CN109444084A - 一种基于双模式的太赫兹波高灵敏度成像装置 - Google Patents

一种基于双模式的太赫兹波高灵敏度成像装置 Download PDF

Info

Publication number
CN109444084A
CN109444084A CN201811305989.1A CN201811305989A CN109444084A CN 109444084 A CN109444084 A CN 109444084A CN 201811305989 A CN201811305989 A CN 201811305989A CN 109444084 A CN109444084 A CN 109444084A
Authority
CN
China
Prior art keywords
thz wave
terahertz
sample
total reflection
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811305989.1A
Other languages
English (en)
Other versions
CN109444084B (zh
Inventor
徐德刚
武丽敏
王与烨
姚建铨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811305989.1A priority Critical patent/CN109444084B/zh
Publication of CN109444084A publication Critical patent/CN109444084A/zh
Application granted granted Critical
Publication of CN109444084B publication Critical patent/CN109444084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种基于双模式的太赫兹波高灵敏度成像装置,包括:反射窗口及全反射棱镜,用于反射成像模式和全反射成像模式的快速切换;太赫兹波经过平面反射镜的反射被第一离轴抛物面镜接收并聚焦入射到反射窗口(或全反射棱镜)表面上;样品放置在反射窗口(或全反射棱镜)的底面;携带样品信息的太赫兹波经反射窗口(或全反射棱镜)反射被第二离轴抛物面镜接收;携带样品信息的太赫兹波经第二离轴抛物面镜接收后被第三离轴抛物面镜接收并聚焦入太赫兹波探测器。

