Battery anode material integrated design method and system based on multi-scale simulation |
CN113707844B (en) * | 2021-08-24 | 2023-05-30 | 湖北亿纬动力有限公司 | A kind of negative pole sheet and its preparation method and application |
CN114094197B (en) * | 2021-11-05 | 2023-12-26 | 江苏景创锂能新能源科技有限公司 | Production process of lithium battery |
CN114089191B (en) * | 2021-11-17 | 2023-08-04 | 浙大城市学院 | Composite lithium ion battery health condition estimation method |
CN114912327B (en) * | 2022-05-27 | 2023-03-24 | 上海玫克生储能科技有限公司 | Calculation method, device and storage medium of current density in battery electrochemical model |
CN114861467A (en) * | 2022-06-10 | 2022-08-05 | 湖北亿纬动力有限公司 | Parameter evaluation method and device for battery core coating |
CN115101138A (en) * | 2022-06-29 | 2022-09-23 | 上海玫克生储能科技有限公司 | Lithium battery design optimization method and device based on parameter identification and storage medium |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107145629A (en) * | 2017-03-31 | 2017-09-08 | 中南大学 | A kind of method for optimizing battery electrode thickness |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10127342B2 (en) * | 2016-04-08 | 2018-11-13 | Nano And Advanced Materials Institute Limited | Method of designing and modifying lithium ion battery cathode materials |
-
2018
- 2018-10-18 CN CN201811215319.0A patent/CN109446619B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107145629A (en) * | 2017-03-31 | 2017-09-08 | 中南大学 | A kind of method for optimizing battery electrode thickness |
Non-Patent Citations (1)
Title |
---|
基于扩展单粒子模型的锂离子电池参数识别策略;庞辉;《物理学报》;20180210(第05期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN109446619A (en) | 2019-03-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109446619B (en) | Optimization method of design parameters of lithium ion battery electrode | |
CN107145628B (en) | A method for predicting the cycle life of lithium batteries based on an electrochemical-thermal coupled model | |
CN111062137B (en) | Lithium ion battery performance prediction model, construction method and application thereof | |
CN103345561B (en) | A kind of hot simulating analysis of lithium ion battery with multilayer chip structure | |
CN113488110B (en) | Electrochemical-thermal coupling model and model-based simulation method for large-capacity lithium batteries | |
CN109614754B (en) | Simulation method of three-dimensional simplified model of lithium ion battery | |
CN108169683B (en) | Simulation analysis method for internal distribution characteristics of lithium ion battery with multilayer laminated structure | |
CN110232201A (en) | A kind of battery design method of multi-parameter synergistic effect | |
CN108646186B (en) | Three-dimensional thermal model of single lithium ion battery based on electrochemical characteristics | |
CN110165314A (en) | Battery battery core performance parameter acquisition methods and acquisition device | |
CN108647432A (en) | Battery thermal runaway prediction technique based on thermal resistance network model | |
CN108595840A (en) | Lithium-ion battery model building method, system and optimization method for tab size | |
CN110362897B (en) | Multi-objective optimization balancing method for series battery packs | |
CN107145629A (en) | A kind of method for optimizing battery electrode thickness | |
CN108829929A (en) | A kind of method for building up and device of lithium ion battery needle thorn model | |
CN109033619B (en) | 18650 lithium battery discharge cycle transient temperature model modeling method | |
CN113868934A (en) | Parallel lithium ion battery electrochemical parameter identification method | |
An et al. | A comparison of model prediction from P2D and particle packing with experiment | |
CN114781226A (en) | Three-dimensional electrochemical-thermal total coupling model of laminated lithium ion battery and construction method thereof | |
Kök et al. | Investigation of thermal behavior of lithium-ion batteries under different loads | |
CN109738806A (en) | Method, device and medium for simulating battery heat production rate | |
CN117034592A (en) | Two-dimensional axisymmetric electrochemical-thermal full-coupling model of large cylindrical lithium ion battery and construction method thereof | |
Zhou et al. | A simulation study on parameter variation effects in battery packs for electric vehicles | |
Wang et al. | Thermal behavior analysis of Pouch Lithium ion Battery using distributed electro-thermal model | |
Zhu et al. | Analysis of the structure arrangement on the thermal characteristics of Li‐ion battery pack in thermoelectric generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |