CN109422736A - 近红外二区的乏氧荧光探针及其制备方法和应用 - Google Patents

近红外二区的乏氧荧光探针及其制备方法和应用 Download PDF

Info

Publication number
CN109422736A
CN109422736A CN201710722217.7A CN201710722217A CN109422736A CN 109422736 A CN109422736 A CN 109422736A CN 201710722217 A CN201710722217 A CN 201710722217A CN 109422736 A CN109422736 A CN 109422736A
Authority
CN
China
Prior art keywords
substituted
alkylene
group
alkylenearyl
arylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710722217.7A
Other languages
English (en)
Inventor
蔡林涛
孟晓青
龚萍
张佳丽
孙枝红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN201710722217.7A priority Critical patent/CN109422736A/zh
Publication of CN109422736A publication Critical patent/CN109422736A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了近红外二区的乏氧荧光探针及其制备方法和应用。本发明所提供的荧光探针以硝基为响应基团,并以近红外二区染料基为母体结构,并利用硝基对于荧光基团的强淬灭作用和还原后的荧光恢复作用,使得所述近红外二区的乏氧荧光探针能够用于乏氧检测,同时还能够避免生物样品自发荧光对于检测准确度和精确度的影响。同时,本发明制备方法具有工艺步骤简便,所制备的荧光探针化合物毒性低等优点。

Description

近红外二区的乏氧荧光探针及其制备方法和应用
技术领域
本发明涉及荧光探针领域,具体而言,涉及近红外二区的乏氧荧光探针及其制备方法和应用。
背景技术
恶性肿瘤是严重危害人类生命健康疾病之一,其中,实体肿瘤占临床恶性肿瘤85%以上,而乏氧则是实体肿瘤的重要特征之一。肿瘤乏氧细胞在新陈代谢、分子遗传学及病理生理等方面会发生改变,从而在肿瘤的演化进展过程中起着非常重要的作用,并对放化疗抗拒,进而导致肿瘤局部复发、远处转移和预后不良。因此,对肿瘤细胞乏氧的研究仍是一个非常热门的课题。
众所周知的是,缺氧会导致还原应力增大,导致硝基还原酶(NTR)的过度表达,NTR水平与肿瘤乏氧程度直接相关,被认为是指示性的肿瘤标志物。因此,我们可以通过NTR水平的检测来评价肿瘤的乏氧程度。NTR是一种含黄素酶,以NADH为电子供体将硝基化合物还原为相应的胺类。同时,硝基化合物是一类荧光淬灭剂,当硝基被NTR还原后,荧光团的荧光强度会发生明显变化。目前,越来越多的小分子荧光探针基于这一原理通过检测NTR来评价肿瘤乏氧程度。
然而,现有的、用于肿瘤成像的荧光探针发射都在传统的可见区(400-650nm)和近红外I区(650-900nm)。最近的研究表明,发射波在近红外二区(1000-1700nm)的荧光探针更有利于生物成像,并具有较低的自体荧光,高信噪比和更深的组织穿透深度等优点,这主要是因为组织的光散射大大降低。近红外二区材料比传统的荧光成像(<1000毫米)在体内荧光成像的空间分辨率更高的更大的穿透深度的缺陷散射(几毫米)与整个动物。迄今,近红外二区窗口很少用于乏氧检测,目前报道的探针发射波长没有大于1000nm的。因此,发展基于近红外二区的肿瘤乏氧荧光小分子探针是至关重要的。
有鉴于此,特提出本发明。
发明内容
本发明的第一目的在于提供一种近红外二区的乏氧荧光探针,所述探针中以硝基为响应基团,并以近红外二区染料基为母体结构,并利用硝基对于荧光基团的强淬灭作用和还原后的荧光恢复作用,使得所述近红外二区的乏氧荧光探针能够用于乏氧检测,同时还能够避免生物样品自发荧光对于检测准确度和精确度的影响。
本发明的第二目的在于提供一种所述近红外二区的乏氧荧光探针的制备方法,该方法具有工艺步骤简便,所制备的荧光探针化合物毒性低等优点。
本发明的第三目的在于提供一种所述的近红外二区的乏氧荧光探针的应用。
为了实现本发明的上述目的,特采用以下技术方案:
一种近红外二区的乏氧荧光探针,所述近红外二区的乏氧荧光探针结构如下:NO2-R1-R2-X1-R3(I),化合物(I)中,R1为C5~C30的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;R3为近红外二区荧光染料分子基,X1为亚氨基、酰胺基,或者酯基;优选的,近红外二区荧光染料分子为:IR1048及其衍生物,IR1050及其衍生物,或者IR1061及其衍生物中的一种。
优选的,本发明所述近红外二区的乏氧荧光探针的结构如下:
或者化合物(II)或(II')中,R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;X1为亚氨基、酰胺基,或者酯基;R4、R5、R6分别独立的为C0-C30的亚烷基、取代亚烷基、亚烯基、取代亚烯基、亚芳基、取代亚芳基、亚烷基芳基、亚烯基芳基、取代亚烷基芳基、取代亚烯基芳基、亚芳基烷基、亚芳基烯基、取代亚芳基烷基,或者取代亚芳基烯基;R7-R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;X2为卤素或四氟硼酸根。
优选的,本发明所述近红外二区的乏氧荧光探针中,所述化合物(II)或(II')中,R2为C1~C30的亚烷基或取代亚烷基;X1为亚氨基、酰胺基,或者酯基;R4为C0-C30的亚烷基或取代亚烷基;R5为C2-C30亚烯基或取代亚烯基;R6为C1-C30的亚烷基或取代亚烷基;R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;R12、R18分别独立的为氟、氯、溴,或碘;X2为卤素或四氟硼酸根。
优选的,本发明所述近红外二区的乏氧荧光探针结构如下:
或者
同时,本发明还所述近红外二区的乏氧荧光探针的制备方法,所述制备方法包括如下步骤:将NO2-R1-R2-Y1(i)与R3-Y2(ii)混合反应,即得所述近红外二区的乏氧荧光探针;其中,化合物(i)中,R1为C5~C30的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;Y1为氨基、羟基,或者羧基;化合物(ii)中,R3为近红外二区荧光染料分子基,Y2为氨基、卤素、羟基,或者羧基。
优选的,本发明所述制备方法中,化合物(i)结构为:
或者
其中,化合物(iii)或(iii')中,R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;Y1为氨基、羟基,或者羧基;R21、R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;和/或,化合物(ii)的结构为:
其中,化合物(iv)中,R4、R5、R6分别独立的为C0-C30的亚烷基、取代亚烷基、亚烯基、取代亚烯基、亚芳基、取代亚芳基、亚烷基芳基、亚烯基芳基、取代亚烷基芳基、取代亚烯基芳基、亚芳基烷基、亚芳基烯基、取代亚芳基烷基,或者取代亚芳基烯基;R7-R20分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;Y2为氨基、卤素、羟基,或者羧基,;X2为卤素或四氟硼酸根。
优选的,本发明所述制备方法中,所述化合物(iii)或(iii')分别由
与X3-R2-Y3(vi)通过缩合和脱保护反应制得;
其中,化合物(v)或(v')中,R21、R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;化合物(vi)中,X3为卤素;R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;Y3为与保护基反应后的氨基、羧基,或者羟基,并通过水解以得到相应的氨基、羧基,或者羟基。
优选的,本发明所述制备方法中,所述化合物(iii)或(iii')中:R2为C1~C30的亚烷基或取代亚烷基;X1为亚氨基、酰胺基,或者酯基;R21、R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;Y1为氨基、羧基,或者羟基;和/或,化合物(iv)中,R4为C0-C30的亚烷基或取代亚烷基;R5为C2-C30亚烯基或取代亚烯基;R6为C1-C30的亚烷基或取代亚烷基;R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;R12、R18分别独立的为氟、氯、溴,或碘;X2为卤素或四氟硼酸根。
优选的,本发明所述制备方法中,化合物(iii)的结构为:化合物(iii')的结构为
和/或,化合物(iv)的结构为:
进一步的,本发明还提供了所述近红外二区的乏氧荧光探针在硝基还原酶检测中的应用;或者,所述近红外二区的乏氧荧光探针在制备肿瘤检测、病变部位成像药物中的应用。
与现有技术相比,本发明的有益效果为:
(1)本发明荧光探针利用硝基对于荧光基团的强淬灭作用,使得荧光探针本身的荧光强度很弱,而当硝基被还原为氨基后,使得荧光探针的荧光恢复,从而能够实现乏氧的检测;
同时,本发明荧光探针还不会受到生物体内常见的还原性物质,如Vc、GSH、Cys等的干扰,而且生理条件下pH的波动也不会对检测性能产生影响;
(2)本发明荧光探针的发射波在近红外二区,相较于传统的可见、近红外一区探针而言,组织穿透深度更深,而且不会受到自体荧光的影响,信噪比较高,能够准确、并且精确的进行检测和分析;
(3)本发明荧光探针响应前后荧光信号变化明显,是一种关-开型荧光探针,检测准确;
(4)本发明荧光探针第一次在近红外而却实现了对于肿瘤乏氧的检测,而且,由于荧光探针带正电,因而在细胞膜负电的作用下,能够很快的完成跨膜运动;同时,由于本发明探针的毒性低、且生物兼容性好,因而能够用于活体内乏氧的成像分析。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1为实施例1步骤(1)产物MZ-BOC检测核磁图谱;
图2为实施例1步骤(1)产物MZ-BOC检测质谱图谱;
图3为实施例1步骤(2)产物MZ检测核磁图谱;
图4为实施例1步骤(2)产物MZ检测质谱图谱;
图5为实施例1步骤(3)产物IR1048-MZ检测核磁图谱;
图6为实施例1步骤(3)产物IR1048-MZ检测质谱图谱;
图7为IR1028-MZ和与NTR反应后的IR1028-MZ的紫外吸收和荧光对照检测图;
其中,图7(a)为IR1028-MZ和与NTR反应后的IR1028-MZ的紫外吸收对照检测图;
图7(b)为IR1028-MZ和与NTR反应后的IR1028-MZ的荧光对照检测图;
图8为不同NTR浓度下IR1028-MZ的荧光强度以及IR1028-MZ的荧光强度与NTR浓度关系图;
其中,图8(a)为不同NTR浓度下IR1028-MZ的荧光强度检测图;
图8(b)为IR1028-MZ的荧光强度与NTR浓度关系图;
图9为IR1028-MZ对不同还原性分子、氨基酸和盐粒子荧光响应检测对照图;
图10为不同pH对IR1028-MZ荧光强度影响测试图。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
鉴于目前所应用的荧光探针所存在着的受生物体自体荧光影响、组织穿透深度浅等不利于肿瘤乏氧检测的技术缺陷,本发明特提供了一种新型的荧光探针来解决现有技术探针所存在着的种种缺点。
本发明荧光探针是一种以硝基为响应基团、并以近红外二区荧光染料分子基为母体结构的近红外二区的乏氧荧光探针,而这也是第一种能够在近红外二区对肿瘤乏氧进行检测的荧光探针分子。通过利用还原前硝基对于荧光的淬灭作用,以及被NTR还原为氨基后探针的荧光恢复,从而实现了对于乏氧的检测。具体的,本发明所提供的荧光探针结构如下:
NO2-R1-R2-X1-R3 (I),
化合物(I)中,R1为C5~C30的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;优选的,R1为C5~C15的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;进一步优选的,R1为C5~C15的亚杂芳基或者取代亚杂芳基,其中,亚杂芳基或者取代亚杂芳基中的杂原子为氮、氧、硫中的一种或多种,且每个亚杂芳基或者取代亚杂芳基中所含杂原子的数量为一个或多个;例如R1可以为,但不限于:呋喃、噻吩、吡咯、咪唑、噻唑、吡唑、吡喃、吡啶、嘧啶、喹啉,或者嘌呤等;
R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;优选的,R2为C0~C30的直链或支链的亚烷基,C0~C30的直链或支链的取代亚烷基;更优选的,R2为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R2为C1~C6的直链或支链的亚烷基,C1~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
R3为近红外二区荧光染料分子基,优选的,近红外二区荧光染料分子为:IR1048及其衍生物,IR1050及其衍生物,或者IR1061及其衍生物中的一种;
其中,IR1048结构如下:(四氟硼酸1-丁基-2-[2-[3-[(1-丁基-6-氯苯[cd]吲哚-2(1H)-亚基)亚乙基]-2-氯-1-环己烯-1-基]乙烯基]-6-氯苯[cd]吲哚鎓,CAS号155613-98-2);
其中,IR1050结构如下:(1-Butyl-2-[2-[3-[(1-butyl-6-chlorobenz[cd]indol-2(1H)-ylidene)ethylidene]-2-chloro-5-methyl-1-cyclohexen-1-yl]ethenyl]-6-chlorobenz[cd]indolium tetrafluoroborate,CAS号:155614-00-9);
其中,IR1061结构如下:(四氟硼酸4-[2-[2-氯-3-[(2,6-二苯基-4H-噻喃-4-亚基)亚乙基]-1-环己烯-1-基]乙烯基]-2,6-二苯基硫代吡喃鎓,CAS号:155614-01-0);
而如上所述的近红外二区的乏氧荧光探针NO2-R1-R2-X1-R3(I)中,R3可以为如上结构的近红外二区荧光染料分子基,或者为如上结构的近红外二区荧光染料分子衍生物基。
X1为亚氨基、酰胺基或者酯基
优选的,本发明所提供的近红外二区荧光探针结构如下:
或者
即,本发明进一步提供了一种以硝基咪唑为特异性响应基团,以IR-1048衍生物为近红外二区荧光染料分子为母体结构的近红外二区荧光探针,
其中,化合物(II)或者(II')中,R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;优选的,R2为C1~C30的亚烷基或取代亚烷基;更优选的,R2为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R2为C1~C6的直链或支链的亚烷基,C1~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
X1为亚氨基、酰胺基或者酯基
R4、R5、R6分别独立的为C0-C30的亚烷基、取代亚烷基、亚烯基、取代亚烯基、亚芳基、取代亚芳基、亚烷基芳基、亚烯基芳基、取代亚烷基芳基、取代亚烯基芳基、亚芳基烷基、亚芳基烯基、取代亚芳基烷基,或者取代亚芳基烯基;
其中,优选的,R4为C0-C30的亚烷基或取代亚烷基;更优选的,R4为C0-C12的直链或直链的亚烷基、C0~C12的取代亚烷基;进一步优选的,R4为C0~C6的直链或支链的亚烷基,C0~C6的直链或支链的取代亚烷基,例如R4可以为化学键(即环己烯基与X1直接相连)、亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
优选的,R5为C2-C30亚烯基或取代亚烯基;更优选的,R5为C2~C12的直链或直链的亚烯基、C2~C12的直链或直链的取代亚烯基;进一步优选的,R5为C2-C6的直链或直链的亚烯基、C2~C6的直链或直链的取代亚烯基,例如,R5可以为亚乙烯基、亚丙烯基、亚异丙烯基、亚丁烯基、亚异丁烯基、亚戊烯基、亚己烯基等;
优选的,R6为C1-C30的亚烷基或取代亚烷基;更优选的,R6为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R6为C2~C6的直链或支链的亚烷基,C2~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
R7-R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;更优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基;进一步优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C12的直链或支链的烷基、C1-C12的直链或支链的取代烷基;更进一步优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C6的直链或支链的烷基、C1-C6的直链或支链的取代烷基,例如R7-R11、R13-R18、R19-R22分别独立的为氢、甲基、乙基、丙基、异丙基、丁基、异丁基、戊基、异戊基、新戊基、己基等;
优选的,R12、R18分别独立的为氟、氯、溴,或碘;
X2为卤素或四氟硼酸根。
更优选的,本发明所提供的近红外二区荧光探针分子结构如下:
或者
本发明近红外二区的乏氧荧光探针的制备方法可参考如下:将NO2-R1-R2-Y1(i)与R3-Y2(ii)混合反应,即可得到目标探针化合物,制备方法较为便捷、且操作较为简便,适于大规模的扩大生产;
其中,化合物(i)中,R1为C5~C30的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;优选的,R1为C5~C15的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;进一步优选的,R1为C5~C15的亚杂芳基或者取代亚杂芳基,其中,亚杂芳基或者取代亚杂芳基中的杂原子为氮、氧、硫中的一种或多种,且每个亚杂芳基或者取代亚杂芳基中所含杂原子的数量为一个或多个;例如R1可以为,但不限于:呋喃、噻吩、吡咯、咪唑、噻唑、吡唑、吡喃、吡啶、嘧啶、喹啉,或者嘌呤等;
R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;优选的,R2为C1~C30的亚烷基或取代亚烷基;更优选的,R2为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R2为C1~C6的直链或支链的亚烷基,C1~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
Y1为氨基、羧基,或者羟基;
化合物(ii)中,R3为近红外二区荧光染料分子基,
Y2为氨基、卤素、羟基,或者羧基。
进一步优选的,本发明所述制备方法中,所用原料结构如下:
或者
其中,化合物(iii)或(iii')中,R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;优选的,R2为C1~C30的亚烷基或取代亚烷基;更优选的,R2为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R2为C1~C6的直链或支链的亚烷基,C1~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
Y1为氨基、羧基,或者羟基;
R21、R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;优选的,R21、R22分别独立的为氢、C1-C30的烷基、取代烷基;进一步优选的,R21、R22分别独立的为氢、C1-C12的直链或支链的烷基、C1-C12的直链或支链的取代烷基;更进一步优选的,R21、R22分别独立的为氢、C1-C6的直链或支链的烷基、C1-C6的直链或支链的取代烷基,例如R21、R22分别独立的为氢、甲基、乙基、丙基、异丙基、丁基、异丁基、戊基、异戊基、新戊基、己基等;
以及:
其中,化合物(iv)中,R4、R5、R6分别独立的为C0-C30的亚烷基、取代亚烷基、亚烯基、取代亚烯基、亚芳基、取代亚芳基、亚烷基芳基、亚烯基芳基、取代亚烷基芳基、取代亚烯基芳基、亚芳基烷基、亚芳基烯基、取代亚芳基烷基,或者取代亚芳基烯基;
优选的,R4为C0-C30的亚烷基或取代亚烷基;更优选的,R4为C0-C12的直链或直链的亚烷基、C0~C12的取代亚烷基;进一步优选的,R4为C0~C6的直链或支链的亚烷基,C0~C6的直链或支链的取代亚烷基,例如R4可以为化学键(即环己烯基与X1直接相连)、亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
优选的,R5为C2-C30亚烯基或取代亚烯基;更优选的,R5为C2~C12的直链或直链的亚烯基、C2~C12的直链或直链的取代亚烯基;进一步优选的,R5为C2-C6的直链或直链的亚烯基、C2~C6的直链或直链的取代亚烯基,例如,R5可以为亚乙烯基、亚丙烯基、亚异丙烯基、亚丁烯基、亚异丁烯基、亚戊烯基、亚己烯基等;
优选的,R6为C1-C30的亚烷基或取代亚烷基;更优选的,R6为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R6为C2~C6的直链或支链的亚烷基,C2~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
R7-R20分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;更优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基;进一步优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C12的直链或支链的烷基、C1-C12的直链或支链的取代烷基;更进一步优选的,R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C6的直链或支链的烷基、C1-C6的直链或支链的取代烷基,例如R7-R11、R13-R18、R19-R22分别独立的为氢、甲基、乙基、丙基、异丙基、丁基、异丁基、戊基、异戊基、新戊基、己基等;
优选的,R12、R18分别独立的为氟、氯、溴,或碘;
Y2为氨基、卤素、羟基,或者羧基;
X2为卤素或四氟硼酸根。
进一步的,如上所述原料或者可以由 与X3-R2-Y3(vi)通过缩合和脱保护反应制得;
即,可以用过化合物(v)或(v')与化合物(vi)通过取代-水解(脱保护)两步反应制得,而化合物(vi)中的Y3取代基,则为Y1与保护剂反应后的产物结构,而通过第二部的脱保护步骤,可以由Y3反应得到Y1
其中,化合物(v)或(v')中,R21、R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;优选的,R21、R22分别独立的为氢、C1-C30的烷基、取代烷基;进一步优选的,R21、R22分别独立的为氢、C1-C12的直链或支链的烷基、C1-C12的直链或支链的取代烷基;更进一步优选的,R21、R22分别独立的为氢、C1-C6的直链或支链的烷基、C1-C6的直链或支链的取代烷基,例如R21、R22分别独立的为氢、甲基、乙基、丙基、异丙基、丁基、异丁基、戊基、异戊基、新戊基、己基等;
化合物(vi)中,X3为卤素;
R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;优选的,R2为C1~C30的亚烷基或取代亚烷基;更优选的,R2为C1~C12的直链或支链的亚烷基,C1~C12的直链或支链的取代亚烷基;进一步优选的,R2为C1~C6的直链或支链的亚烷基,C1~C6的直链或支链的取代亚烷基,例如可以为,但不限于亚甲基、亚乙基、亚丙基、亚异丙基、亚丁基、亚异丁基、亚戊基、亚异戊基、亚新戊基、亚己基等;
Y3为与保护基反应后的氨基、羧基,或者羟基,并通过水解以得到相应的氨基、羧基,或者羟基;
例如,Y3可以为酰基、醚、羰基,或者酯基保护的氨基、羧基,或者羟基。
更进一步优选的,本发明所述制备方法中,所用原料化合物为:或者
以及
进一步的,以化合物为例,对该原料的制备方法进一步说明,该化合物制备方法可参考如下:
由于本发明所提供的近红外二区的乏氧荧光探针具有低毒、快速响应,检测准确性好、精度高等优点。因而,其适用于生物体的活体检测,并能够用于生物体内硝基还原酶的检测,并进一步在肿瘤检测、病变部位成像药物等领域中应用。
实施例1
(1)MZ-BOC分子的制备:
2-硝基咪唑(5g,44.2mmol)以20mL DMF溶解,然后在搅拌条件下,分别加入K2CO3(9.15g,66.3mmol)、N-Boc-溴乙胺(9.9g,44.2mmol),并在氮气保护下反应18h;
旋转蒸发除去溶剂,真空干燥,所得固体溶于水中,然后以乙酸乙酯进行萃取,收集有机相,旋转蒸发除去溶剂,所得粗品以乙酸乙酯重结晶,得深黄色固体产品(记为MZ-BOC,0.81g,72%),其核磁检测图谱如图1所示,质谱检测图谱如图2所示,各图谱具体解析如下:
1H NMR(400MHz,DMSO-d6)δ7.46(s,1H),7.14(s,1H),4.43(t,J=5.6Hz,2H),3.36(q,J=5.9Hz,2H),1.31(s,9H);
HRMS(ESI+):m/z calcd for C10H16N4O4:279.1064[M+Na+],found 279.1060。
(2)MZ分子的制备
将MZ-BOC(8.5g,33mmol)溶于甲醇(20mL),然后在搅拌条件下,加入1.25M HCl的甲醇溶液(20mL),室温下反应18h;
旋转蒸发除去溶剂,所得固体以甲醇洗涤,收集洗液,旋转蒸发除去溶剂,真空干燥。所得固体粗品用甲醇重结晶,得淡黄色固体产品(MZ,5.11g,71%),其核磁检测图谱如图3所示,其质谱检测图谱如图4所示,各图谱具体解析如下:
1H NMR(400MHz,CD3OD):δ7.48(d,J=1.0Hz,1H),7.14(d,J=1.1Hz,1H),4.50(t,J=6.3Hz,2H),3.07(t,J=6.3Hz,2H)
HRMS(ESI+):m/z calcd for C5H8N4O2:157.0720[M+H+],found 157.0725;179.0539[M+Na+],found 179.0537。
(3)探针分子IR1048-MZ的制备:
将IR-1048(370mg,0.1mmol)
溶于无水DMF(50mL)中,然后,加入MZ(1.126g,5mmol),并快速搅拌,然后,在氮气保护下60℃反应24h。旋转蒸发除去溶剂,真空干燥,过硅胶柱,二氯甲烷:甲醇作洗脱液,梯度洗脱,除去溶剂,得固体产品(IR1048-MZ,44.8mg 16%),其核磁检测图谱如图5所示,其质谱检测图谱如图6所示,各图谱具体解析如下:
1H NMR(400MHz,Methanol-d4):δ8.63(d,J=7.5Hz,1H),8.17(d,J=7.6Hz,1H),8.11(d,J=8.2Hz,1H),8.01(d,J=12.8Hz,1H),7.96–7.84(m,5H),7.72(s,1H),7.51(d,J=7.8Hz,1H),7.14(s,1H),7.10(d,J=8.4Hz,1H),7.06(s,1H),6.90(d,J=7.8Hz,1H),6.15(d,J=12.9Hz,1H),4.29–4.23(m,2H),2.63–2.51(m,2H),1.82–1.77(m,2H),1.47(td,J=15.3,14.4,7.8Hz,4H),1.12(dq,J=14.5,7.7Hz,4H),1.01(t,J=7.4Hz,4H),0.92(dt,J=18.6,7.2Hz,6H),0.76–0.70(m,1H),0.59(t,J=7.2Hz,3H).
HRMS(ESI+):m/z calcd for C45H45BCl2F4N6O2:771.2976[M-BF4 -];found771.2975。
实施例1反应流程如下所示:
实施例2
(1)MZ-BOC分子的制备:
将2-硝基咪唑(0.5g,4.42mmol)以2mL DMF溶解,然后,在搅拌条件下,分别加入K2CO3(0.915g,6.63mmol)、N-Boc-溴乙胺(0.99g,4.42mmol),氮气保护下反应过夜;
旋转蒸发除去溶剂,真空干燥,所得固体溶于水中,然后以乙酸乙酯进行萃取,收集有机相,旋转蒸发除去溶剂,所得粗品以乙酸乙酯重结晶,得深黄色固体产品MZ-BOC(0.10g,89%)。
(2)MZ分子的制备
将MZ-BOC(0.85g,3.3mmol)溶于甲醇(2mL)搅拌下加入1.25M HCl的甲醇溶液(2mL),室温下反应5h;
旋转蒸发除去溶剂,所得固体以甲醇洗涤,收集洗液,旋转蒸发除去溶剂,真空干燥。所得固体粗品用甲醇重结晶,得淡黄色固体产品MZ(0.64g,89%)
(3)探针分子IR1048-MZ的制备:
将IR-1048(37mg,0.05mmol)溶于无水DMF(10mL)中,然后加入MZ(112.6mg,0.5mmol),快速搅拌,并在氮气保护下40℃反应。旋转蒸发除去溶剂,真空干燥,过硅胶柱,二氯甲烷:甲醇作洗脱液,梯度洗脱,除去溶剂,得固体产品IR1048-MZ(6.44mg 23%)。
实施例3
(1)MZ-BOC分子的制备:
降2-硝基咪唑(1.0g,8.84mmol)以4mL DMF溶解,在搅拌条件下,分别加入K2CO3(1.83g,13.26mmol)、N-Boc-溴乙胺(1.98g,8.84mmol),氮气保护下反应过夜。
旋转蒸发除去溶剂,真空干燥,所得固体溶于水中,然后以乙酸乙酯萃取,收集有机相,旋转蒸发除去溶剂。粗品用乙酸乙酯重结晶,得深黄色固体产品MZ-BOC(0.19g,83%)
(2)MZ分子的制备
将MZ-BOC(1.7g,6.6mmol)溶于甲醇(4mL),搅拌下加入1.25M HCl的甲醇溶液(4mL),室温下反应8h;
旋转蒸发除去溶剂,所得固体以甲醇洗涤,收集洗液,旋转蒸发除去溶剂,真空干燥。所得固体粗品以甲醇重结晶,得淡黄色固体产品MZ(1.16g,81%)
(3)探针分子IR1048-MZ的制备:
将IR-1048(74mg,0.1mmol)溶于无水DMF(15mL),然后加入MZ(225.2mg,1.0mmol)快速搅拌,并在氮气保护下40℃反应。旋转蒸发除去溶剂,真空干燥,过硅胶柱,二氯甲烷:甲醇作洗脱液,梯度洗脱,除去溶剂,得固体产品IR1048-MZ(10.08mg 18%)。
实施例4
(1)MZ-BOC分子的制备:
将2-硝基咪唑(1.5g,13.26mmol)以6mL DMF溶解,然后,在搅拌条件下,分别加入K2CO3(2.745g,19.89mmol)、N-Boc-溴乙胺(2.97g,13.26mmol),氮气保护下反应过夜。
旋转蒸发除去溶剂,真空干燥,所得固体溶于水,然后以乙酸乙酯进行萃取,收集有机相,旋转蒸发除去溶剂。粗品用乙酸乙酯重结晶,得深黄色固体产品MZ-BOC(0.26g,78%)
(2)MZ分子的制备
将MZ-BOC(2.55g,9.9mmol)溶于甲醇(6mL),搅拌条件下下加入1.25M HCl的甲醇溶液(6mL),室温下反应过夜。
旋转蒸发除去溶剂,所得固体以甲醇洗涤,收集洗液,旋转蒸发除去溶剂,真空干燥。所得固体粗品以甲醇重结晶,得淡黄色固体产品MZ(1.60g,74%)
(3)探针分子IR1048-MZ的制备:
将IR-1048(111mg,0.15mmol)溶于无水DMF(25mL)中,然后加入MZ(337.8mg,1.5mmol)快速搅拌,并在氮气保护下50℃反应10h。旋转蒸发除去溶剂,真空干燥,过硅胶柱,二氯甲烷:甲醇作洗脱液,梯度洗脱,除去溶剂,得固体产品IR1048-MZ(15.96mg,19%)。
实验例1
(1)在37℃条件下,分别对浓度为5μg/mL IR1048-MZ溶液,以及与10μg/mL NTR反应20分钟后的5μg/mL IR1048-MZ溶液进行了紫外吸收和荧光检测;将待检测溶液溶于PBS中,并以1%DMSO作为助溶剂,然后进行测定;
其中,紫外吸收使用Scinco 3000分光光度计测量,荧光光谱用FSP920荧光光谱仪(爱丁堡仪器仪表、英国)测定。激发和发射单色器狭缝分别设置为20nm和25nm。激发波长(λex)设为760nm,发射波长(λem)设为1046nm,检测结果如图7所示。
由图7(a)的测试图谱可知,在与NTR反应后,IR1028-MZ在波长980nm左右出现了明显的吸收峰;而未与NTR反应的IR1028-MZ在900~1060nm的波长范围内,却没有出现紫外吸收;
由图7(b)的测试图谱可知,与NTR反应后的IR1028-MZ在波长1050nm左右具有较强的荧光发射强度,而未反应的IR1028-MZ却没有明显的荧光发射。
而由上述检测结果可知,本发明所提供的荧光探针(IR1028-MZ)在与标志物(NTR)反应后,能够出现明显的紫外吸收和近红外二区荧光发射,由此可见,本发明荧光探针对NTR响应灵敏,并能够作为近红外二区的乏氧荧光检测探针使用。
(2)将浓度为5μg/mL的IR1048-MZ探针加入不同浓度的NTR溶液中,其中,用于测试的NTR溶液的浓度分别为:0、1、2、3、4、5、6、7、8、9、10μg/mL;同时,每组NTR溶液中,还添加有辅酶NADH,其浓度为500μmol/L;
各测试组反应20min后,进行荧光检测,并采用FSP920荧光光谱仪(爱丁堡仪器仪表、英国)进行测定;激发和发射单色器狭缝分别设置为20nm和25nm。激发波长(λex)设为760nm,发射波长(λem)设为1046nm,检测结果如图8所示。
由图8(a)的测试结果图谱可知,本发明荧光探针IR1028-MZ的荧光强度会随着标志物NTR浓度的增加而明显增强;同时,由图8(b)的测试结果图谱可知,IR1028-MZ的荧光强度与NTR的浓度能够呈现线性关系。
由此可见,本发明所提供的荧光探针对于肿瘤标志物NTR不仅能够实现快速响应和定性分析,同时,还能够对于待检测样中NTR浓度进行定量检测。
(3)平行配制多组IR1048-MZ的HEPES溶液(溶液中HEPES的浓度为10mM,溶液pH为7.40),溶液中IR1048-MZ的浓度为5μM,并分别加入NADH(500μM)、NTR(10μg/mL)、Vc(2mM)、葡萄糖(50mM)、GSH(1mM)、DTT(DL-二硫苏糖醇,2mM)、Cys(半胱氨酸,2mM)、Arg(L-精氨酸,2mM)、-OCl(10mM)、H2O2(10mM)、KCl(20mM)、CaCl2(2mM)、NaCl(20mM),以及MgCl2(1mM);
同时设置不加入任何物质的空白对照组;
然后,将各测试组在室温条件下反应30min,然后进行荧光强度进行检测,结果如图9所示;
由图9的检测结果可知,本发明所提供的荧光探针IR1048-MZ仅能够对于NTR进行响应,其他还原性物质并不会对IR1048-MZ进行还原,也不会影响IR1048-MZ对于NTR的准确检测;同时,金属离子的存在也不会对IR1048-MZ的响应和检测结果带来任何影响。
(4)平行配置多组100ml DMSO/PBS测试溶液,测试溶液中,IR1048-MZ浓度为5μg/mL;然后,分别用盐酸或氢氧化钠分别将测试溶液的pH调节至6.0、6.2、6.4、6.6、6.8、7.0、7.2、7.4、7.6、7.8、8.0以及9.0(盐酸和氢氧化钠的加入体积不超过待测溶液体积的1%),并进行荧光光谱测试;
然后,分别向各测试溶液中加入NTR,并使得测试溶液中NTR浓度达到10μg/mL,反应20min,然后再次进行荧光光谱测试;
然后,将各测试溶液加入NTR前和加入NTR后的荧光光谱进行对比检测,结果如图10所示。
由图10的检测结果可知,在pH为6.0~8.0的正常生物体pH波动范围内,IR1048-MZ的荧光发射强度并未受到影响。由此可见,本发明所提供的荧光探针适于生物体内NTR的有效检测,并且能够通过检测准确的反应生物体内的NTR水平。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (10)

1.一种近红外二区的乏氧荧光探针,其特征在于,所述近红外二区的乏氧荧光探针结构如下:
NO2-R1-R2-X1-R3 (I),
化合物(I)中,R1为C5~C30的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;
R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;
R3为近红外二区荧光染料分子基;
X1为烃基、亚氨基、酰胺基,羟基、或者酯基;
优选的,近红外二区荧光染料分子为:IR1048及其衍生物,IR1050及其衍生物,或者IR1061及其衍生物中的一种。
2.根据权利要求1所述的近红外二区的乏氧荧光探针,其特征在于,所述近红外二区的乏氧荧光探针的结构如下:
化合物(II)或(II')中,R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;
X1为亚氨基、酰胺基,或者酯基;
R4、R5、R6分别独立的为C0-C30的亚烷基、取代亚烷基、亚烯基、取代亚烯基、亚芳基、取代亚芳基、亚烷基芳基、亚烯基芳基、取代亚烷基芳基、取代亚烯基芳基、亚芳基烷基、亚芳基烯基、取代亚芳基烷基,或者取代亚芳基烯基;
R7-R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
X2为卤素或四氟硼酸根。
3.根据权利要求2所述的近红外二区的乏氧荧光探针,其特征在于,所述化合物(II)或(II')中,
R2为C1~C30的亚烷基或取代亚烷基;
X1为亚氨基、酰胺基,或者酯基;
R4为C0-C30的亚烷基或取代亚烷基;
R5为C2-C30亚烯基或取代亚烯基;
R6为C1-C30的亚烷基或取代亚烷基;
R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
R12、R18分别独立的为氟、氯、溴,或碘;
X2为卤素或四氟硼酸根。
4.根据权利要求3所述的近红外二区的乏氧荧光探针,其特征在于,所述近红外二区的乏氧荧光探针结构如下:
5.权利要求1-4中任一项所述近红外二区的乏氧荧光探针的制备方法,其特征在于,所述制备方法包括如下步骤:
将NO2-R1-R2-Y1 (i)与R3-Y2 (ii)混合反应,即得所述近红外二区的乏氧荧光探针;
其中,化合物(i)中,R1为C5~C30的亚芳基、亚杂芳基、取代亚芳基,或取代亚杂芳基;
R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;
Y1为氨基、羧基,或者羟基;
化合物(ii)中,R3为近红外二区荧光染料分子基,
Y2为氨基、卤素、羟基,或者羧基。
6.根据权利要求5所述的制备方法,其特征在于,所述制备方法中,化合物(i)结构为:
其中,化合物(iii)或(iii')中,R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;
Y1为氨基、羧基,或者羟基;
R21、R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
和/或,化合物(ii)的结构为:
其中,化合物(iv)中,R4、R5、R6分别独立的为C0-C30的亚烷基、取代亚烷基、亚烯基、取代亚烯基、亚芳基、取代亚芳基、亚烷基芳基、亚烯基芳基、取代亚烷基芳基、取代亚烯基芳基、亚芳基烷基、亚芳基烯基、取代亚芳基烷基,或者取代亚芳基烯基;
R7-R20分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
Y2为氨基、卤素、羟基,或者羧基;
X2为卤素或四氟硼酸根。
7.根据权利要求6所述的制备方法,其特征在于,所述化合物(iii)或(iii')分别由
与X3-R2-Y3(vi)通过缩合和脱保护反应制得;
其中,化合物(v)或(v')中,R21、R22分别独立的为氢、卤素、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
化合物(vi)中,X3为卤素;R2为C0~C30的亚烷基或取代亚烷基、亚芳基或取代亚芳基、亚烷基芳基或取代亚烷基芳基、亚芳基烷基或取代亚烷基芳基;Y3为与保护基反应后的氨基、羧基,或者羟基,并通过水解以得到相应的氨基、羧基或者羟基。
8.根据权利要求6所述的制备方法,其特征在于,所述化合物(iii)或(iii')中:R2为C1~C30的亚烷基或取代亚烷基;
X1为亚氨基、酰胺基,或者酯基;
R21、R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
Y1为氨基、羟基,或者羧基;
和/或,化合物(iv)中,R4为C0-C30的亚烷基或取代亚烷基;
R5为C2-C30亚烯基或取代亚烯基;
R6为C1-C30的亚烷基或取代亚烷基;
R7-R11、R13-R18、R19-R22分别独立的为氢、C1-C30的烷基、取代烷基、芳基、取代芳基、烷基芳基、取代烷基芳基、芳基烷基,或取代芳基烷基;
R12、R18分别独立的为氟、氯、溴,或碘;
Y2为氨基、卤素、羟基,或者羧基;
X2为卤素或四氟硼酸根。
9.根据权利要求8所述的制备方法,其特征在于,所述制备方法中,化合物(iii)的结构为:化合物(iii')的结构为
和/或,化合物(iv)的结构为:
10.权利要求1-4中任一项所述的近红外二区的乏氧荧光探针在硝基还原酶检测中的应用;
或者,权利要求1-4中任一项所述的近红外二区的乏氧荧光探针在制备肿瘤检测、病变部位成像药物中的应用。
CN201710722217.7A 2017-08-22 2017-08-22 近红外二区的乏氧荧光探针及其制备方法和应用 Pending CN109422736A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710722217.7A CN109422736A (zh) 2017-08-22 2017-08-22 近红外二区的乏氧荧光探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710722217.7A CN109422736A (zh) 2017-08-22 2017-08-22 近红外二区的乏氧荧光探针及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109422736A true CN109422736A (zh) 2019-03-05

Family

ID=65498021

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710722217.7A Pending CN109422736A (zh) 2017-08-22 2017-08-22 近红外二区的乏氧荧光探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109422736A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734405A (zh) * 2019-11-11 2020-01-31 华东数字医学工程研究院 一种n-(6-氨己基)-n’-甲基-2,2’-联咪唑的合成方法
CN115073438A (zh) * 2021-03-11 2022-09-20 上海科技大学 一种off-on型近红外二区荧光探针及其制备方法和用途
WO2023040089A1 (zh) * 2021-09-14 2023-03-23 中国科学院深圳先进技术研究院 荧光化合物和探针

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040197697A1 (en) * 2003-04-07 2004-10-07 Lee Korionoff Thermally imageable elements imageable at several wavelengths
WO2011145957A1 (en) * 2010-05-20 2011-11-24 Auckland Uniservices Limited Agents and methods for detection and/or imaging of hypoxia

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040197697A1 (en) * 2003-04-07 2004-10-07 Lee Korionoff Thermally imageable elements imageable at several wavelengths
WO2011145957A1 (en) * 2010-05-20 2011-11-24 Auckland Uniservices Limited Agents and methods for detection and/or imaging of hypoxia

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEHUA XU,ET AL.: "High selectivity imaging of nitroreductase using a near-infrared fluorescence probe in hypoxic tumor", 《CHEM. COMMUN.》 *
M. CASALBONI,ET AL.: "Fluorescence efficiency of four infrared polymethine dyes", 《CHEMICAL PHYSICS LETTERS》 *
马京: "新型乏氧荧光探针的设计、合成及其应用", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734405A (zh) * 2019-11-11 2020-01-31 华东数字医学工程研究院 一种n-(6-氨己基)-n’-甲基-2,2’-联咪唑的合成方法
CN115073438A (zh) * 2021-03-11 2022-09-20 上海科技大学 一种off-on型近红外二区荧光探针及其制备方法和用途
WO2023040089A1 (zh) * 2021-09-14 2023-03-23 中国科学院深圳先进技术研究院 荧光化合物和探针

Similar Documents

Publication Publication Date Title
Wang et al. A novel near-infrared fluorescent probe with a large stokes shift for the detection and imaging of biothiols
Yang et al. A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells
Liu et al. A hemicyanine-based colorimetric and ratiometric fluorescent probe for selective detection of cysteine and bioimaging in living cell
Sun et al. The recent development of fluorescent probes for the detection of NADH and NADPH in living cells and in vivo
Lin et al. Instantaneous fluorescent probe for the specific detection of H2S
Chen et al. A low background D–A–D type fluorescent probe for imaging of biothiols in living cells
Wu et al. A novel colorimetric and ratiometric NIR fluorescent sensor for glutathione based on dicyanomethylene-4 H-pyran in living cells
Liu et al. A long wavelength emission two-photon fluorescent probe for highly selective detection of cysteine in living cells and an inflamed mouse model
CN109422736A (zh) 近红外二区的乏氧荧光探针及其制备方法和应用
Kang et al. A red emitting fluorescent probe based on TICT for selective detection and imaging of HSA
Zhang et al. Diketopyrrolopyrrole-based ratiometric fluorescent probe for the sensitive and selective detection of cysteine over homocysteine and glutathione in living cells
Wang et al. A facile AIE fluorescent probe for broad range of pH detection
Zhou et al. Fluorescent probe for highly selective detection of cysteine in living cells
Li et al. A novel fluorescent sensor for specific recognition of GSH based on the copper complex and its bioimaging in living cells
Peng et al. A super sensitive fluorescent probe for imaging endogenous hydrogen sulfide in living cells
Wang et al. A diboronic acid fluorescent sensor for selective recognition of d-ribose via fluorescence quenching
Tong et al. A naphthalimide–rhodamine chemodosimeter for hypochlorite based on TBET: High quantum yield and endogeous imaging in living cells
Wang et al. A novel borate fluorescent probe for rapid selective intracellular peroxynitrite imaging
Mei et al. A novel cysteine fluorescent probe based on benzothiazole and quinoline with a large stokes shift and application in living cell and mice
CN111548790A (zh) 一种近红外比率型荧光探针及其合成方法与应用
Wang et al. A highly selective and easily acquisitive near-infrared fluorescent probe for detection and imaging of hydrogen sulfide in cells
CN110423487B (zh) 一种Rhodol衍生物染料及其应用
An et al. An extra-large Stokes shift near-infrared fluorescent probe for specific detection and imaging of cysteine
CN111039862A (zh) 一种四苯乙烯类席夫碱Al3+荧光探针及其制备方法与应用
Szwaczko Fluorescent Coumarin-based Probe for Detection of Biological Thiols

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190305