Description

一种基于双模式的太赫兹波高灵敏度成像装置
技术领域
本发明用于太赫兹波成像领域,成像系统将反射和全反射两种成像模式,紧凑的结合在一起并实现两者的快速切换,即一种太赫兹波双模式高灵敏度成像装置。
背景技术
太赫兹波是指位于微波与红外波之间的电磁波,其频率为0.1~10THz,相应波长为0.03mm~3mm。因太赫兹波处于宏观向微观过渡的区域,其具有宽带性、低能性、指纹特性等独特的优势,这使得太赫兹波成像技术在成像、安全检测等领域有极大的应用前景。
目前,常见的太赫兹波成像方式主要包括:透射式、反射式和衰减全反射式成像。透射式成像具有较高的灵敏度,操作简单。但由于太赫兹波对极性分子(如水分子)的吸收较大,对于含水量较大的生物组织需要将样品进行切片,样品制作复杂。反射式成像通常可保整样品的完整性,其不仅可实现生物样品表面的检测且可以实现生物组织深层次检测,目前已报道可实现皮下1200微米处组织的检测。然而,反射式成像的灵敏度与分辨率较差,且对样品表面的平整度要求较严格,因为样品表面通常粗糙不仅产生漫反射且因此减弱信号光,这不利于样品信息的获取。
通常,太赫兹反射式成像采用对可见光透明的石英窗口紧贴并压平样本,该方法一方面可以清楚的观察到样品的成像区域并检查样品是否与窗口紧密贴合,另一方面,可以有效减小样品表面的漫反射。衰减全反射成像的原理是当光从光密介质入射到光疏介质时,入射角大于临界角,则在光入射的表面产生倏逝波,利用倏逝波与样品相互作用获得样品信息。该方法具有很高的成像灵敏度,但对含水量较大的样品其穿透深度仅为几十微米。另外,由于全反射棱镜通常采用对可见光不透明的高阻硅材料,在活体成像过程中不仅无法直接观察到扫描位置且无法确保样品是否与棱镜紧密接触,导致实验时间与样品破坏可能性的增加。
综上可知,在太赫兹成像过程中,现在急需一种既具有高的成像灵敏度,不破坏样品完整性,又可减少扫描时间和尽可能多的获得样品信息的成像方式或实验装置。
发明内容
本发明提供了一种基于双模式的太赫兹波高灵敏度成像装置,本发明将反射式和全反射式成像紧凑的结合在一套成像装置中,通过具有透明窗口的反射式成像获得样品的重点检测区域,再通过灵敏度较高的全反射成像获得样品的详细细节信息,两种成像方式只需要更换石英窗口与全反射棱镜,其他元器件保持不动,详见下文描述:
一种基于双模式的高灵敏度太赫兹波成像装置,太赫兹波平面反射镜、第一太赫兹离轴抛物面镜、第二太赫兹离轴抛物面镜与第三太赫兹离轴抛物面镜依次设置在太赫兹波的出射光路上;反射成像窗口及全反射成像棱镜的底面被置于第一太赫兹离轴抛物面镜和第二太赫兹离轴抛物面镜的水平焦平面上;透过反射成像窗口的入射太赫兹波入射到样品,经样品反射后,携带样品信息的太赫兹波再次经过反射成像窗口后被第二太赫兹波离轴抛物面镜聚焦并接收,获得反射成像,进而得到样品的大概图像及样品成像区域;太赫兹波经第一太赫兹离轴抛物面镜聚焦后以一定的角度,入射到全反射成像棱镜的一个侧面上,太赫兹波在垂直全反射成像棱镜底面的方向产生倏逝波;倏逝波垂直入射到样品进行相互作用,携带样品信息的太赫兹波在全反射成像棱镜的另一个侧面出射,出射后的太赫兹波被第二太赫兹离轴抛物面镜收集并接收,并通过太赫兹波平面反射镜反射,入射到太赫兹探测器,以获得样品的全反射成像结果,进而获得样品的详细信息。
其中,在不改变任何装置参数下,将反射成像窗口替换成全反射成像棱镜。
所述全反射成像棱镜是通过理论计算获得用于全反射成像的最佳棱镜参数;所述全反射棱镜材料选用太赫兹波吸收较小的材料,且其折射率要比检测样品折射率高以实现全反射成像。
所述反射成像窗口为对太赫兹波高透的材料,所述全反射成像棱镜为对太赫兹高透的等腰三棱镜。
进一步地,所述太赫兹源为连续或脉冲太赫兹辐射源。
其中,太赫兹波平面反射镜、第一太赫兹反射离轴抛物面镜、第二太赫兹反射离轴抛物面镜和第三太赫兹反射离轴抛物面镜均镀太赫兹波段的宽带高反膜。
进一步地,放置样品的二维平台是沿x轴和y轴成s型移动。
具体实现时,所述装置符合反射模式或全反射模式、且参数符合反射及透射理论计算的公式。
其中,所述全反射成像棱镜选取太赫兹波段的高折射率与低吸收材料,棱镜三面进行光学抛光,且与边法线成19°入射到棱镜。
本发明提供的技术方案的有益效果是:
1、本发明将反射和全反射模式紧凑的结合在一个装置中,相比于仅反射成像,因全反射成像采用折射率较大的高阻硅棱镜,提高了成像分辨率,具有较高的检测灵敏度;
2、本发明相比于仅全反射成像,因反射模式可以观察到样品检测区域,可以为全反射成像提供精细的检测区域,节约全反射成像扫描时间。
3、本发明具有装置简易、扫描时间短、灵敏度高的优点。
附图说明
图1为基于双模式的高灵敏度太赫兹波成像装置示意图;
图2为在反射成像中,太赫兹波以不同角度入射时的反射和透射系数曲线;
图3为在全反射成像中,太赫兹波以不同角度入射时的反射率曲线;
图4为成像物体实物图;
图5为太赫兹反射式成像图;
图6为太赫兹全反射成像图。
附件中,各部件表示的列表如下:
1:太赫兹源; 2:太赫兹波平面反射镜;
3:第一太赫兹波离轴抛物面镜; 4:反射成像窗口;
5:样品(即待测样品); 6:第二太赫兹波离轴抛物面镜;
7:第三太赫兹波离轴抛物面镜; 8:太赫兹波探测器;
9:全反射棱镜。
其中,第一太赫兹波离轴抛物面镜3和第二太赫兹波离轴抛物面镜6的型号相同。反射窗口4和全反射棱镜9的材料为对太赫兹波高透的材料。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
实施例1
参见图1,一种基于双模式的高灵敏度太赫兹波成像装置,所述装置包括:太赫兹源1,用于反射太赫兹波的太赫兹波平面反射镜2,用于太赫兹波聚焦的第一太赫兹波离轴抛物面镜3,反射成像窗口4,待测物体5,用于收集太赫兹波的第二太赫兹波离轴抛物面镜6,用于聚焦太赫兹波的第三太赫兹波离轴抛物面镜7,用于太赫兹波探测的太赫兹波探测器8和全反射成像棱镜9。太赫兹波平面反射镜2、第一太赫兹离轴抛物面镜3、第二太赫兹离轴抛物面镜6与第三太赫兹离轴抛物面镜7依次设置在太赫兹波的出射光路上。
其中,第一太赫兹波离轴抛物面镜3和第二太赫兹波离轴抛物面镜6的型号相同,反射成像窗口4及全反射成像棱镜9的底面被置于第一太赫兹离轴抛物面镜3和第二太赫兹离轴抛物面镜6的水平焦平面上。反射成像窗口4的材料对太赫兹波高透,例如:石英。
具体实现时,太赫兹源1产生太赫兹波输出,太赫兹波经第一太赫兹波离轴抛物面镜3聚焦后以一定的角度入射到反射成像窗口4,透过反射成像窗口4的入射太赫兹波入射到样品5。入射太赫兹波经样品5反射后,携带样品信息的太赫兹波再次经过反射成像窗口4后被第二太赫兹波离轴抛物面镜6聚焦并接收,获得反射成像。
通过反射成像后,获得样品5的大概图像及样品成像区域,然后将反射成像窗口4替换成全反射成像棱镜9。太赫兹波经第一太赫兹离轴抛物面镜3聚焦后以一定的角度,入射到全反射成像棱镜9的一个侧面上,太赫兹波在垂直全反射成像棱镜9底面的方向产生倏逝波,倏逝波垂直入射到样品5进行相互作用,携带样品5信息的太赫兹波在全反射成像棱镜9的另一个侧面出射,出射后的太赫兹波被第二太赫兹离轴抛物面镜6收集并接收,并通过太赫兹波平面反射镜2反射,入射到太赫兹探测器8,以获得样品5的全反射成像结果(获得样品的详细信息)。
其中,全反射成像棱镜9是在不改变反射成像装置中的任何装置参数,通过将反射成像窗口4替换成全反射成像棱镜9;该全反射成像棱镜9是通过理论计算获得用于全反射成像的最佳棱镜参数;该全反射棱镜材料必须选用太赫兹波吸收较小的材料,且其折射率要比检测样品折射率高以实现全反射成像;该全反射成像棱镜9与样品5的接触面,设置在与反射成像窗口4相同的位置。
将样品的待检测面与所述的成像反射窗口紧密接触,通过反射成像获得样品的大致区域,将反射成像窗口4替换成全反射成像棱镜9,是在不改变反射成像的任何实验装置的基础上替换。
反射成像窗口4为对太赫兹波高透的材料(全反射成像棱镜为对太赫兹高透的等腰三棱镜,其固定于二维扫描平台上,用于放置待测成像样品5。
进一步地,太赫兹源1为连续或脉冲太赫兹辐射源。
太赫兹波平面反射镜2、第一太赫兹反射离轴抛物面镜3、第二太赫兹反射离轴抛物面镜6和第三太赫兹反射离轴抛物面镜7,均镀太赫兹波段的宽带高反膜。
反射模式采用太赫兹高透材料的反射窗口,全反射模式采用与所测样品5的折射率大的材料。
进一步地,放置样品5的二维平台是沿x轴和y轴成s型移动。反射式成像可以扫描无限大样品,全反射成像可扫描棱镜底面大小的样品。
进一步地,全反射成像棱镜9选取太赫兹波段的高折射率与低吸收材料,棱镜三面进行光学抛光,且与边法线成19°入射到棱镜。
具体实现时,太赫兹探测器8为太赫兹波段的探测器。
进一步地,所选仪器及参数符合两种模式(反射模式或全反射模式)达到最好成像要求。所选仪器及参数符合反射及透射理论计算的公式。
综上所述,本发明实施例提供了一种将反射和全反射成像结合在一套装置中用于样品粗精扫描成像,相比于仅反射成像,因全反射成像采用折射率较大的高阻硅棱镜,提高了成像分辨率,具有较高的检测灵敏度。
实施例2
下面结合图1,对实施例1中的方案、工作原理进行进一步地介绍,详见下文描述:
本发明实施例的目的在于提供一种通过设计成像参数,增大成像系统的灵敏度、减少成像时间、提高成像分辨率的成像装置。
在反射式成像过程中,太赫兹波经第一太赫兹波离轴抛物面镜3的聚焦,斜入射到反射成像窗口4,然后入射到样品5,经样品5反射的太赫兹波需再次通过反射成像窗口4。
第一太赫兹离轴抛物面镜3用于将输出的太赫兹波聚焦入射到反射成像窗口4(或棱镜)上;第二太赫兹离轴抛物面镜6,设置在放样品5的信号光出射光路上,用于接收信号光太赫兹波;第三太赫兹离轴抛物面镜7,设置在太赫兹波探测前,用于接收并聚焦信号光太赫兹波进入太赫兹波探测器8;太赫兹波探测器8,设置在第三太赫兹离轴抛物面镜7的信号光出射光路上,收集第三太赫兹离轴抛物面镜7的反射光。
为了尽可能减少反射成像窗口4的损耗,第一太赫兹波离轴抛物面镜3的离轴角度(太赫兹波斜入射到反射成像窗口4的角度)需要满足两方面的要求,一方面需要该角度入射的太赫兹波透过反射成像窗口4表面时满足高透低反的要求,另一方面要求透过反射成像窗口4的太赫兹波经样品5高反才能获得样品信息。
由菲涅尔理论可得,对于斜入射的太赫兹波,其反射系数和透射系数受角度的影响极大,以P偏振光为例,其反射系数r和透射系数t满足如下公式:
其中,n1为空气的折射率,n2为反射窗口的折射率,θ为太赫兹波入射到反射成像窗口4的角度,θ2为太赫兹波进入反射成像窗口4后的折射角度。
图2为太赫兹波在反射成像窗口4表面的将其反射系数和透射系数与入射角度的关系绘制如图2所示。由图2可知,在入射角度θ为30°~60°时,其反射窗口满足高透低反的要求。进一步透过反射成像窗口4的太赫兹波需经样品5高反才能获得样品信息,因此通过反射成像窗口4的太赫兹波斜入射到样品5的角度需满足有高反射率的要求。根据斯涅耳公式:
n2sinθ2=n3sinθ3 (3)
其中,n3为样品的折射率,θ3为太赫兹波入射进样品后的折射角度。
由公式(3)可得,在样品5的折射率n3一定的情况下,入射角越大,进入样品5的折射角度越大。由图2可得反射系数随角度的增大而较低,因此第二太赫兹离轴抛物面镜6的离轴角度选择为30°。
在反射式成像的基础上,进一步优化设计全反射棱镜的参数以获得全反射成像,即只需要将全反射成像棱镜9替换反射成像窗口4,而不改变图1的成像装置中其他元件,则可实现全反射成像。
与反射成像相同,因多角度入射,全反射成像受角度的影响极大。由公式(1)可得P偏振光的全反系数R随角度的变化,如图3所示。
其中,n1为全反射成像棱镜9的折射率,n2为样品5的折射率,θ为太赫兹波入射到全反射成像棱镜9底面的角度,θ2为太赫兹入射到样品5后的折射角度。考虑到水对太赫兹波的吸收较大,图3以水为例进行计算。
由图3可得,入射角θ全反射临界角36.8°~60°,P偏振光的全反射率随入射角度的增大而增大,反射率越大即太赫兹的吸收越小。全反射成像因由倏逝波成像,其穿透深度仅有几十个微米,因此为了更好的获得样品5的信息需减小全反射率。因此将入射到样品5的角度选择为43°。结合第二太赫兹离轴抛物面镜6的角度,全反射采用顶角为82°的等腰三棱镜,其底面与高度可根据成像样品5的大小进行选择。
综上所述,本发明实施例提供了一种提高太赫兹成像灵敏度的双模式成像装置,通过优化离轴抛物面镜的离轴角、全反射棱镜的角度与尺寸,只需切换反射窗口与全反射棱镜,即可实现反射式和全反射式两种成像模式,而无需其他元件调整。
实施例3
下面结合图4-图6对实施例1和2中的装置进行可行性验证,详见下文描述:
本实验分别用反射和全反射成像对生物组织样品进行成像,生物样品以猪肉为例,其由脂肪和肌肉组成。实物图如图4所示,图中脂肪和肌肉的边界处依次标号①、②与③。
图5为太赫兹反射式成像结果,太赫兹反射成像可清晰的获得猪肉的轮廓,对于脂肪和肌肉区域界限较明显的①和②边界识别的较好,而对于较不明显的③,成像几乎难以识别。
图6为太赫兹全反射成像结果,其可以清晰识别实物图4中①和②与③的细节。
通过上述试验,可以直接的验证本发明实施例1和2中装置的可行性,满足了实际应用中的多种需要,提高了成像灵敏度。
综上所述,本发明实施例在太赫兹波成像的采样阶段使用反射成像和全反射成像快速切换的方式,实现一种既具有高的成像灵敏度,不破坏样品完整性,又可减少扫描时间和尽可能多的获得样品信息的成像方式或实验装置。
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,
太赫兹波平面反射镜、第一太赫兹离轴抛物面镜、第二太赫兹离轴抛物面镜与第三太赫兹离轴抛物面镜依次设置在太赫兹波的出射光路上;
反射成像窗口及全反射成像棱镜的底面被置于第一太赫兹离轴抛物面镜和第二太赫兹离轴抛物面镜的水平焦平面上;
透过反射成像窗口的入射太赫兹波入射到样品,经样品反射后,携带样品信息的太赫兹波再次经过反射成像窗口后被第二太赫兹波离轴抛物面镜聚焦并接收,获得反射成像,进而得到样品的大概图像及样品成像区域;
太赫兹波经第一太赫兹离轴抛物面镜聚焦后以一定的角度,入射到全反射成像棱镜的一个侧面上,太赫兹波在垂直全反射成像棱镜底面的方向产生倏逝波;
倏逝波垂直入射到样品进行相互作用,携带样品信息的太赫兹波在全反射成像棱镜的另一个侧面出射,出射后的太赫兹波被第二太赫兹离轴抛物面镜收集并接收,并通过太赫兹波平面反射镜反射,入射到太赫兹探测器,以获得样品的全反射成像结果,进而获得样品的详细信息。
2.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,在不改变任何装置参数下,将反射成像窗口替换成全反射成像棱镜。
3.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,所述全反射成像棱镜是通过理论计算获得用于全反射成像的最佳棱镜参数;所述全反射棱镜材料选用太赫兹波吸收较小的材料,且其折射率要比检测样品折射率高以实现全反射成像。
4.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,所述反射成像窗口为对太赫兹波高透的材料,所述全反射成像棱镜为对太赫兹高透的等腰三棱镜。
5.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,所述太赫兹源为连续或脉冲太赫兹辐射源。
6.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,太赫兹波平面反射镜、第一太赫兹反射离轴抛物面镜、第二太赫兹反射离轴抛物面镜和第三太赫兹反射离轴抛物面镜均镀太赫兹波段的宽带高反膜。
7.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,放置样品的二维平台是沿x轴和y轴成s型移动。
8.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,所述装置符合反射模式或全反射模式、且参数符合反射及透射理论计算的公式。
9.根据权利要求1所述的一种基于双模式的高灵敏度太赫兹波成像装置,其特征在于,所述全反射成像棱镜选取太赫兹波段的高折射率与低吸收材料,棱镜三面进行光学抛光,且与边法线成19°入射到棱镜。
CN201811305989.1A 2018-11-05 2018-11-05 一种基于双模式的太赫兹波高灵敏度成像装置 Active CN109444084B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811305989.1A CN109444084B (zh) 2018-11-05 2018-11-05 一种基于双模式的太赫兹波高灵敏度成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811305989.1A CN109444084B (zh) 2018-11-05 2018-11-05 一种基于双模式的太赫兹波高灵敏度成像装置

Publications (2)

Publication Number Publication Date
CN109444084A true CN109444084A (zh) 2019-03-08
CN109444084B CN109444084B (zh) 2023-12-12

Family

ID=65550395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811305989.1A Active CN109444084B (zh) 2018-11-05 2018-11-05 一种基于双模式的太赫兹波高灵敏度成像装置

Country Status (1)

Country Link
CN (1) CN109444084B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975209A (zh) * 2019-04-19 2019-07-05 荧飒光学科技(上海)有限公司 用于傅里叶变换光谱仪的衰减全反射装置
CN110186874A (zh) * 2019-05-16 2019-08-30 天津大学 单层活细胞的太赫兹atr光谱快速测量装置及方法
CN110361363A (zh) * 2019-07-31 2019-10-22 天津大学 太赫兹波衰减全反射成像的分辨率补偿装置及补偿方法
CN111157487A (zh) * 2020-01-08 2020-05-15 天津大学 基于双光路的太赫兹光谱与成像快速同步检测装置
CN114062322A (zh) * 2021-10-19 2022-02-18 天津大学 一种提高THz-ATR成像分辨率及性能的装置及方法
CN114545585A (zh) * 2022-02-23 2022-05-27 华太极光光电技术有限公司 一种确定抛物面镜与硅棱镜之间的位置的方法
CN114779456A (zh) * 2022-05-26 2022-07-22 南开大学 基于抛物面镜的紧凑型入射角调整装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352558A (ja) * 1999-06-10 2000-12-19 Hamamatsu Photonics Kk テラヘルツ波分光器
US20040113103A1 (en) * 2002-11-25 2004-06-17 Zhilkov Stanislav V. Terahertz and mid-infrared probing apparatus with high repetition rate pulses, and methods of using same
JP2008224452A (ja) * 2007-03-13 2008-09-25 Hamamatsu Photonics Kk 全反射テラヘルツ波測定装置
US20090303480A1 (en) * 2008-06-10 2009-12-10 Sony Corporation Terahertz spectroscopic apparatus
US20100091266A1 (en) * 2007-03-13 2010-04-15 Hamamatsu Photonics K.K. Total reflection tera hertz wave measuring apparatus
CN102243167A (zh) * 2011-04-01 2011-11-16 深圳大学 一种太赫兹波成像装置
US20140166881A1 (en) * 2012-12-14 2014-06-19 Electronics And Telecommunications Research Institute Terahertz wave generating module and terahertz wave detecting device including the same
CN105928898A (zh) * 2016-04-15 2016-09-07 中国人民解放军第三军医大学第附属医院 一种基于道威棱镜快速搭建的太赫兹衰减全反射系统
CN106580264A (zh) * 2017-01-16 2017-04-26 天津大学 一种基于太赫兹波衰减全反射成像的脑创伤组织检测装置
CN107102526A (zh) * 2017-04-26 2017-08-29 中国工程物理研究院激光聚变研究中心 基于逐点扫描的太赫兹反射式全息成像系统及成像方法
CN107421915A (zh) * 2017-09-08 2017-12-01 中国工程物理研究院流体物理研究所 一种基于太赫兹时域衰减全反射光谱的活细胞实时监测实验方法
US20170352516A1 (en) * 2016-06-03 2017-12-07 Tsinghua University Detecting system based on terahertz wave
JP2018009824A (ja) * 2016-07-12 2018-01-18 株式会社リコー 試料分析方法及び試料分析装置
CN209513618U (zh) * 2018-11-05 2019-10-18 天津大学 一种基于双模式的太赫兹波高灵敏度成像装置

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352558A (ja) * 1999-06-10 2000-12-19 Hamamatsu Photonics Kk テラヘルツ波分光器
US20040113103A1 (en) * 2002-11-25 2004-06-17 Zhilkov Stanislav V. Terahertz and mid-infrared probing apparatus with high repetition rate pulses, and methods of using same
JP2008224452A (ja) * 2007-03-13 2008-09-25 Hamamatsu Photonics Kk 全反射テラヘルツ波測定装置
US20100091266A1 (en) * 2007-03-13 2010-04-15 Hamamatsu Photonics K.K. Total reflection tera hertz wave measuring apparatus
US20090303480A1 (en) * 2008-06-10 2009-12-10 Sony Corporation Terahertz spectroscopic apparatus
CN102243167A (zh) * 2011-04-01 2011-11-16 深圳大学 一种太赫兹波成像装置
US20140166881A1 (en) * 2012-12-14 2014-06-19 Electronics And Telecommunications Research Institute Terahertz wave generating module and terahertz wave detecting device including the same
CN105928898A (zh) * 2016-04-15 2016-09-07 中国人民解放军第三军医大学第附属医院 一种基于道威棱镜快速搭建的太赫兹衰减全反射系统
US20170352516A1 (en) * 2016-06-03 2017-12-07 Tsinghua University Detecting system based on terahertz wave
JP2018009824A (ja) * 2016-07-12 2018-01-18 株式会社リコー 試料分析方法及び試料分析装置
CN106580264A (zh) * 2017-01-16 2017-04-26 天津大学 一种基于太赫兹波衰减全反射成像的脑创伤组织检测装置
CN107102526A (zh) * 2017-04-26 2017-08-29 中国工程物理研究院激光聚变研究中心 基于逐点扫描的太赫兹反射式全息成像系统及成像方法
CN107421915A (zh) * 2017-09-08 2017-12-01 中国工程物理研究院流体物理研究所 一种基于太赫兹时域衰减全反射光谱的活细胞实时监测实验方法
CN209513618U (zh) * 2018-11-05 2019-10-18 天津大学 一种基于双模式的太赫兹波高灵敏度成像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
武丽敏: "共光路连续太赫兹反射和衰减全反射成像", 《物理学报》, vol. 70, no. 11 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975209A (zh) * 2019-04-19 2019-07-05 荧飒光学科技(上海)有限公司 用于傅里叶变换光谱仪的衰减全反射装置
CN110186874A (zh) * 2019-05-16 2019-08-30 天津大学 单层活细胞的太赫兹atr光谱快速测量装置及方法
CN110361363A (zh) * 2019-07-31 2019-10-22 天津大学 太赫兹波衰减全反射成像的分辨率补偿装置及补偿方法
CN110361363B (zh) * 2019-07-31 2023-05-30 天津大学 太赫兹波衰减全反射成像的分辨率补偿装置及补偿方法
CN111157487A (zh) * 2020-01-08 2020-05-15 天津大学 基于双光路的太赫兹光谱与成像快速同步检测装置
CN114062322A (zh) * 2021-10-19 2022-02-18 天津大学 一种提高THz-ATR成像分辨率及性能的装置及方法
CN114545585A (zh) * 2022-02-23 2022-05-27 华太极光光电技术有限公司 一种确定抛物面镜与硅棱镜之间的位置的方法
CN114545585B (zh) * 2022-02-23 2024-04-26 华太极光光电技术有限公司 一种确定抛物面镜与硅棱镜之间的位置的方法
CN114779456A (zh) * 2022-05-26 2022-07-22 南开大学 基于抛物面镜的紧凑型入射角调整装置

Also Published As

Publication number Publication date
CN109444084B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
CN109444084A (zh) 一种基于双模式的太赫兹波高灵敏度成像装置
CN209513618U (zh) 一种基于双模式的太赫兹波高灵敏度成像装置
US8251909B2 (en) Acoustic imaging probe incorporating photoacoustic excitation
CN103575654B (zh) 一种提高太赫兹扫描成像速度的方法和系统
CN106353834B (zh) 一种太赫兹成像系统及太赫兹安检装置
CN102083361B (zh) 生物信息获取装置
KR101770688B1 (ko) 감쇠 전반사(atr)에 의한 이미징
CN110865043B (zh) 基于水平扫描方式的太赫兹衰减全反射成像装置及方法
JPS61180129A (ja) 物体の予め定まつている特性を分析する装置、物体を試験する方法および標本の選定された特性を分析するための装置
CN108181237B (zh) 一种空间外差拉曼成像光谱仪的光路结构
EP2514364A1 (en) Measurement system, and image forming method and program
CN106290227B (zh) 一种太赫兹波反射成像装置及方法
CN109297925A (zh) 一种基于分块压缩感知的太赫兹高分辨率快速成像装置
CN109283197A (zh) 透明板材表面及内部瑕疵的检测方法及检测装置
CN109444085A (zh) 一种近场太赫兹波光谱成像系统和方法
US8948847B2 (en) Millimeter wave 3-D breast imaging
CN112924389A (zh) 基于光声和光学相干层析技术的多模态成像系统及方法
US20100217161A1 (en) Delivery of therapeutic focused energy
CN114002160B (zh) 一种太赫兹调频连续波无损检测成像系统及方法
CN102998261B (zh) 一种基于太赫兹波伪热光源的成像装置
CN113324954A (zh) 一种基于光谱成像的棱镜耦合表面等离激元共振测试系统
CN110361363A (zh) 太赫兹波衰减全反射成像的分辨率补偿装置及补偿方法
CN109459416B (zh) 基于反射窗口提高太赫兹波成像信噪比的装置及方法
US20120289813A1 (en) Acoustic Imaging Probe Incorporating Photoacoustic Excitation
CN209264563U (zh) 一种折射率显微测量系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant