CN109432104A - 一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法 - Google Patents

一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法 Download PDF

Info

Publication number
CN109432104A
CN109432104A CN201811339315.3A CN201811339315A CN109432104A CN 109432104 A CN109432104 A CN 109432104A CN 201811339315 A CN201811339315 A CN 201811339315A CN 109432104 A CN109432104 A CN 109432104A
Authority
CN
China
Prior art keywords
cell
gene
tanshinone iia
ptpn11
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811339315.3A
Other languages
English (en)
Inventor
潘红莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811339315.3A priority Critical patent/CN109432104A/zh
Publication of CN109432104A publication Critical patent/CN109432104A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/103Particle shape

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Oncology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法,具体的实验过程如下:(1)实验材料准备;(2)细胞培养与处理;(3)RT‑PCR测定;(4)Western Blot测定;(5)Annexin V‑FITC染色;(6)生物信息数据库筛选与分析;(7)转录因子筛选测定;(8)Hoechst 33324染色;(9)体外动力学结合分析;(10)统计分析。本发明的有益条件在于:通过miR30b‑p53‑PTPN11/SHP2信号通路诱导来实现人肝癌细胞HepG2凋亡。

Description

一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法
技术领域
本发明涉及治疗肝癌方法的技术领域,特别是一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法。
背景技术
在过去几十年中,全球肝癌的发病率持续增加。仅2008–2010年间,全球因肝癌而死亡的病例从695900例增加到745500例,其中约一半发生在中国。近年来,研究表明肝癌的发生及发展涉及多个生物学信号传导途径。但由于肝癌发病机制复杂,寻求有效治疗药物一直是备受关注的热点问题。因此,关注多靶点药物的研究是药理学家研究肝癌治疗的关键。
中药以其多药理学作用机制,有效干预多种疾病而闻名,这为我们治疗病因复杂的肝癌提供了研究思路。丹参酮IIA是唇形科植物丹参干燥根的提取物,是一种心脏保护剂,肝脏保护剂。目前有文献报道丹参酮IIA主要是通过p53依赖性线粒体凋亡途径诱导肝癌细胞凋亡。然而,丹参酮IIA干预肝癌、诱导肝癌细胞凋亡的其它分子机制仍需进一步研究。
MicroRNA是一组通过控制mRNA降解和翻译来调节转录后基因表达的非编码单链RNA小分子。研究表明miRNA在生物学行为中起着关键作用。迄今为止,约一半的miRNA被估计位于癌症相关基因区域。此外,miRNA已经被证明是各种类型癌症中的癌基因和肿瘤抑制基因。在数百种miRNA中,miR30被认为是miRNA致癌信号通路的核心,特别是在实体瘤中p53分子是miR30的一个靶点。然而丹参酮IIA是否通过调节miR30而调控P53,目前尚不清楚。
生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解释等各方面的学科,是生命科学的一个新兴领域。生物信息学的发展,在整合来自不同研究结果的基础上,帮助了人们快速分析建立药物(如丹参酮IIA)活性机制的复杂生物学网络。利用生物信息学相关工具提取和分析的信息可以有效地指示隐藏在生物数据库背后的基础信息,有助于揭示生物大分子间的相互作用。它虽然不能用来替代生物实验,但其操作方便、省时,可以用以快速筛选中药药物活性机制。
发明内容
为解决上述问题,本发明的目的是提供一种通过miR30b-p53-PTPN11 / SHP2信号通路诱导来实现人肝癌细胞HepG2凋亡的丹参酮IIA诱导人肝癌细胞HepG2凋亡的实验方法。
为实现上述目的,本发明的技术方案:
一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法,具体的实验过程如下:
(1)实验材料准备:丹参酮IIA(> 98.0%);p53,Bcl2和SHP2抗体;通过primer 5.0设计了Tp53,PTPN11,miR30a,b,c和d,Bax,Bcl2和p21的mRNA序列;Annexin V-FITC染色试剂盒和3-(4,5-二甲基-2-噻唑基)-2,5-二苯基四唑溴化物(MTT)溶液;细胞培养基DMEM和胎牛血清(FBS);
(2)细胞培养与处理:人肝癌细胞为HepG2和Hep3B,将细胞用含有10%胎牛血清、青霉素100U/mL、链霉素100μg/mL的DMEM培养液于37℃,5%CO2条件下培养,当汇合时,用一系列剂量的丹参酮IIA处理细胞,24小时后,收集培养基和细胞,并制备用于以下生物测定;
(3)RT-PCR测定:根据试剂盒说明从细胞中提取总RNA,通过Nano Drop测定RNA的质量,相应基因的扩增通过Applied Biosystems进行,通过2-△△CT计算数据,并与空白样品相比分析每个基因的诱导倍数;
(4)Western Blot测定:用具有1mM苯甲基磺酰氟(PMSF)的RIPA裂解物分离总细胞蛋白,蛋白质浓度按照BCA试剂盒说明书的指导进行测定,在SDS-10%聚丙烯酰胺凝胶上分离约50μg蛋白质,然后转移至聚偏二氟乙烯(PVDF)膜,在5%脱脂奶粉中封闭后,将膜与抗体在4℃下孵育过夜,第二天,将膜与第二抗体杂交,通过使用化学发光试剂观察蛋白质,并在ChemiScope上观察,并使用软件ChemiAnalysis来计算蛋白质条带的密度;
(5)Annexin V-FITC染色:收集细胞并用5μL Annexin V-FITC和10μL PI染色,在黑暗中孵育至少5分钟后,通过流式细胞术分析凋亡细胞;
(6)生物信息数据库筛选与分析:我们对59篇文献中所涉及到的部分基因进行了一下整理,过滤掉人意外物种的基因,修正基因symbol,过滤重复基因,最终得到61个基因,GeneCodis是一个整合了各种分析工具和数据的生物信息数据库,为大规模的基因或蛋白列表提供系统综合的生物功能注释信息,在此,我们使用GeneCodis对这61个基因集执行Go富集分析和信号通路功能注释,GeneMania数据库通过嵌入软件cytoscape能对61列表基因进行相关关系网络图谱绘制,61个选择的基因的网络由GeneMania自动产生并通过Cytoscape显现,Gene2Networks整合了十个哺乳动物相互作用网络数据集,相关图像的重建由Gene2Networks与Cytoscape进行,为了进一步确定丹参酮IIA影响的途径,我们在Cytoscape中绘制了相互作用网络图以便找出感兴趣的信号分子;
(7)转录因子筛选测定:LASAGNA-Search 2.0提供1792个转录因子模型和15个启动子检索物种是TF结合位点研究的网络工具,可在http://biogrid-head.engr.uconn.edu/lasagna_search/ [LASAGNA-Search2.0: 综合转录因子结合位点搜索和在浏览器中的可视化],在本研究中,我们使用LASAGNA-Search 2.0筛选靶向基因的TF,在输入基因符号并选择物种作为人后,我们获得了TF的名称,我们的基因组的结合序列,结合位置,链,结合分数,p值和E值,在P<0.01时具有最大结合评分的序列被认为是靶向基因的结合位点;
(8)Hoechst 33324染色:细胞中染色质的凝集是指示细胞毒性的一个毒理学终点,用一定剂量的丹参酮IIA作用24小时后,使用Hoechst-33324染色HepG2细胞,室温下染20min,并用PBS洗涤两次,在Leica荧光显微镜下观察细胞的形态;
(9)体外动力学结合分析:p53和PTPN11之间的结合亲和力的潜力在生物分子相互作用分析多层阵列HT上进行,将二十八个PTPN11序列,雷帕霉素(设定为阳性对照)和DMSO(阴性对照)印在3D光交联的小分子微阵列上,每个样品重复三次,将微阵列真空干燥,并在光交联剂中进行交联反应,用去离子水洗涤物理吸收,然后在使用前用N 2流干燥,在25℃下在加样缓冲液(PBS, pH = 7.4)中加载约650μL的系列浓度的p53(75, 150, 300, 600nM),结合和解离的租用时间为300秒,流速为2μL /秒,微阵列的表面通过Gly-HCl(10mM, pH =2.0)以3μL /秒的再生速率再生300秒,实验由Plexera SPRi系统实时监测,系统的响应与结合到小分子的蛋白质的质量正相关;
(10)统计分析:利用SPSS17.0统计软件,计量资料呈正态分布且符合方差齐性,采用单因素方差分析,用均数±标准差(x±SD)表示,以P>0.05表示无统计学意义,P<0.05为差异有统计学意义,P<0.01表示有非常显著性统计学意义。
作为优选,所述的本实验通过miR30b-p53-PTPN11 / SHP2信号通路诱导来实现人肝癌细胞HepG2凋亡。
本发明的有益条件在于:通过miR30b-p53-PTPN11 / SHP2信号通路诱导来实现人肝癌细胞HepG2凋亡。
附图说明
图1为本发明丹参酮IIA对HepG2细胞的凋亡作用的调节结果示意图。
图2为本发明miR30b-p53在丹参酮IIA介导的HepG2细胞毒性中起关键作用结果示意图。
图3为本发明丹参酮IIA调节凋亡相关基因和蛋白质结构示意图。
具体实施方式
一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法,具体的实验过程如下:(1)实验材料准备:丹参酮IIA(> 98.0%);p53,Bcl2和SHP2抗体;通过primer 5.0设计了Tp53,PTPN11,miR30a,b,c和d,Bax,Bcl2和p21的mRNA序列;Annexin V-FITC染色试剂盒和3-(4,5-二甲基-2-噻唑基)-2,5-二苯基四唑溴化物(MTT)溶液;细胞培养基DMEM和胎牛血清(FBS);(2)细胞培养与处理:人肝癌细胞为HepG2和Hep3B,将细胞用含有10%胎牛血清、青霉素100U/mL、链霉素100μg/mL的DMEM培养液于37℃,5%CO2条件下培养,当汇合时,用一系列剂量的丹参酮IIA处理细胞,24小时后,收集培养基和细胞,并制备用于以下生物测定;(3)RT-PCR测定:根据试剂盒说明从细胞中提取总RNA,通过Nano Drop测定RNA的质量,相应基因的扩增通过Applied Biosystems进行,通过2-△△CT计算数据,并与空白样品相比分析每个基因的诱导倍数;(4)Western Blot测定:用具有1mM苯甲基磺酰氟(PMSF)的RIPA裂解物分离总细胞蛋白,蛋白质浓度按照BCA试剂盒说明书的指导进行测定,在SDS-10%聚丙烯酰胺凝胶上分离约50μg蛋白质,然后转移至聚偏二氟乙烯(PVDF)膜,在5%脱脂奶粉中封闭后,将膜与抗体在4℃下孵育过夜,第二天,将膜与第二抗体杂交,通过使用化学发光试剂观察蛋白质,并在ChemiScope上观察,并使用软件ChemiAnalysis来计算蛋白质条带的密度;(5)Annexin V-FITC染色:收集细胞并用5μL Annexin V-FITC和10μL PI染色,在黑暗中孵育至少5分钟后,通过流式细胞术分析凋亡细胞;(6)生物信息数据库筛选与分析:我们对59篇文献中所涉及到的部分基因进行了一下整理,过滤掉人意外物种的基因,修正基因symbol,过滤重复基因,最终得到61个基因,GeneCodis是一个整合了各种分析工具和数据的生物信息数据库,为大规模的基因或蛋白列表提供系统综合的生物功能注释信息,在此,我们使用GeneCodis对这61个基因集执行Go富集分析和信号通路功能注释,GeneMania数据库通过嵌入软件cytoscape能对61列表基因进行相关关系网络图谱绘制,61个选择的基因的网络由GeneMania自动产生并通过Cytoscape显现,Gene2Networks整合了十个哺乳动物相互作用网络数据集,相关图像的重建由Gene2Networks与Cytoscape进行,为了进一步确定丹参酮IIA影响的途径,我们在Cytoscape中绘制了相互作用网络图以便找出感兴趣的信号分子;(7)转录因子筛选测定:LASAGNA-Search 2.0提供1792个转录因子模型和15个启动子检索物种是TF结合位点研究的网络工具,可在http://biogrid-head.engr.uconn.edu/lasagna_search/ [LASAGNA-Search2.0: 综合转录因子结合位点搜索和在浏览器中的可视化],在本研究中,我们使用LASAGNA-Search 2.0筛选靶向基因的TF,在输入基因符号并选择物种作为人后,我们获得了TF的名称,我们的基因组的结合序列,结合位置,链,结合分数,p值和E值,在P<0.01时具有最大结合评分的序列被认为是靶向基因的结合位点;(8)Hoechst 33324染色:细胞中染色质的凝集是指示细胞毒性的一个毒理学终点,用一定剂量的丹参酮IIA作用24小时后,使用Hoechst-33324染色HepG2细胞,室温下染20min,并用PBS洗涤两次,在Leica荧光显微镜下观察细胞的形态;(9)体外动力学结合分析:p53和PTPN11之间的结合亲和力的潜力在生物分子相互作用分析多层阵列HT上进行,将二十八个PTPN11序列,雷帕霉素(设定为阳性对照)和DMSO(阴性对照)印在3D光交联的小分子微阵列上,每个样品重复三次,将微阵列真空干燥,并在光交联剂中进行交联反应,用去离子水洗涤物理吸收,然后在使用前用N 2流干燥,在25℃下在加样缓冲液(PBS, pH = 7.4)中加载约650μL的系列浓度的p53(75, 150, 300, 600nM),结合和解离的租用时间为300秒,流速为2μL /秒,微阵列的表面通过Gly-HCl(10mM, pH = 2.0)以3μL /秒的再生速率再生300秒,实验由Plexera SPRi系统实时监测,系统的响应与结合到小分子的蛋白质的质量正相关;(10)统计分析:利用SPSS17.0统计软件,计量资料呈正态分布且符合方差齐性,采用单因素方差分析,用均数±标准差(x±SD)表示,以P>0.05表示无统计学意义,P<0.05为差异有统计学意义,P<0.01表示有非常显著性统计学意义。所述的本实验通过miR30b-p53-PTPN11 / SHP2信号通路诱导来实现人肝癌细胞HepG2凋亡。
如图1所示,图1A:HepG2细胞的增殖情况(与对照组相比**P<0.01);图1B:HepG2细胞培养基中LDH水平检测(与对照组相比**P<0.01);图1:Hochest染色观察凋亡细胞的形态学变化;图1D:流式细胞术检测HepG2细胞凋亡情况;图1E:流式细胞术检测HepG2细胞周期停滞情况。可以得出以下的结果:
丹参酮IIA诱导HepG2细胞凋亡及细胞周期阻滞:
为研究丹参酮IIA对HepG2细胞的作用,我们检测细胞活性,并进一步分析细胞凋亡和细胞周期。从图1A可以看出,HepG2细胞的增殖以剂量依赖性方式在丹参酮IIA 40μM及以上降低。在80μM的丹参酮IIA作用下,细胞活力被抑制至接近53%。同样的,随着丹参酮IIA在培养基中浓度的升高其LDH水平也持续地升高(图1B)。丹参酮IIA还诱导Hep3B细胞中LDH的产生,在80μM时是对照组的1.6倍(图S1),表明其对肝癌细胞具有明显的的细胞毒性。
细胞凋亡和细胞周期阻滞是细胞生长抑制的两个主要途径。我们采用流式细胞术和荧光染色检测细胞凋亡。Hochest 33324是一种常用的DNA蓝色荧光染料,目前被广泛用于检测细胞活性。如图1C所示,丹参酮IIA处理组可观察到细胞形态学发生改变。在对照组中,细胞核呈椭圆型并被染成蓝色。而在加入丹参酮IIA后,细胞核皱缩,荧光强度变大,这表明细胞发生了凋亡。流式细胞仪显示40μM和80μM 处理组分别诱导9.2%和18.5%的HepG2细胞凋亡(图1D)。在丹参酮IIA作用下,细胞周期中G0 / G1的占比增大,并具有剂量效应关系(图1E)。在用40μM丹参酮IIA处理后,约25%的细胞在G1/G0周期停滞。当加药剂量达到80μM时,该比率增加至58%。这些结果均表明丹参酮IIA可以抑制HepG2细胞生长,包括细胞凋亡和细胞周期停滞。
如图2所示,图2A: miR30家族的转录热点图;图2B:HepG2细胞培养基中LDH水平检测;图2C:HepG2细胞Tp53的表达情况;(与对照组相比*P<0.05,**P<0.01;丹参酮IIA组与丹参酮IIA+ miR30b抑制剂组相比# P<0.05);其中miR30b-N: miR30b对照序列;miR30b-I:miR30b抑制序列。可以得出以下的结果:
丹参酮IIA对miR-30b-p53的调节
已知p53蛋白与线粒体途径介导的细胞凋亡和G0周期停滞相关。我们检测了丹参酮IIA对p53信号的传导。其中丹参酮IIA在大于等于40μM浓度时显著诱导Tp53基因。最大诱导约为对照组的两倍。miR30家族是p53的上游。如热点图(图2)和表1所示,丹参酮IIA没有显著改变miR30c和miR30d的表达,对两者转录水平的影响仅较对照组降低了10%。而丹参酮IIA对miR30b具有显著的调控作用。当用40μM和80μM丹参酮IIA处理时,miR30b的水平分别降低至对照组的80%和70%。同时,结合上述结果,我们运用miR30b抑制剂,对细胞毒性及Tp53的表达进行了检测。研究结果表明,丹参酮对HepG2细胞LDH的诱导被miR30b抑制剂所抑制。且丹参酮组Tp53基因的显著上调也受到抑制。因此,我们推测miR30b-p53在丹参酮IIA介导的细胞凋亡中起关键作用。
表1 miR30家族受丹参酮IIA的系列浓度下调
注:与对照组相比* P<0.05,** P<0.01;N表示与对照组无显著差异。
如图3所示,图3A:丹参酮IIA调节凋亡相关基因的表达(与对照组相比*P<0.05,**P<0.01);图3B:丹参酮IIA调节凋亡相关蛋白质水平;图3C:丹参酮IIA调节细胞周期相关蛋白质水平。可以得出以下的结果:
丹参酮IIA对凋亡相关基因和蛋白的调节
丹参酮IIA显著影响了Bcl2家族,包括Bcl2(抗细胞凋亡)和Bax(促凋亡)的转录,Bax /Bcl2的比例从在40μM组的1.6倍增加到在80μM组的4.3倍(图3A)。 Western Blot数据(图3B)结果与PCR结果一致,在80μM组中Bcl2的强度降低了1.4倍。随着药物剂量的增加,Bax的蛋白质水平从对照组的1.3倍增加到2.0倍。80μM处理组p53的基因和蛋白质水平都增加到对照组的1.9倍。我们在Hep3B中也观察到同样的作用(图3A)。Caspase 3是凋亡执行分子,在40μM和80μM的丹参酮IIA作用下,Caspase3分别上调了2.5和2.7倍。p21蛋白作为G1和S期细胞周期进程的调节蛋白,其表达受p53控制,并参与p53依赖性的G1期阻滞。当用不同浓度的丹参酮IIA处理时,p21的转录从1.6倍增加到2.3倍(图3A)。CyclinD1是细胞周期蛋白依赖性激酶(CDK),它是细胞从G1期到S期的重要调控蛋白。在80μM 组中,CCND1基因的编码CyclinD1下降至对照组的0.43倍。此外,40μM和80μM的丹参酮显著降低了CDK6的基因表达水平,分别降低至对照组0.82和0.49倍(图3A)。图3C显示80μM处理组的CyclinD1的蛋白表达水平相比于对照组降低了20%。另外,CDK6的蛋白质水平也受到了明显的抑制,在80μM作用下,降低了30%。
本实验方法还可以得出以下的结果:
PTPN11 / SHP2可能为丹参酮IIA抗癌药理学机制的关键分子。
通过生物信息学筛选丹参酮IIA的潜在靶点分子。结合文献检索,我们对丹参酮IIA调控的61个不同基因进行GO积累分析以揭示这些基因的可能的生物学功能。结果显示这些基因Go Item主要集中于细胞生长,细胞周期,细胞分化,抗/凋亡和线粒体等相关的GoTerm。此外,我们使用更先进的GeneCodis进行信号通路注释,共得到49个KEGG信号通路。
丹参酮IIA对PTPN11 / SHP2的调控
根据生物信息学所得结果,我们检测了丹参酮IIA对HepG2细胞中PTPN11和PTPN6 mRNA水平。丹参酮IIA对PTPN6没有显著影响。但在80μM时,它可引起PTPN11的上调。在Hep3B中,80μM丹参酮IIA也能诱导PTPN11,其最大诱导达到对照组的1.2倍。同样的,由PTPN11编码的SHP2蛋白水平在丹参酮IIA作用后也有所上升,80μM处理组是对照组的1.7倍。该结果表明丹参酮IIA的抗肝癌作用可能通过PTPN11 / SHP2信号通路。
转录因子筛选PTPN11和动力学结合
在本节中,我们试图寻找miR30b-p53与PTPN11这两种主要信号途径之间是否存在联系。考虑到p53是一个重要的转录因子,我们利用LASAGNA进行了PTPN家族转录因子的搜索。结果表明,p53是PTPN的潜在转录因子。搜索结果中所包括的特定序列,位置,得分,p值和E值的结合参数列于表2中。LASAGNA-搜索结果显示,p53和PTPN 6(PTPN6 NM_080549,NM_080548)的最大结合评分为65.01和63.9(P<0.004)。p53和PTPN11(PTPN NM_002834)的结合评分为67.14(P<0.002)(表2)。
为了进一步确认p53蛋白质与PTPN的相互作用,我们进行了基于SPR成像的分子互作测定(由于丹参酮IIA对HepG2细胞中PTPN6的诱导表达不明显,此部分研究结果仅在PTPN11中进行)。我们应用3D技术来制造包含上述PTPN11的28个序列的小分子微阵列。阳性对照的RU值达到160,阴性对照的信号几乎与背景重叠,表明该分析方法的可靠性。SPRi系统筛选可以得到了8个能与p53蛋白相互作用的PTPN11 DNA序列。动力学结合信号随注入的p53浓度的上升而增加。结合参数RU在注射300nM p53 200分钟后达到峰值。这表明p53和PTPN11之间的显着亲和力。根据上述研究结果,我们进一步利用miR30b抑制剂对丹参酮IIA对 PTPN11的调控进行了研究。结果表明,miR30b抑制剂通过对p53的抑制作用,间接抑制了丹参酮对PTPN11的诱导作用。因此,本研究推测丹参酮IIA对HepG2凋亡的诱导是通过miR30b-p53-PTPN11途径。
表2 从LASAGNA-搜索提取的p53和PTPN之间的结合参数和序列
本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (2)

1.一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法,其特征在于,具体的实验过程如下:
(1)实验材料准备:丹参酮IIA(> 98.0%);p53,Bcl2和SHP2抗体;通过primer 5.0设计了Tp53,PTPN11,miR30a,b,c和d,Bax,Bcl2和p21的mRNA序列;Annexin V-FITC染色试剂盒和3-(4,5-二甲基-2-噻唑基)-2,5-二苯基四唑溴化物(MTT)溶液;细胞培养基DMEM和胎牛血清(FBS);
(2)细胞培养与处理:人肝癌细胞为HepG2和Hep3B,将细胞用含有10%胎牛血清、青霉素100U/mL、链霉素100μg/mL的DMEM培养液于37℃,5%CO2条件下培养,当汇合时,用一系列剂量的丹参酮IIA处理细胞,24小时后,收集培养基和细胞,并制备用于以下生物测定;
(3)RT-PCR测定:根据试剂盒说明从细胞中提取总RNA,通过Nano Drop测定RNA的质量,相应基因的扩增通过Applied Biosystems进行,通过2-△△CT计算数据,并与空白样品相比分析每个基因的诱导倍数;
(4)Western Blot测定:用具有1mM苯甲基磺酰氟(PMSF)的RIPA裂解物分离总细胞蛋白,蛋白质浓度按照BCA试剂盒说明书的指导进行测定,在SDS-10%聚丙烯酰胺凝胶上分离约50μg蛋白质,然后转移至聚偏二氟乙烯(PVDF)膜,在5%脱脂奶粉中封闭后,将膜与抗体在4℃下孵育过夜,第二天,将膜与第二抗体杂交,通过使用化学发光试剂观察蛋白质,并在ChemiScope上观察,并使用软件ChemiAnalysis来计算蛋白质条带的密度;
(5)Annexin V-FITC染色:收集细胞并用5μL Annexin V-FITC和10μL PI染色,在黑暗中孵育至少5分钟后,通过流式细胞术分析凋亡细胞;
(6)生物信息数据库筛选与分析:我们对59篇文献中所涉及到的部分基因进行了一下整理,过滤掉人意外物种的基因,修正基因symbol,过滤重复基因,最终得到61个基因,GeneCodis是一个整合了各种分析工具和数据的生物信息数据库,为大规模的基因或蛋白列表提供系统综合的生物功能注释信息,在此,我们使用GeneCodis对这61个基因集执行Go富集分析和信号通路功能注释,GeneMania数据库通过嵌入软件cytoscape能对61列表基因进行相关关系网络图谱绘制,61个选择的基因的网络由GeneMania自动产生并通过Cytoscape显现,Gene2Networks整合了十个哺乳动物相互作用网络数据集,相关图像的重建由Gene2Networks与Cytoscape进行,为了进一步确定丹参酮IIA影响的途径,我们在Cytoscape中绘制了相互作用网络图以便找出感兴趣的信号分子;
(7)转录因子筛选测定:LASAGNA-Search 2.0提供1792个转录因子模型和15个启动子检索物种是TF结合位点研究的网络工具,可在http://biogrid-head.engr.uconn.edu/lasagna_search/ [LASAGNA-Search2.0: 综合转录因子结合位点搜索和在浏览器中的可视化],在本研究中,我们使用LASAGNA-Search 2.0筛选靶向基因的TF,在输入基因符号并选择物种作为人后,我们获得了TF的名称,我们的基因组的结合序列,结合位置,链,结合分数,p值和E值,在P<0.01时具有最大结合评分的序列被认为是靶向基因的结合位点;
(8)Hoechst 33324染色:细胞中染色质的凝集是指示细胞毒性的一个毒理学终点,用一定剂量的丹参酮IIA作用24小时后,使用Hoechst-33324染色HepG2细胞,室温下染20min,并用PBS洗涤两次,在Leica荧光显微镜下观察细胞的形态;
(9)体外动力学结合分析:p53和PTPN11之间的结合亲和力的潜力在生物分子相互作用分析多层阵列HT上进行,将二十八个PTPN11序列,雷帕霉素(设定为阳性对照)和DMSO(阴性对照)印在3D光交联的小分子微阵列上,每个样品重复三次,将微阵列真空干燥,并在光交联剂中进行交联反应,用去离子水洗涤物理吸收,然后在使用前用N 2流干燥,在25℃下在加样缓冲液(PBS, pH = 7.4)中加载约650μL的系列浓度的p53(75, 150, 300, 600nM),结合和解离的租用时间为300秒,流速为2μL /秒,微阵列的表面通过Gly-HCl(10mM, pH =2.0)以3μL /秒的再生速率再生300秒,实验由Plexera SPRi系统实时监测,系统的响应与结合到小分子的蛋白质的质量正相关;
(10)统计分析:利用SPSS17.0统计软件,计量资料呈正态分布且符合方差齐性,采用单因素方差分析,用均数±标准差(x±SD)表示,以P>0.05表示无统计学意义,P<0.05为差异有统计学意义,P<0.01表示有非常显著性统计学意义。
2.根据权利要求1所述的一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法,其特征在于,所述的本实验通过miR30b-p53-PTPN11 / SHP2信号通路诱导来实现人肝癌细胞HepG2凋亡。
CN201811339315.3A 2018-11-12 2018-11-12 一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法 Pending CN109432104A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811339315.3A CN109432104A (zh) 2018-11-12 2018-11-12 一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811339315.3A CN109432104A (zh) 2018-11-12 2018-11-12 一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法

Publications (1)

Publication Number Publication Date
CN109432104A true CN109432104A (zh) 2019-03-08

Family

ID=65551718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811339315.3A Pending CN109432104A (zh) 2018-11-12 2018-11-12 一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法

Country Status (1)

Country Link
CN (1) CN109432104A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208515A (zh) * 2019-05-31 2019-09-06 山东省农业科学院农产品研究所 鸡骨香挥发油抗肿瘤活性及其相关机制的测试方法及应用
CN114252611A (zh) * 2021-12-07 2022-03-29 暨南大学附属第一医院(广州华侨医院) 一种筛选前列腺癌潜在生物标志物的方法及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208515A (zh) * 2019-05-31 2019-09-06 山东省农业科学院农产品研究所 鸡骨香挥发油抗肿瘤活性及其相关机制的测试方法及应用
CN114252611A (zh) * 2021-12-07 2022-03-29 暨南大学附属第一医院(广州华侨医院) 一种筛选前列腺癌潜在生物标志物的方法及其应用
CN114252611B (zh) * 2021-12-07 2022-09-27 暨南大学附属第一医院(广州华侨医院) 一种筛选前列腺癌潜在生物标志物的方法及其应用

Similar Documents

Publication Publication Date Title
Ouedraogo et al. Review of current and “omics” methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms
Baumgart et al. RNA‐seq of the aging brain in the short‐lived fish N. furzeri–conserved pathways and novel genes associated with neurogenesis
Boix et al. A partial lesion model of Parkinson's disease in mice–characterization of a 6-OHDA-induced medial forebrain bundle lesion
Zhou et al. miR-103a-3p regulates mitophagy in Parkinson’s disease through Parkin/Ambra1 signaling
Wang et al. Effect of lncRNA WT1-AS regulating WT1 on oxidative stress injury and apoptosis of neurons in Alzheimer's disease via inhibition of the miR-375/SIX4 axis
Kamal et al. Benzo [b] furan derivatives induces apoptosis by targeting the PI3K/Akt/mTOR signaling pathway in human breast cancer cells
CN109432104A (zh) 一种丹参酮IIA诱导癌细胞HepG2凋亡的实验方法
Tang et al. Overexpression of microRNA-301b accelerates hippocampal microglia activation and cognitive impairment in mice with depressive-like behavior through the NF-κB signaling pathway
Chang et al. Bupleurum chinense DC improves CUMS-induced depressive symptoms in rats through upregulation of the cAMP/PKA/CREB signalling pathway
Mitsios et al. A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion
Augustin et al. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer′ s Disease‐Related Genes by In Silico Promoter Analysis and Microarrays
Li et al. Passive movement improves the learning and memory function of rats with cerebral infarction by inhibiting neuron cell apoptosis
Zhao et al. Isobavachalcone disrupts mitochondrial respiration and induces cytotoxicity through ROS accumulation and Akt suppression
Zhao et al. Benzo [b] fluoranthene (B [b] F) affects apoptosis, oxidative stress, mitochondrial membrane potential and expressions of blood-brain barrier markers in microvascular endothelial cells
Li et al. Role of promoting inflammation of Krüppel-like factor 6 in acute kidney injury
Li et al. Systematic analysis of critical genes and pathways identified a signature of neuropathic pain after spinal cord injury
Yamanishi et al. Analysis of genes linked to depressive‑like behaviors in interleukin‑18‑deficient mice: Gene expression profiles in the brain
Zhang et al. Yishen Xiezhuo formula ameliorates the development of cisplatin-induced acute kidney injury by attenuating renal tubular epithelial cell senescence
CN102805867B (zh) 转录因子nfatc3作为药物靶点在逆转肿瘤多药耐药中的应用
Kwon et al. Adaptive cellular response of the substantia nigra dopaminergic neurons upon age‐dependent iron accumulation
Hu et al. Inhibitory Effect of Gualou Guizhi Decoction on Microglial Inflammation and Neuron Injury by Promoting Anti‐Inflammation via Targeting mmu‐miR‐155
Kim et al. Similarity of therapeutic networks induced by a multi-component herbal remedy, Ukgansan, in neurovascular unit cells
Hu et al. A network pharmacology approach to decipher the total flavonoid extract of Dracocephalum Moldavica L. in the treatment of cerebral ischemia-reperfusion injury
Wu et al. Mechanism of acteoside-activated let-7g-5P attenuating Aβ-induced increased permeability and apoptosis of brain microvascular endothelial cells based on experimental and network pharmacology
Lu et al. Integrating network pharmacology, transcriptome and artificial intelligence for investigating into the effect and mechanism of Ning Fei Ping Xue decoction against the acute respiratory distress syndrome

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190308

WD01 Invention patent application deemed withdrawn after publication