CN109426813B - 基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法 - Google Patents

基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法 Download PDF

Info

Publication number
CN109426813B
CN109426813B CN201811302614.XA CN201811302614A CN109426813B CN 109426813 B CN109426813 B CN 109426813B CN 201811302614 A CN201811302614 A CN 201811302614A CN 109426813 B CN109426813 B CN 109426813B
Authority
CN
China
Prior art keywords
neural network
remote sensing
class
network model
clustering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811302614.XA
Other languages
English (en)
Other versions
CN109426813A (zh
Inventor
陈佳喜
刘兴川
赵迎迎
刘春贺
曾宪坤
杨雅莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smart City Research Institute Of China Electronics Technology Group Corp
Original Assignee
Smart City Research Institute Of China Electronics Technology Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smart City Research Institute Of China Electronics Technology Group Corp filed Critical Smart City Research Institute Of China Electronics Technology Group Corp
Priority to CN201811302614.XA priority Critical patent/CN109426813B/zh
Publication of CN109426813A publication Critical patent/CN109426813A/zh
Application granted granted Critical
Publication of CN109426813B publication Critical patent/CN109426813B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/13Satellite images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques
    • G06F18/232Non-hierarchical techniques
    • G06F18/2321Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
    • G06F18/23213Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,首先卫星和机载传感器数据采集获取遥感图像数据集,依据遥感图像的色彩特征对遥感图像进行模糊聚类;利用聚类结果对各类的聚类中心、成员数、颜色样本矩、位置样本矩进行统计,并确定相应的标签,据此重新制作数据集,并将数据集划分为训练集、验证集和测试集;建立神经网络模型并利用自建的数据集进行模型训练和测试,不断调整模型参数及聚类数,直至误差符合要求为止,克服了现有遥感图像特征提取技术中提取对象单一性的缺点,对自定义的兴趣点进行提取,重新构造了数据集的特征,降低了数据维数,节约了计算资源,同时取得了良好的提取效果。

Description

基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取 方法
技术领域
本发明属于遥感图像处理技术领域,特别是涉及基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法。
背景技术
现有遥感图像是利用卫星上的遥感器获取的地表状况相片。遥感图像不受国界和地理条件的限制,可实现对地表变化状况的全天候、高精度跟踪。遥感图像的特征提取技术可实现城市土地、森林、河流等自然资源的监测,也可实现城市住宅区、商务区、道路系统等建筑物的监测。因此遥感图像的特征提取技术在城市规划、地理信息系统(GIS)数据更新、交通导航等多个领域中占据重要作用。
目前,遥感图像的特征提取局限于某类具体对象的提取,例如对遥感图像中城市道路的抽取。因此,现有技术在提取对象的设定上缺乏灵活性。现有遥感图像特征提取方法中具体技术与结合方式如下:
1)GVF Snake与显著特征相结合的高分辨率遥感图像道路提取;
2)基于高光谱遥感图像分类的水域变化检测;
3)农田信息低空遥感中图像采集与处理的关键技术研究。
该算法的独特性是使动态人体快速感知的识别对终端机的浮点计算能力的要求更低,有以下缺点:
1)缺乏灵活性:目前遥感图像的特征提取局限于某类具体对象的提取,例如对遥感图像中城市道路、农田和水域的自定义兴趣点的抽取,又例如对遥感图像中居民住宅的提取,因而提取对象的设定上缺乏灵活性。
2)目前遥感图像的特征提取大多基于深度学习技术,此类技术由于所建模型的高度复杂性,需要大量样本,较长的训练时间,依赖高性能的计算资源,所需样本多、训练时间长、资源消耗大。
因此,有必要发明基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法。
发明内容
本发明所要解决的技术问题是:提供基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,提取对象选取灵活,训练时间短和资源需求低。
本发明采用的技术方案是:包括卫星和机载传感器,所述卫星和机载传感器数据采集;
所述基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,步骤如下:
S10.根据实际需求,自定义遥感图像中待提取的兴趣点;
S20.通过卫星和机载传感器数据采集,模数转换及图像校正;
S30.制作遥感图像集以及其对应的自定义兴趣标签;
S40.设置模糊聚类数K,并利用模糊聚类方法对遥感图像进行聚类;
先随机初始化K个三维向量作为各类的初始聚类中心,分别代表{R,G,B}三个颜色通道;
接着更新各类成员隶属度,按照各点到聚类中心的距离大小决定各点对聚类中心的隶属度;
S50.统计各类的聚类中心、成员数、颜色样本矩、位置样本矩和相应类标签;
对每一个类的成员做颜色样本矩这一统计量,对各类样本成员所在位置,利用各类成员在各标签中的标记情况确定类标签,可对其频率进行统计;
S60.利用上述特征和标签,重新制作数据集,并将其划分为训练集、验证集和测试集;
S70.建立神经网络模型,并利用上述数据集进行训练,确定各层神经网络模型的权值和偏差;
神经网络模型的建立过程确定神经网络的层数和各层节点数,以及选取合适的激活函数;
神经网络模型的训练过程是利用反向传递算法确定神经网络模型的模型参数θ,包括神经网络各层的权值和偏差;
S80.计算训练误差和泛化误差,根据误差的计算结果对神经网络模型的层数、各层节点数以及模糊聚类的类别数K进行调整,若不符合设定误差阈值,则调整神经网络层数、各层节点数或聚类数目,直至符合要求为止。
进一步方案为,所述步骤S40中的聚类中心的计算方式为:
Figure GDA0001954971160000031
其中Ds代表单张遥感图像的像素数目。
进一步方案为,所述步骤S50中的聚类中心,选取模糊聚类算法收敛时的K个聚类中心作为最终各类的聚类中心,按照各点对各聚类中心的隶属程度确定该点最终所属类别,选取隶属度最大的类作为该点最终所属类。
进一步方案为,所述步骤S50的成员数统计方法为:
Figure GDA0001954971160000041
其中k代表第k个类别。
进一步方案为,所述步骤S50中对每一个类的成员做颜色样本矩这一统计量,选取2~P+1阶的P个样本矩作为颜色样本矩的统计量,第k类的p阶颜色样本矩
Figure GDA0001954971160000042
的计算方式为:
Figure GDA0001954971160000043
其中,
Figure GDA0001954971160000044
代表隶属于第k类的样本颜色,MemNumk代表第k类的成员数。
进一步方案为,所述各类样本成员所在位置
Figure GDA0001954971160000045
的2~Q+1阶的Q个样本矩进行统计,第k类的q阶颜色样本矩
Figure GDA0001954971160000046
的计算方式为:
Figure GDA0001954971160000047
其中,
Figure GDA0001954971160000048
代表隶属于第k类的样本位置,MemNumk代表第k类的成员数。
进一步方案为,各类成员在标签中的标记情况确定类标签,可对其频率进行统计,若超过阈值ξ则标记为1,否则标记为0,
第k个类的类标签labelk确定的具体方式为:
Figure GDA0001954971160000051
其中,frek为第k类标签的频率,ξ为阈值,设置ξ=0.5。
进一步方案为,所述神经网络的层数和各层节点数后续可以进行调节。
本发明实施例提供的技术方案带来的有益效果是:本发明主要应用在智慧城市建设过程中的以下领域进行应用:城市设计/城市规划、城市地理信息系统(GIS)更新、城市交通导航、城市水域管理和城市绿化管理,并且具有以下优点:
1、提取对象选取灵活:现有遥感图像特征提取技术中提取对象设定单一,本发明可根据实际需求,自行定义感兴趣的一类对象,并且对该对象进行特征提取,并且取得了良好的提取效果。
2、训练时间短、资源需求低:本发明由于先采用模糊聚类进行特征重构再采用神经网络模型进行分类,因此特征维数大幅降低,所需样本少,训练时间大大缩短,节约了计算资源。
解决了现有技术中对遥感图像进行自定义兴趣点抽取时散点多、易间断的缺陷,利用模糊聚类方法,通过不断调整聚类数目,使得提取的兴趣点片段视觉上更为连续。并通过神经网络模型的建立,以及将各类的聚类中心、成员数、颜色样本矩、位置样本矩作为特征,类标签作为相应标签,减少了遥感图像自定义兴趣点的提取结果中散点的数量,提升了自定义兴趣点提取的精确度。
附图说明:
图1为本发明模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法的流程示意图的流程示意图;
图2为本发明涉及实施例的道路数据集中遥感图像的两个示例图;
图3本发明图2中遥感图像两个示例对应的实施例道路标签示意图;
图4为本发明涉及的遥感图像农田组的农田提取过程及提取结果示意图;
图5为本发明基于模糊聚类及神经网络模型对两个示例进行遥感图像道路提取的结果;
图6为本发明遥感图像水域组的水域提取过程及提取结果;
图7为本发明遥感图像农田组的农田提取过程及提取结果。
具体实施方式
为了更充分理解本发明的技术内容,下面结合附图和具体实施例对本发明的技术方案进一步介绍和说明,但不局限于此。
参见图1至图7所示,基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,包括卫星和机载传感器,卫星和机载传感器数据采集;
基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,步骤如下:
S10.根据实际需求,自定义遥感图像中待提取的兴趣点;
S20.通过卫星和机载传感器数据采集,模数转换及图像校正;
S30.制作遥感图像集以及其对应的自定义兴趣标签;
S40.设置模糊聚类数K,并利用模糊聚类方法对遥感图像进行聚类;
先随机初始化K个三维向量作为各类的初始聚类中心,分别代表{R,G,B}三个颜色通道;
接着更新各类成员隶属度,按照各点到聚类中心的距离大小决定各点对聚类中心的隶属度;
S50.统计各类的聚类中心、成员数、颜色样本矩、位置样本矩和相应类标签;
对每一个类的成员做颜色样本矩这一统计量,对各类样本成员所在位置,利用各类成员在标签中的标记情况确定类标签,可对其频率进行统计;
S60.利用上述特征和标签,重新制作数据集,并将其划分为训练集、验证集和测试集;
S70.建立神经网络模型,并利用上述数据集进行训练,确定各层神经网络模型的权值和偏差;
神经网络模型的建立过程确定神经网络的层数和各层节点数,以及选取合适的激活函数;
神经网络模型的训练过程是利用反向传递算法确定神经网络模型的模型参数θ,包括神经网络各层的权值和偏差;
S80.计算训练误差和泛化误差,根据误差的计算结果对神经网络模型的层数、各层节点数以及模糊聚类的类别数K进行调整,若不符合设定误差阈值,则调整神经网络层数、各层节点数或聚类数目,直至符合要求为止。
具体地,在本实施例中,作为一种具体的实施方式,以提取城市道路自定义兴趣为例,本发明步骤S20中涉及通过卫星和机载传感器数据采集获取的是Massachusetts道路数据集,所得的遥感图像数据集包含1108张遥感图像及对应标签用于训练,14张遥感图像及对应标签用于验证,49张遥感图像及对应标签用于测试。遥感图像的像素为1500*1500*3,道路标签的像素为1500*1500。图2是Massachusetts道路数据集中遥感图像的两个示例。
步骤S30中,图3是图2中遥感图像两个示例对应的道路标签。
步骤S40中涉及对所得的遥感图像进行模糊聚类,在具体实施时,首先设定聚类数目K。初始情况下可设置较小的初始聚类数目,后续可按照道路抽取精确度对其进行调整。
其次是初始化各个聚类中心。可从随机初始化K个三维向量作为各类的初始聚类中心,分别代表{R,G,B}三个颜色通道。一张遥感图像包含2250000个三维向量。
接着更新各类成员隶属度,即按照各点到聚类中心的距离大小决定各点对聚类中心的隶属度。某个点离聚类中心越近,则该点对该聚类中心的隶属度越大。采用曼哈顿距离作为各点到聚类中心距离的衡量方式,假设待聚类的点为
Figure GDA0001954971160000081
第k个聚类中心为
Figure GDA0001954971160000082
则计算方式为:
Figure GDA0001954971160000083
假设待聚类点
Figure GDA0001954971160000084
到第k个聚类中心
Figure GDA0001954971160000085
的距离为
Figure GDA0001954971160000086
则点
Figure GDA0001954971160000087
对聚类中心
Figure GDA0001954971160000088
隶属度
Figure GDA0001954971160000089
的计算方式为:
Figure GDA0001954971160000091
其中,γ为负相关系数,可按照实际情况进行调整,保证γ>0即可。
对于每一个待聚类点
Figure GDA0001954971160000092
其对聚类中心
Figure GDA0001954971160000093
隶属度
Figure GDA0001954971160000094
均满足归一化条件,即:
Figure GDA0001954971160000095
然后更新各个聚类中心,即按照更新的各类成员及隶属度,重新计算聚类中心。聚类中心的计算方式为:
Figure GDA0001954971160000096
其中,
Figure GDA0001954971160000097
为更新前的第k个聚类中心,
Figure GDA0001954971160000098
为更新后的第k个聚类中心。
最后不断重复地更新聚类成员的隶属度和聚类中心,直至算法收敛为止。
对Massachusetts道路数据集中两张遥感图像示例进行聚类的结果如图4所示。图4中不同的颜色代表不同聚类类别,可将图4聚类的结果与图1中遥感图像示例的原图进行比对,可发现两者具有一定程度的相似性。
步骤S50涉及对模糊聚类的结果进行统计,包括确定各类的聚类中心,各聚类中心的成员,各类的颜色样本矩、位置样本矩以及相应的类标签。
选取模糊聚类算法收敛时的K个聚类中心作为最终各类的聚类中心。按照各点对各聚类中心的隶属程度确定该点最终所属类别,选取隶属度最大的类作为该点最终所属类,即:
Figure GDA0001954971160000101
在确定各类成员之后,对各类的成员数目进行统计,第k个类别包含的成员数目记为MemNumk
确定各类的颜色样本矩,即对每一个类的成员做颜色样本矩这一统计量,选取2~P+1阶的P个样本矩作为颜色样本矩的统计量,第k类的p阶颜色样本矩
Figure GDA0001954971160000102
的计算方式为:
Figure GDA0001954971160000103
其中,
Figure GDA0001954971160000104
代表隶属于第k类的样本颜色,MemNumk代表第k类的成员数。
确定各类的位置样本矩,即对各类样本成员所在位置
Figure GDA0001954971160000105
的2~Q+1阶的Q个样本矩进行统计,第k类的q阶颜色样本矩
Figure GDA0001954971160000106
的计算方式为:
Figure GDA0001954971160000107
其中,
Figure GDA0001954971160000108
代表隶属于第k类的样本位置,MemNumk代表第k类的成员数。
确定各类相应类标签,利用各类成员在道路标签中的标记情况确定类标签,可对其频率进行统计,若超过阈值ξ则标记为1,否则标记为0。
第k个类的类标签labelk确定的具体方式为:
Figure GDA0001954971160000109
其中,frek为第k类道路标签的频率,ξ为阈值,通常设置ξ=0.5。
步骤S60涉及数据集的重新建立以及训练集、验证集和测试集的划分。数据集的重新建立主要是确定新数据集的特征和标签。新数据集的特征即S50中统计所得的聚类中心、类别成员数、P阶颜色样本矩和Q阶位置样本矩。新数据集的标签即S50中统计所得的类标签。
其次是将重建的数据集划分为训练集、验证集和测试集,将原Massachusetts道路数据集中用于训练的1108张遥感图像及道路标签对应的重建数据集作为新的训练集,用于验证的14张遥感图像及道路标签对应的重建数据集作为新的验证集,用于测试的49张遥感图像及道路标签对应的重建数据集作为新的测试集。训练集、验证集和测试集划分的比例为1108∶14∶49≈79.1∶1∶3.5。
步骤S70涉及神经网络模型的建立和训练过程。神经网络模型的建立过程主要是确定神经网络的层数和各层节点数,以及选取合适的激活函数。
由于本发明中输入特征的维度相对较低,初始情况下可设置1个输入层、2个隐藏层和1个输出层,神经网络的层数和各层节点数后续可以进行调节。
可选取relu函数作为除输出层以外的激活函数,其函数表达式为:
Figure GDA0001954971160000111
在神经网络的输出层可选取softmax函数作为激活函数,其函数表达式为:
Figure GDA0001954971160000112
其中,xi和yi为x和y的第i个分量,J代表
Figure GDA0001954971160000113
Figure GDA0001954971160000114
的维度。
神经网络模型的训练过程主要是利用反向传递算法确定神经网络模型的模型参数θ,包括神经网络各层的权值和偏差。神经网络模型训练的过程主要是利用S60中提及的训练集。而S60中提及的验证集和测试集将在步骤S80中使用。
为了使得神经网络模型在训练过程中尽快地收敛,可在反向传递算法中引入自适应梯度(Adaptive Gradient),从而提升反向传递算法的性能。经自适应梯度优化的反向传递算法的主要步骤如表1所示。
表1:反向传递算法主要步骤
Figure GDA0001954971160000121
在表1步骤7中,L(·)代表损失函数,其函数表达式为:
Figure GDA0001954971160000131
步骤S80涉及对训练误差和泛化误差进行计算,以及根据误差的计算结果对神经网络模型的层数、各层节点数以及模糊聚类的类别数K进行调整。具体地,首先通过将神经网络输出结果与标签进行对比,从而计算训练误差和泛化误差,其中泛化误差的计算是利用S60中提及的测试集。然后判断误差是否小于阈值。若误差小于阈值,则结束,否则需要判断是否超出神经网络模型的调整次数。若未超出调整次数,则利用S60中提及的验证集通过调整神经网络模型的层数和各层节点数来降低误差。否则需要对模糊聚类数K进行调整。不断重复以上步骤,直到算法的误差小于给定的阈值为止。
最后对Massachusetts道路数据集中两张遥感图像示例利用本发明中基于模糊聚类及神经网络模型进行遥感图像道路提取的结果如图5所示。图5中遥感图像道路提取的结果与图3中两张遥感图像示例的道路标签相比,两者在主干道路的部分差别较小,区别在于对较小的道路枝干,图5有部分道路提取的结果的连续性有所缺失。即便如此,参考图1的遥感图像原图可知,图5中遥感图像道路提取的结果与图3中两张遥感图像示例的道路标签相比,图5的道路提取细节远远比图3更为丰富。
以上为城市道路自定义兴趣提取点的方法实例。
另外,具体实施例还包括对水域自定兴趣点的提取方法,提取效果如图6所示。具体实施例还包括农田的自定义兴趣点的提取方法,提取效果如图7所示。水域、农田等自定义兴趣点的具体提取过程与上述方法一致,因此不再赘述。
本发明实施例提供的技术方案优点是:
1、提取对象选取灵活:现有遥感图像特征提取技术中提取对象设定单一,本发明可根据实际需求,自行定义感兴趣的一类对象,并且对该对象进行特征提取,并且取得了良好的提取效果。
2、训练时间短、资源需求低:本发明由于先采用模糊聚类进行特征重构再采用神经网络模型进行分类,因此特征维数大幅降低,所需样本少,训练时间大大缩短,节约了计算资源。
解决了现有技术中对遥感图像进行自定义兴趣点抽取时散点多、易间断的缺陷,利用模糊聚类方法,通过不断调整聚类数目,使得提取的兴趣点片段视觉上更为连续。并通过神经网络模型的建立,以及将各类的聚类中心、成员数、颜色样本矩、位置样本矩作为特征,类标签作为相应标签,减少了遥感图像自定义兴趣点的提取结果中散点的数量,提升了自定义兴趣点提取的精确度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。本发明专利的保护范围应以所附权利要求为准。

Claims (5)

1.一种基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,其特征在于:包括卫星和机载传感器,所述卫星和机载传感器数据采集;
所述基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,步骤如下:
S10.根据实际需求,自定义遥感图像中待提取的兴趣点;
S20.通过卫星和机载传感器数据采集,模数转换及图像校正;
S30.制作遥感图像集以及其对应的自定义兴趣标签;
S40.设置模糊聚类数K,并利用模糊聚类方法对遥感图像进行聚类;
先随机初始化K个三维向量作为各类的初始聚类中心,分别代表{R,G,B}三个颜色通道;
接着更新各类成员隶属度,按照各点到聚类中心的距离大小决定各点对聚类中心的隶属度;
S50.统计各类的聚类中心、成员数、颜色样本矩、位置样本矩和相应类标签,包括:对每一个类的成员做颜色样本矩这一统计量,选取2~P+1阶的P个样本矩作为颜色样本矩的统计量,第k类的p阶颜色样本矩
Figure FDA0003526571930000011
的计算方式为:
Figure FDA0003526571930000012
其中,
Figure FDA0003526571930000013
代表隶属于第k类的样本颜色,MemNumk代表第k类的成员数;所述各类样本成员所在位置
Figure FDA0003526571930000014
的2~Q+1阶的Q个样本矩进行统计,第k类的q阶位置样本矩
Figure FDA0003526571930000021
的计算方式为:
Figure FDA0003526571930000022
其中,
Figure FDA0003526571930000023
代表隶属于第k类的样本位置,MemNumk代表第k类的成员数;各类成员在标签中的标记情况确定类标签,可对其频率进行统计,若超过阈值ξ则标记为1,否则标记为0,第k个类的类标签labelk确定的具体方式为:
Figure FDA0003526571930000024
其中,frek为第k类标签的频率,ξ为阈值,设置ξ=0.5;
对每一个类的成员做颜色样本矩这一统计量,对各类样本成员所在位置,利用各类成员在各标签中的标记情况确定类标签,可对其频率进行统计;
S60.利用上述特征和标签,重新制作数据集,并将其划分为训练集、验证集和测试集;
S70.建立神经网络模型,并利用上述数据集进行训练,确定各层神经网络模型的权值和偏差;
神经网络模型的建立过程确定神经网络的层数和各层节点数,以及选取合适的激活函数;
神经网络模型的训练过程是利用反向传递算法确定神经网络模型的模型参数θ,包括神经网络各层的权值和偏差;
S80.计算训练误差和泛化误差,根据误差的计算结果对神经网络模型的层数、各层节点数以及模糊聚类的类别数K进行调整,若不符合设定误差阈值,则调整神经网络层数、各层节点数或聚类数目,直至符合要求为止。
2.根据权利要求1所述的基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,其特征在于:所述步骤S40中的聚类中心的计算方式为:
Figure FDA0003526571930000031
其中Ds代表单张遥感图像的像素数目,
Figure FDA0003526571930000032
为待聚类的点
Figure FDA0003526571930000033
对更新前的第k个聚类中心
Figure FDA0003526571930000034
的隶属度。
3.根据权利要求1所述的基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,其特征在于:所述步骤S50中的聚类中心,选取模糊聚类算法收敛时的K个聚类中心作为最终各类的聚类中心,按照各点对各聚类中心的隶属程度确定该点最终所属类别,选取隶属度最大的类作为该点最终所属类。
4.根据权利要求1所述的基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,其特征在于:所述步骤S50的成员数统计方法为:
Figure FDA0003526571930000035
其中k代表第k个类别,
Figure FDA0003526571930000036
为待聚类的点
Figure FDA0003526571930000037
对更新前第k个聚类中心
Figure FDA0003526571930000038
的隶属度。
5.根据权利要求1所述的基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法,其特征在于:所述神经网络的层数和各层节点数后续可以进行调节。
CN201811302614.XA 2018-11-02 2018-11-02 基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法 Active CN109426813B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811302614.XA CN109426813B (zh) 2018-11-02 2018-11-02 基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811302614.XA CN109426813B (zh) 2018-11-02 2018-11-02 基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法

Publications (2)

Publication Number Publication Date
CN109426813A CN109426813A (zh) 2019-03-05
CN109426813B true CN109426813B (zh) 2022-06-24

Family

ID=65514852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811302614.XA Active CN109426813B (zh) 2018-11-02 2018-11-02 基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法

Country Status (1)

Country Link
CN (1) CN109426813B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109934281B (zh) * 2019-03-08 2021-01-26 电子科技大学 一种二分类网络的非监督训练方法
CN111986193B (zh) * 2020-08-31 2024-03-19 香港中文大学(深圳) 一种遥感影像变化检测方法、电子设备及存储介质
CN115984889B (zh) * 2023-03-22 2023-06-09 中国人民解放军总医院 基于人工智能的医疗文书完整性分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142758A1 (en) * 2008-05-23 2009-11-26 Spectral Image, Inc. Systems and methods for hyperspectral medical imaging
CN103646354A (zh) * 2013-11-28 2014-03-19 国家电网公司 基于有效指标fcm和rbf神经网络的变电站负荷特性分类方法
CN106373397A (zh) * 2016-09-28 2017-02-01 哈尔滨工业大学 基于模糊神经网络的遥感图像道路通行情况分析方法
CN107437091A (zh) * 2016-03-23 2017-12-05 西安电子科技大学 多层限制玻尔兹曼机的sar图像正负类变化检测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8374974B2 (en) * 2003-01-06 2013-02-12 Halliburton Energy Services, Inc. Neural network training data selection using memory reduced cluster analysis for field model development

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009142758A1 (en) * 2008-05-23 2009-11-26 Spectral Image, Inc. Systems and methods for hyperspectral medical imaging
CN103646354A (zh) * 2013-11-28 2014-03-19 国家电网公司 基于有效指标fcm和rbf神经网络的变电站负荷特性分类方法
CN107437091A (zh) * 2016-03-23 2017-12-05 西安电子科技大学 多层限制玻尔兹曼机的sar图像正负类变化检测方法
CN106373397A (zh) * 2016-09-28 2017-02-01 哈尔滨工业大学 基于模糊神经网络的遥感图像道路通行情况分析方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
An Adaptive Memetic Fuzzy Clustering Algorithm With Spatial Information for Remote Sensing Imagery;Y zhong等;《IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing》;20140214;第7卷(第4期);1235-1248 *
The research of classification algorithm based on fuzzy clustering and neural network;Yuyu Zhou等;《IEEE International Geoscience and Remote Sensing Symposium》;20021107;2525-2527 *
基于模糊C均值和BP神经网络的遥感影像自动分类算法;黄奇瑞;《南阳理工学院学报》;20150731;第7卷(第4期);57-60 *
基于模糊神经网络的遥感影像分类研究;张强;《中国优秀博硕士学位论文全文数据库(硕士)基础科学辑》;20070815(第02期);A008-61 *
基于模糊规则的粗集神经网络在遥感图像分类中的应用;许翔;《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑》;20110615(第06期);I140-78 *

Also Published As

Publication number Publication date
CN109426813A (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
Zhou et al. Recognizing city identity via attribute analysis of geo-tagged images
CN107247938A (zh) 一种高分辨率遥感影像城市建筑物功能分类的方法
Sowmya et al. Colour image segmentation using fuzzy clustering techniques and competitive neural network
CN109426813B (zh) 基于模糊聚类及神经网络模型的遥感图像自定义兴趣点提取方法
Alsabhan et al. Automatic building extraction on satellite images using Unet and ResNet50
Yang et al. Downscaling land surface temperature using multiscale geographically weighted regression over heterogeneous landscapes in Wuhan, China
CN100595782C (zh) 一种融合光谱信息和多点模拟空间信息的分类方法
Lo Population estimation using geographically weighted regression
CN108960404B (zh) 一种基于图像的人群计数方法及设备
CN112950780B (zh) 一种基于遥感影像的网络地图智能生成方法及系统
Yin et al. Mapping urban expansion using night-time light images from Luojia1-01 and International Space Station
CN112329559A (zh) 一种基于深度卷积神经网络的宅基地目标检测方法
CN107967454B (zh) 顾及空间邻域关系的双路卷积神经网络遥感分类方法
Huang et al. Depth semantic segmentation of tobacco planting areas from unmanned aerial vehicle remote sensing images in plateau mountains
Li et al. An aerial image segmentation approach based on enhanced multi-scale convolutional neural network
CN106650810A (zh) 基于光谱属性信息和空间信息的水库水体分类方法及装置
Drăguţ et al. Land-surface segmentation to delineate elementary forms from Digital Elevation Models
Wu et al. A novel bayesian additive regression trees ensemble model based on linear regression and nonlinear regression for torrential rain forecasting
CN106897683B (zh) 一种遥感图像的地物检测方法及系统
CN104331711A (zh) 基于多尺度模糊测度与半监督学习的sar图像识别方法
Gong et al. Urban land-use land-cover extraction for catchment modelling using deep learning techniques
Lv et al. BTS: a binary tree sampling strategy for object identification based on deep learning
Che et al. Spatio-temporal urban change mapping with time-series SAR data
CN116310628A (zh) 一种基于令牌掩码机制的大尺度城中村提取方法
CN115829163A (zh) 基于多模式集成的长江中下游流域径流预测方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant