CN109439175A - A kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating and preparation method thereof - Google Patents

A kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating and preparation method thereof Download PDF

Info

Publication number
CN109439175A
CN109439175A CN201811297265.7A CN201811297265A CN109439175A CN 109439175 A CN109439175 A CN 109439175A CN 201811297265 A CN201811297265 A CN 201811297265A CN 109439175 A CN109439175 A CN 109439175A
Authority
CN
China
Prior art keywords
shape memory
photoresponse
selfreparing
memory polyurethane
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811297265.7A
Other languages
Chinese (zh)
Other versions
CN109439175B (en
Inventor
白永康
张纪雯
陈鑫
陈莉
田然
田雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201811297265.7A priority Critical patent/CN109439175B/en
Publication of CN109439175A publication Critical patent/CN109439175A/en
Application granted granted Critical
Publication of CN109439175B publication Critical patent/CN109439175B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4266Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
    • C08G18/4269Lactones
    • C08G18/4277Caprolactone and/or substituted caprolactone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

A kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating and preparation method thereof; packing material is added in polycaprolactone; then stannous octoate is added; 130-140 DEG C of reaction 24-36h; solvent, crosslinking agent and dibutyl tin dilaurate is added; 60-80 DEG C of stirring 5-10h under nitrogen protection is then coated in metal surface, solidification.Optical-thermal conversion material is introduced polymer network using polycaprolactone as substrate, by situ aggregation method by the present invention, and introduces catalyst and crosslinking agent, is formed polymer network by crosslinked action, is prepared the shape memory polyurethane coating for capableing of selfreparing.Under Infrared irradiation, coat inside is set to be rapidly heated to 130-140 DEG C by photothermal conversion, high temperature stimulation shape memory is replied, become to making wound surface contact, simultaneously, polymer segment strenuous exercise, across damage interface and along with the fracture and reconstruct of ammonia ester bond, to realize the self-repair function of coating.

Description

A kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating and preparation method thereof
Technical field
The present invention relates to metal anti-corrosive paint fields, and in particular to a kind of photoresponse selfreparing shape memory polyurethane anti-corrosion Coating and preparation method thereof.
Background technique
Metal erosion is the problem of not can avoid, to show according to related data, the whole world every year due to metal erosion caused by Direct economic loss is up to 700,000,000,000 dollars, China because caused by metal erosion economic loss account for about the 3% of gross national product. It therefore, is always hot spot concerned by people for the anti-corrosion research of metal material.In recent years, people mainly utilize organic coating to apply In metal surface, exclusion of water, air and corrosivity particle prevent corrosion of metal, but organic coating is difficult to resist extraneous evil summary Coating damage caused by environment, aggressivity particle immerse metal surface by breakage, lead to metal erosion, make coating failure.
In view of the above problems, self-healing coatings come into being, self-healing coatings i.e. when coating surface generates damaged, itself Response can be generated to outside stimulus, damaged part be repaired by certain mode, self-heal realizes coating to matrix gold again The effect of the protection of category.People are classified as independently repairing and repair with non-autonomous according to necessity of the self-repair material to outside stimulus It is multiple, according to whether there are consolidants to be divided into inherent repair and external reparation.The appearance of self-healing coatings improves metal material Reliability, durability and service life.
In fact, the coating of filling consolidant is limited when repairing surface damage by release consolidant volume, only When lesion volume is less than the consolidant volume of release, damage could repair completely.When the healing of material is independent of consolidant When discharging, but depending on the exchange of reversible key or polymer chain diffusion, heal the local route repair being only limitted in reversible key range, when When damage location is excessive, key bridge can not be formed between gap, also resulting in wound can not heal.Rodriguez et al. proposes one The concept of kind shape memory auxiliary selfreparing (shape-memory assisted healing), for example, in polycaprolactone (PCL) in cross-linked network, the linear PCL chain of half penetration type is once heated can be terminated and repair damage location.Thermal energy is first It activates damage location shape memory to reply, and restores mechanical energy by generating new keys between linear chain.The repair process is complete It does not need to apply any external force entirely.But tradition makes the reply for driving shape memory and the selfreparing of inside by thermostimulation, Operating there is limitations, in contrast, infrared light stimulus reparation is physically easier to perform, heat up rapider, and can be with The long-range accurate control in part.Therefore, it designs one kind and is capable of the self-healing coatings of infrared optical response shape memory auxiliary for preventing The damage of coating large area is very necessary.
Summary of the invention
It is an object of that present invention to provide a kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating and preparation method thereof, The coating has good self-healing properties and shape-memory properties under Infrared irradiation, without applying any external force, is easy to Operation, there is good application prospect in terms of anti-corrosive metal coating.
To achieve the above object, the present invention adopts the following technical scheme that:
A kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating, comprising the following steps:
1) packing material is added in the container equipped with polycaprolactone, ultrasonic disperse makes packing material be uniformly dispersed, so Afterwards under nitrogen protection, stannous octoate is added, 130-140 DEG C of reaction 24-36h obtains graft polymers;
2) solvent, crosslinking agent and dibutyl tin dilaurate are added into graft polymers, under nitrogen protection 60-80 5-10h is stirred at DEG C, obtains solution, solution is coated on metal surface, solidification obtains the poly- ammonia of photoresponse selfreparing shape memory Ester corrosion-inhibiting coating.
A further improvement of the present invention lies in that packing material is graphene oxide, poly-dopamine or multi-walled carbon nanotube.
A further improvement of the present invention lies in that the quality of packing material is packing material and polycaprolactone gross mass 0.1%-5%.
A further improvement of the present invention lies in that the ratio 1g of packing material and polycaprolactone gross mass and stannous octoate: (0.001-0.005)μL。
A further improvement of the present invention lies in that ultrasonic power is 400W, time 1-4h.
A further improvement of the present invention lies in that solvent DMSO, DMF or THF;The ratio of graft polymers and solvent is 1: (10-20)mL。
A further improvement of the present invention lies in that crosslinking agent 4,4`- methyl diphenylene diisocyanate, toluene diisocynate Ester, 1,6- hexamethylene diisocyanate or benzene dimethylene diisocyanate;The additional amount of crosslinking agent is graft polymers The 13%-23% of quality.
A further improvement of the present invention lies in that the additional amount of dibutyl tin dilaurate is graft polymers and crosslinking agent The 0-1% of gross mass.
A further improvement of the present invention lies in that cured temperature is 60-80 DEG C, time 12h.
A kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating obtained according to above-mentioned preparation method.
Compared with existing self-healing coatings, selfreparing shape memory polyurethane coating designed by the present invention has following excellent Point:
Optical-thermal conversion material is introduced polymer network using polycaprolactone as substrate, by situ aggregation method by the present invention, And catalyst and crosslinking agent are introduced, polymer network is formed by crosslinked action, prepares a kind of shape note for capableing of selfreparing Recall polyurethane coating.Under Infrared irradiation, coat inside is set to be rapidly heated to 130 DEG C or so by photothermal conversion, high temperature pierces Swash shape memory reply, becoming makes wound surface contact, meanwhile, polymer segment strenuous exercise, across damage interface and along with The fracture and reconstruct of ammonia ester bond, to realize the self-repair function of coating.The present invention assists its selfreparing, nothing by shape memory External force need to be applied, the coating damage of large area can be repaired.Optical-thermal conversion material is dispersed in polymer network by the present invention, Therefore light source can be used as stimulus, coating damage position is made to carry out selfreparing, it is easy to operate, it is flexible in application, it can long distance From and local accurate control.Coating after the present invention is repaired can still keep good mechanical performance, can reach former painting 80% or more of layer mechanical strength.Energy effective protection metal, prevents from corroding, and extends metal service life.
Detailed description of the invention
Fig. 1 is the infrared spectrogram for the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides;
Fig. 2 is the nuclear magnetic resonance spectroscopy for the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides;
Fig. 3 is the transmission electricity of the graphene oxide that the embodiment of the present invention 1 provides and selfreparing shape memory polyurethane coating Mirror figure;Wherein, (a) is the TEM of graphene oxide, (b) is the TEM of selfreparing shape memory polyurethane coating.
Fig. 4 is the petrographic microscope that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides repairs front and back Comparison diagram;Wherein, petrographic microscope when (a) is coating damage irradiates figure, (b) shines for the petrographic microscope after coating selfreparing Penetrate figure.
Fig. 5 is the petrographic microscope that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 4 provides repairs front and back Comparison diagram;Wherein, petrographic microscope when (a) is coating damage irradiates figure, (b) shines for the petrographic microscope after coating selfreparing Penetrate figure.
Fig. 6 is the petrographic microscope that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 6 provides repairs front and back Comparison diagram;Wherein, petrographic microscope when (a) is coating damage irradiates figure, (b) shines for the petrographic microscope after coating selfreparing Penetrate figure.
Fig. 7 is the petrographic microscope that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 7 provides repairs front and back Comparison diagram;Wherein, petrographic microscope when (a) is coating damage irradiates figure, (b) shines for the petrographic microscope after coating selfreparing Penetrate figure.
Fig. 8 is the scanning electron microscope pair that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides repairs front and back Than figure;Wherein, SEM when (a) is coating damage is (b) SEM after coating selfreparing.
Fig. 9 is that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides shows coated on the anti-corrosion after blade It is intended to.Wherein, (a) is the photo that pure blade is corroded, (b) photograph to be corroded after the blade damage of coating polyurethane coating Piece, (c) photo to be corroded after the blade damage and selfreparing of coating polyurethane coating.
Figure 10 is that the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides is aobvious coated on the polarisation after blade Micro mirror comparison diagram.Wherein, (a) is that pure blade is corroded the petrographic microscope photo of rear surface, is (b) coating polyurethane coating The petrographic microscope photo on the surface being corroded after blade damage is (c) the blade damage and selfreparing of coating polyurethane coating The petrographic microscope photo for the sample surfaces being corroded afterwards.
Specific embodiment
The present invention is prepared for a kind of shape memory polyurethane coating that can repair mass lesions.It is with reference to the accompanying drawing and real Applying example, the present invention is described in further detail.Described herein the specific embodiments are only for explaining the present invention, rather than right Restriction of the invention.
Optical-thermal conversion material is introduced polymer network using polycaprolactone as substrate, by situ aggregation method by the present invention, And a certain amount of catalyst and crosslinking agent are introduced, polymer network is formed by crosslinked action, preparing one kind being capable of selfreparing Shape memory polyurethane coating.Under Infrared irradiation, coat inside is set to be rapidly heated to 130 DEG C of left sides by photothermal conversion The right side, high temperature stimulation shape memory are replied, and becoming makes wound surface contact, meanwhile, polymer segment strenuous exercise, across damage interface And along with the fracture and reconstruct of ammonia ester bond, to realize the self-repair function of coating.
Photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating of the invention specific the preparation method is as follows:
1) packing material is weighed to be added in the container equipped with polycaprolactone, ultrasonic disperse makes packing material be uniformly dispersed, Then under nitrogen protection, stannous octoate is added, 130-140 DEG C of reaction 24-36h obtains graft polymers;
Wherein, packing material is graphene oxide (GO), poly-dopamine particle or multi-walled carbon nanotube.
The quality of packing material is the 0.1%-5% of packing material and polycaprolactone gross mass.
The power of ultrasound is 400W, time 1-4h.
2) solvent, crosslinking agent and dibutyl tin dilaurate are added into graft polymers, under nitrogen protection 60-80 5-10h is stirred at DEG C, obtains solution, and solution is coated on metal surface, is solidified at 60-80 DEG C, is obtained photoresponse and review one's lessons by oneself complex Shape memory polyurethane corrosion-inhibiting coating.
Wherein, solvent DMSO, DMF or THF;The ratio of graft polymers and solvent is 1:10-20mL;
Crosslinking agent is 4,4`- methyl diphenylene diisocyanate, toluene di-isocyanate(TDI), 1,6- hexa-methylene diisocyanate Ester or benzene dimethylene diisocyanate;The additional amount of crosslinking agent is the 13%-23% of the quality of graft polymers.
The additional amount of dibutyl tin dilaurate is the 0-1% of the gross mass of graft polymers and crosslinking agent.
Crosslinking agent is 4,4`- methyl diphenylene diisocyanate, toluene di-isocyanate(TDI), 1,6- hexa-methylene diisocyanate Ester or benzene dimethylene diisocyanate;The additional amount of crosslinking agent is the 13%-23% of the quality of graft polymers.
The additional amount of dibutyl tin dilaurate is the 0-1% of the gross mass of graft polymers and crosslinking agent.
Embodiment 1
It weighs 0.025g graphene oxide (GO) to be added in the flask containing 24.975g polycaprolactone, 400W ultrasound point 60mins is dissipated, finely dispersed material is obtained.Heating stirring in 130 DEG C of oil bath pans is put under nitrogen protection, 20 microlitres of instillation is pungent Sour stannous, reaction for 24 hours, obtain GO-PCL-0.1% graft polymers.
Weigh 2.000gGO-PCL-0.1% graft polymers, be added 20mL n,N dimethylformamide (DMF) and 0.400g4,4`- methyl diphenylene diisocyanate (MDI), 0.240g mass concentration are 2% dibutyl tin dilaurate (DBTDL) DMF solution of catalyst, 80 DEG C of stirring 5h, obtain solution under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape note containing GO-SMP-0.1% Recall coatings.
Referring to Fig. 1, the infrared spectrogram of shape memory selfreparing polyurethane coating provided in this embodiment is visible in figure 3327cm-1For the absorption peak of hydroxyl, 1700cm-1For the absorption peak of carbonyl, preliminary proof PCL is grafted successfully, 1597cm-1It is secondary Amine stretching vibration peak shows that MDI successfully reacts to form urethano with PCL.
Referring to fig. 2, the hydrogen nuclear magnetic resonance spectrogram of shape memory selfreparing polyurethane coating provided in this embodiment, it is main Peak has marked in figure;4.03(t,-CH2-O-),2.28(t,-CH2-CO-),1.63(m,-CH2-),1.36(m,-CH2), It is the absorption peak of the methylene of linkage section hydroxyl on PCL at 3.65 in nuclear-magnetism figure, acquired results further prove graft polymers GO-PCL is successfully prepared.
Referring to the transmission of Fig. 3, the embodiment of the present invention 1 graphene oxide provided and selfreparing shape memory polyurethane coating Electron microscope, it can be seen that graphene oxide is in polymer network without significantly building up, it was demonstrated that it evenly dispersed.
Referring to fig. 4, the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides repairs the polarized light microscopy of front and back Mirror comparison diagram, it was demonstrated that grafting GO-SMP polymer coating has good self-healing properties.
Referring to Fig. 7, the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides repairs the scanning electron microscope of front and back Comparison diagram proves that grafting GO-SMP polymer coating has good self-healing properties from microcosmic angle.
Referring to Fig. 8 and Fig. 9, the selfreparing shape memory polyurethane coating that the embodiment of the present invention 1 provides wraps up the anti-of blade Rotten schematic diagram and petrographic microscope comparison diagram, it was demonstrated that grafting GO-SMP polymer coating can effective anti-corrosion, and can repair Coating after multiple mass lesions and selfreparing can also play good anti-corrosion effect.
Embodiment 2
The preparation of the coatings metal of GO-PCL-0.1% catalyst content 0.5%.
1) polymer of grafting GO-PCL-0.1% is synthesized according to embodiment 1.
2) weigh 2.000gGO-PCL-0.1% graft polymers, be added 20mL n,N dimethylformamide (DMF) and 0.400g4,4`- methyl diphenylene diisocyanate (MDI), 1.200g mass concentration are 2% dibutyl tin dilaurate (DBTDL) DMF solution of catalyst, 80 DEG C of stirring 5h, obtain solution under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape note containing GO-SMP-0.5% Recall coatings.
The shooting that front and back carries out petrographic microscope and scanning electron microscope is repaired to the polyurethane coating according to embodiment 1, it was demonstrated that The coating can effective selfreparing.
Embodiment 3
The preparation of the coatings metal of GO-PCL-0.1% catalyst content 1%.
1) polymer of grafting GO-PCL-0.1% is synthesized according to embodiment 1.
2) weigh 2.000gGO-PCL-0.1% graft polymers, be added 20mL n,N dimethylformamide (DMF) and 0.400g4,4`- methyl diphenylene diisocyanate (MDI), 2.400g mass concentration are 2% dibutyl tin dilaurate (DBTDL) DMF solution of catalyst, 80 DEG C of stirring 5h, obtain solution under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape memory containing GO-SMP-1% Coatings.
The shooting that front and back carries out petrographic microscope and scanning electron microscope is repaired to the polyurethane coating according to embodiment 1, it was demonstrated that The coating can effective selfreparing.
Embodiment 4
The preparation of coatings metal of the GO-PCL-0.1% without catalyst.
1) polymer of grafting GO-PCL-0.1% is synthesized according to embodiment 1.
2) weigh 2.000g grafting GO-PCL-0.1% polymer, be added 20mLN, N-dimethylformamide (DMF) and 0.400g toluene di-isocyanate(TDI) (MDI) stirs 5h at 80 DEG C under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape memory containing GO-SMP-0 certainly Reparation.
The shooting that front and back carries out petrographic microscope and scanning electron microscope is repaired to the polyurethane coating according to embodiment 1, it was demonstrated that The coating can effective selfreparing.
Embodiment 5
1) polymer of grafting GO-PCL-0.1% is synthesized according to embodiment 1.
2) weigh 2.000g grafting GO-PCL-0.1% polymer, be added 20mLN, N-dimethylformamide (DMF) and 0.400g toluene di-isocyanate(TDI) (TDI), 0.2400g mass concentration are 2% dibutyl tin dilaurate (DBTDL) catalyst DMF solution, 80 DEG C of stirring 5h, obtain solution under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape note containing GO-SMP-0.1% Recall coatings.
The shooting that front and back carries out petrographic microscope and scanning electron microscope is repaired to the polyurethane coating according to embodiment 1, it was demonstrated that The coating can effective selfreparing.
Embodiment 6
1) it weighs 1.250g multi-walled carbon nanotube (MWCNT) to be added in the flask containing 23.750g polycaprolactone, 400W Ultrasonic disperse 2h obtains finely dispersed material.Heating stirring in 130 DEG C of oil bath pans is put under nitrogen protection, 20 microlitres of instillation is pungent Sour stannous, reaction is for 24 hours.Obtain MWCNT-PCL-5% graft polymers.
2) polymer of 2.000gMWCNT-PCL-5% is weighed, 20mLN, N-dimethylformamide (DMF), 0.500g is added Toluene di-isocyanate(TDI) (MDI) and 0.240g mass concentration are that the DMF of 2% dibutyl tin dilaurate (DBTDL) catalyst is molten Liquid, 80 DEG C of stirring 5h, obtain solution under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape memory containing MWCNT-SMP Coatings.
It is that the polarisation for the selfreparing shape memory polyurethane coating reparation front and back that the embodiment of the present invention 6 provides is aobvious referring to Fig. 5 Micro mirror comparison diagram, it was demonstrated that grafting MWCNT-SMP coating has good self-healing properties.
Embodiment 7
1) it weighs 0.250g poly-dopamine (PDA) to be added in the flask containing 24.750g caprolactone, 400W ultrasonic disperse 4h obtains finely dispersed material.It is put into heating stirring in 130 DEG C of oil bath pans under nitrogen protection, instills 20 microlitres of stannous octoates, Reaction for 24 hours, obtains PDA-PCL-1% graft polymers.
2) polymer of 2.000gPDA-PCL-1% is weighed, 20mLN, N-dimethylformamide (DMF) and 0.400g is added Toluene di-isocyanate(TDI) (MDI), 0.240g mass concentration are that the DMF of 2% dibutyl tin dilaurate (DBTDL) catalyst is molten Liquid, 80 DEG C of stirring 5h, obtain solution under nitrogen protection.
Acquired solution is coated on metal surface, and in 80 DEG C of solidification 12h, obtains the shape memory containing PDA-SMP certainly Reparation.
It is that the polarisation for the selfreparing shape memory polyurethane coating reparation front and back that the embodiment of the present invention 7 provides is aobvious referring to Fig. 6 Micro mirror comparison diagram, it was demonstrated that grafting PDA-SMP polymer coating has good self-healing properties.
Embodiment 8
A kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating, comprising the following steps:
1) it weighs packing material to be added in the container equipped with polycaprolactone, ultrasonic disperse 1h makes packing material point under 400W It dissipates uniformly, then under nitrogen protection, stannous octoate is added, 140 DEG C of reactions for 24 hours, obtain graft polymers;Wherein, material is filled Material is graphene oxide, and the quality of packing material is the 2% of packing material and polycaprolactone gross mass.
2) addition solvent, crosslinking agent and dibutyl tin dilaurate into graft polymers, 70 DEG C under nitrogen protection Lower stirring 7h, obtains solution, and solution is coated on metal surface, solidifies 12h at 70 DEG C, obtains photoresponse selfreparing shape memory Polyurethane anticorrosion coating.Wherein, the ratio 1g:0.003 μ L of packing material and polycaprolactone gross mass and stannous octoate;Solvent is DMSO, DMF or THF;The ratio of graft polymers and solvent is 1:10mL;Crosslinking agent is 4,4`- methyl diphenylene diisocyanate; The additional amount of crosslinking agent is the 23% of the quality of graft polymers;The additional amount of dibutyl tin dilaurate be graft polymers with The 0.5% of the gross mass of crosslinking agent.
Embodiment 9
1) it weighs packing material to be added in the container equipped with polycaprolactone, ultrasonic disperse 2h makes packing material point under 400W It dissipates uniformly, then under nitrogen protection, stannous octoate is added, 135 DEG C of reaction 30h obtain graft polymers;Wherein, material is filled Material is poly-dopamine, and the quality of packing material is the 5% of packing material and polycaprolactone gross mass.
2) addition solvent, crosslinking agent and dibutyl tin dilaurate into graft polymers, 80 DEG C under nitrogen protection Lower stirring 5h, obtains solution, and solution is coated on metal surface, solidifies 12h at 60 DEG C, obtains photoresponse selfreparing shape memory Polyurethane anticorrosion coating.Wherein, the ratio 1g:0.005 μ L of packing material and polycaprolactone gross mass and stannous octoate;Solvent is DMSO, DMF or THF;The ratio of graft polymers and solvent is 1:20mL;Crosslinking agent is 1,6- hexamethylene diisocyanate;It hands over The additional amount of connection agent is the 17% of the quality of graft polymers;The additional amount of dibutyl tin dilaurate is graft polymers and hands over Join the 1% of the gross mass of agent.
Embodiment 10
1) it weighs packing material to be added in the container equipped with polycaprolactone, ultrasonic disperse 1h makes packing material point under 400W It dissipates uniformly, then under nitrogen protection, stannous octoate is added, 130 DEG C of reaction 36h obtain graft polymers;Wherein, material is filled Material is multi-walled carbon nanotube, and the quality of packing material is the 0.1% of packing material and polycaprolactone gross mass.
2) addition solvent, crosslinking agent and dibutyl tin dilaurate into graft polymers, 60 DEG C under nitrogen protection Lower stirring 10h, obtains solution, and solution is coated on metal surface, solidifies 12h at 80 DEG C, obtains photoresponse selfreparing shape note Recall polyurethane anticorrosion coating.Wherein, the ratio 1g:0.001 μ L of packing material and polycaprolactone gross mass and stannous octoate;Solvent is DMSO, DMF or THF;The ratio of graft polymers and solvent is 1:15mL;Crosslinking agent is benzene dimethylene diisocyanate;Crosslinking The additional amount of agent is the 13% of the quality of graft polymers;The additional amount of dibutyl tin dilaurate is graft polymers and crosslinking The 0.1% of the gross mass of agent.

Claims (10)

1. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating, which is characterized in that including following step It is rapid:
1) packing material is added in the container equipped with polycaprolactone, ultrasonic disperse makes packing material be uniformly dispersed, and then exists Under nitrogen protection, stannous octoate is added, 130-140 DEG C of reaction 24-36h obtains graft polymers;
2) solvent, crosslinking agent and dibutyl tin dilaurate are added into graft polymers, under nitrogen protection at 60-80 DEG C 5-10h is stirred, solution is obtained, solution is coated on metal surface, it is anti-to obtain photoresponse selfreparing shape memory polyurethane for solidification Rotten coating.
2. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, packing material is graphene oxide, poly-dopamine or multi-walled carbon nanotube.
3. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, the quality of packing material is the 0.1%-5% of packing material and polycaprolactone gross mass.
4. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 3, It is characterized in that, the ratio 1g:(0.001-0.005 of packing material and polycaprolactone gross mass and stannous octoate) μ L.
5. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, ultrasonic power is 400W, time 1-4h.
6. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, solvent DMSO, DMF or THF;The ratio of graft polymers and solvent is 1:(10-20) mL.
7. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, crosslinking agent 4,4`- methyl diphenylene diisocyanate, toluene di-isocyanate(TDI), 1,6- hexa-methylene, two isocyanide Acid esters or benzene dimethylene diisocyanate;The additional amount of crosslinking agent is the 13%-23% of the quality of graft polymers.
8. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, the additional amount of dibutyl tin dilaurate is the 0-1% of the gross mass of graft polymers and crosslinking agent.
9. a kind of preparation method of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating according to claim 1, It is characterized in that, cured temperature is 60-80 DEG C, time 12h.
10. a kind of photoresponse selfreparing shape memory polyurethane obtained based on any one of claim 1-9 preparation method Corrosion-inhibiting coating.
CN201811297265.7A 2018-11-01 2018-11-01 Photoresponse self-repairing shape memory polyurethane anticorrosive coating and preparation method thereof Active CN109439175B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811297265.7A CN109439175B (en) 2018-11-01 2018-11-01 Photoresponse self-repairing shape memory polyurethane anticorrosive coating and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811297265.7A CN109439175B (en) 2018-11-01 2018-11-01 Photoresponse self-repairing shape memory polyurethane anticorrosive coating and preparation method thereof

Publications (2)

Publication Number Publication Date
CN109439175A true CN109439175A (en) 2019-03-08
CN109439175B CN109439175B (en) 2020-03-17

Family

ID=65550561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811297265.7A Active CN109439175B (en) 2018-11-01 2018-11-01 Photoresponse self-repairing shape memory polyurethane anticorrosive coating and preparation method thereof

Country Status (1)

Country Link
CN (1) CN109439175B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527279A (en) * 2019-09-11 2019-12-03 四川大学 A kind of material and preparation method thereof of high photothermal conversion efficiency high thermal conductivity coefficient
CN111607319A (en) * 2020-07-07 2020-09-01 四川大学 Self-repairing waterborne polyurethane/rGO @ PDA composite material and preparation method and application thereof
CN112745738A (en) * 2020-12-28 2021-05-04 青岛理工大学 Deteriorated immune bionic protective coating for hydraulic engineering and preparation method thereof
JP2021134280A (en) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 Composition for forming conductive coating and method for producing conductive coating
CN113831825A (en) * 2021-08-23 2021-12-24 武汉科技大学 Self-repairing waterborne polyurethane anticorrosive paint and preparation method thereof
CN116218345A (en) * 2023-04-19 2023-06-06 中国海洋大学 Preparation method and application of photo-thermal nano heterojunction and self-repairing anticorrosive paint thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049686A1 (en) * 2003-11-19 2005-06-02 The Hong Kong Polytechnic University Methods for manufacturing polyurethanes
CN105062040A (en) * 2015-08-02 2015-11-18 苏州大学 Thermally-reversible self-repairing electrostatic dissipation polyurethane membrane and production method thereof
CN107057326A (en) * 2017-02-16 2017-08-18 四川大学 Composite of photoresponse shape memory selfreparing and preparation method thereof, restorative procedure and application
CN108559357A (en) * 2018-04-17 2018-09-21 北京科技大学 A kind of compound coatings of thermal response and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049686A1 (en) * 2003-11-19 2005-06-02 The Hong Kong Polytechnic University Methods for manufacturing polyurethanes
CN105062040A (en) * 2015-08-02 2015-11-18 苏州大学 Thermally-reversible self-repairing electrostatic dissipation polyurethane membrane and production method thereof
CN107057326A (en) * 2017-02-16 2017-08-18 四川大学 Composite of photoresponse shape memory selfreparing and preparation method thereof, restorative procedure and application
CN108559357A (en) * 2018-04-17 2018-09-21 北京科技大学 A kind of compound coatings of thermal response and preparation method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAN TIAN ETC: "《Fabrication of Self-Healing Hydrogels with On-Demand Antimicrobial Activity and Sustained Biomolecule Release for Infected Skin Regeneration》", 《APPLIED MATERIALS&INTERFACES》 *
稽建忠等: "《具有形状记忆效应的硅烷化聚己内酯型聚氨酯》", 《华东理工大学学报(自然科学版)》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527279A (en) * 2019-09-11 2019-12-03 四川大学 A kind of material and preparation method thereof of high photothermal conversion efficiency high thermal conductivity coefficient
CN110527279B (en) * 2019-09-11 2021-06-29 四川大学 Material with high light-heat conversion efficiency and high heat conductivity coefficient and preparation method thereof
JP2021134280A (en) * 2020-02-27 2021-09-13 トヨタ自動車株式会社 Composition for forming conductive coating and method for producing conductive coating
JP7388947B2 (en) 2020-02-27 2023-11-29 トヨタ自動車株式会社 Composition for forming a conductive film and method for producing a conductive film
CN111607319A (en) * 2020-07-07 2020-09-01 四川大学 Self-repairing waterborne polyurethane/rGO @ PDA composite material and preparation method and application thereof
CN112745738A (en) * 2020-12-28 2021-05-04 青岛理工大学 Deteriorated immune bionic protective coating for hydraulic engineering and preparation method thereof
CN113831825A (en) * 2021-08-23 2021-12-24 武汉科技大学 Self-repairing waterborne polyurethane anticorrosive paint and preparation method thereof
CN116218345A (en) * 2023-04-19 2023-06-06 中国海洋大学 Preparation method and application of photo-thermal nano heterojunction and self-repairing anticorrosive paint thereof
CN116218345B (en) * 2023-04-19 2024-04-26 中国海洋大学 Preparation method and application of photo-thermal nano heterojunction and self-repairing anticorrosive paint thereof

Also Published As

Publication number Publication date
CN109439175B (en) 2020-03-17

Similar Documents

Publication Publication Date Title
CN109439175A (en) A kind of photoresponse selfreparing shape memory polyurethane corrosion-inhibiting coating and preparation method thereof
Liu et al. Dual self-healing composite coating on magnesium alloys for corrosion protection
Ma et al. GO-modified double-walled polyurea microcapsules/epoxy composites for marine anticorrosive self-healing coating
Guo et al. UV-triggered self-healing of a single robust SiO2 microcapsule based on cationic polymerization for potential application in aerospace coatings
Bekas et al. Self-healing materials: A review of advances in materials, evaluation, characterization and monitoring techniques
Fu et al. Nanofiber composite coating with self-healing and active anticorrosive performances
Abdolah Zadeh et al. Adhesion and long-term barrier restoration of intrinsic self-healing hybrid sol–gel coatings
US4405689A (en) Ultraviolet-curing composition, prepreg sheet containing the same, and metallic material having anticorrosive coating
KR101173475B1 (en) Composition of weldable pre-primed paints for automobile OEM and coating method thereof
Yin et al. Highly efficient thermogenesis from Fe 3 O 4 nanoparticles for thermoplastic material repair both in air and underwater
CN107142002B (en) A kind of anti-cavitation polyurethane elastomer coat of high-adhesive-strength and preparation method thereof
Koochaki et al. The influence of the healing agent characteristics on the healing performance of epoxy coatings: Assessment of the repair process by EIS technique
TWI504696B (en) Coating composition, and coating prepared from the coating composition
Geng et al. Superior corrosion resistance of mild steel coated with graphene oxide modified silane coating in chlorinated simulated concrete solution
JP2007211224A (en) Method for surface anticorrosion treatment of chromium-free aluminum alloy, and method for manufacturing galvanic corrosion-resistant cfrp/aluminium alloy laminate
Kotrotsos An innovative synergy between solution electrospinning process technique and self‐healing of materials. A critical review
Liu et al. Superamphiphobic magnesium alloys with extraordinary environmental adaptability
Alipour et al. Eco-friendly AMPS-doped polyaniline/urethane-methacrylate coating as a corrosion protection coating: electrochemical, surface, theoretical, and thermodynamic studies
Wang et al. Photothermally activated self-healing coatings for corrosion protection: A review
Yang et al. Improvement in bond behavior and thermal properties of carbon fiber-reinforced polymer strengthened steel structures
Xu et al. Preparation of PVA/PU/PUA microcapsules and application in self-healing two-component waterborne polyurethane coatings
Zhou et al. Biobased Aliphatic Polyurethane Vitrimer with Superior Mechanical Performance and Fluorescence-Based Defect Diagnostic Function
KR20140024544A (en) Environmental friendly electro-conductive urethane covalent-bonded link polysiloxane nanocomposite coating material for automobile parts and its manufacturing method
JP4764616B2 (en) Repair painting method of old paint film
Serfass et al. Microstructural Defects of Epoxy–Phenolic Polymers on Metal Substrates during Acidic Corrosion

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant