CN109416582A - 触觉触摸屏及其操作方法 - Google Patents

触觉触摸屏及其操作方法 Download PDF

Info

Publication number
CN109416582A
CN109416582A CN201780040447.3A CN201780040447A CN109416582A CN 109416582 A CN109416582 A CN 109416582A CN 201780040447 A CN201780040447 A CN 201780040447A CN 109416582 A CN109416582 A CN 109416582A
Authority
CN
China
Prior art keywords
electrode
tactile
touch screen
coordination
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780040447.3A
Other languages
English (en)
Other versions
CN109416582B (zh
Inventor
M·切里夫
J·E·高盖特
M·F·D·奥莱
M·A·佩什金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Templeton Ltd By Share Ltd
Northwestern University
Original Assignee
Templeton Ltd By Share Ltd
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Templeton Ltd By Share Ltd, Northwestern University filed Critical Templeton Ltd By Share Ltd
Priority claimed from PCT/US2017/034750 external-priority patent/WO2017205785A1/en
Publication of CN109416582A publication Critical patent/CN109416582A/zh
Application granted granted Critical
Publication of CN109416582B publication Critical patent/CN109416582B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

公开了一种触觉触摸屏,其包括:包括多个控制电极的下层、包括多个触觉电极的上层、在下层和上层之间的中间层,其中触觉电极未被导电连接到控制电子器件。

Description

触觉触摸屏及其操作方法
优先权要求
本公开是要求于2016年5月27日提交的美国临时专利申请No.62/342,594和2017年5月26日提交的美国非临时专利申请No.15/606,440的权益和优先权的PCT专利申请,这两个美国专利申请都通过引用整体并入本文。
背景技术
触觉这个词的起源是希腊语haptikos,意思是能够抓住或感知。常规的触摸屏缺乏传达对触摸屏上显示的对象的感觉的能力。已经给出了许多利用声波和电信号来传达触摸的方法。但是,这些方法中的每一种都要求添加设备以生成声音或电信号并发送触觉信号。这些设备增加了触摸屏的成本和复杂性。
蜂窝设备由于其紧凑的尺寸和减小的厚度而呈现出独特的问题。添加常规触觉特征增加了蜂窝设备的厚度和重量,这降低了蜂窝设备的价值和可用性。此外,利用声音的触觉设备可以生成蜂窝设备的用户不期望的共振噪声。因此,需要允许将触觉触摸添加到触摸屏而无需添加增加触摸屏重量的附加部件。
发明内容
本公开的一个实施例包括触觉触摸屏,该触觉触摸屏可以包括:包括多个控制电极的下层、包括多个触觉电极的上层、在下层和上层之间的中间层,其中触觉电极未被导电连接到控制电子器件。
在另一个实施例中,触觉电极可以彼此不电连通。
在另一个实施例中,每个触觉电极可以镜像控制电极。
在另一个实施例中,每个触觉电极的宽度可以大于指尖的皮肤上的凸起物(asperity)之间的特征距离。
在另一个实施例中,每个触觉电极可以是菱形的并且可以与对应的菱形控制电极对准。
在另一个实施例中,每个触觉电极可以与至少一个触觉电极互连。
在另一个实施例中,每个触觉电极可以是哑铃形的。
在另一个实施例中,每个触觉电极可以具有比每个控制电极的间距更小的间距。
在另一个实施例中,每个控制电极的间距可以是大约5mm,并且每个触觉电极可以是5mm宽。
在另一个实施例中,触觉电极可以分组,每组触觉电极具有不同电荷。
本公开的另一个实施例包括一种创建触觉触摸屏的方法,该方法包括:形成包括多个触觉电极的上层、形成包括多个控制电极的下层、在下层和上层之间形成中间层,其中触觉电极未被导电连接到控制电子器件。
在另一个实施例中,触觉电极可以彼此不电连通。
在另一个实施例中,每个触觉电极可以镜像控制电极。
在另一个实施例中,每个触觉电极的宽度可以大于指尖的皮肤上的凸起物之间的特征距离。
在另一个实施例中,每个触觉电极可以是菱形的并且可以与对应的菱形控制电极对准。
在另一个实施例中,每个触觉电极可以与至少一个触觉电极互连。
在另一个实施例中,每个触觉电极可以是哑铃形的。
在另一个实施例中,每个触觉电极可以具有比每个控制电极的间距更小的间距。
在另一个实施例中,每个控制电极的间距可以是大约5mm,并且每个触觉电极可以是5mm宽。
在另一个实施例中,触觉电极可以分组,每组触觉电极具有不同电荷。
附图说明
图1描绘了下层中的控制电极的布置;
图2描绘了顶层上的“小”浮动电极的布置;
图3描绘了顶层中的电极的一种布置的示意性表示;
图4A描绘了“哑铃形”浮动电极并且图示了它如何可以用于平铺顶层;
图4B描绘了来自图4A的浮动电极的布置;
图5A描绘了“星形”浮动电极并且图示了它如何可以用于平铺顶层;
图5B描绘了来自图5A的浮动电极的布置;
图6A描绘了“4×4”浮动电极并且图示了它如何可以用于平铺顶层;
图6B描绘了来自图6A的浮动电极的布置;
图7A描绘了“5×5”浮动电极并且图示了它如何可以用于平铺顶层;
图7B描绘了来自图7A的浮动电极的布置;
图8描绘了电极图案的另一个实施例并且图示了它如何可以用于平铺顶层或底层;
图9描绘了用于制作电连接电极的方法;
图10是使用图9的电极体系架构的触觉触摸屏的横截面图;
图11描绘了制造触觉触摸系统的过程的示意性表示。
具体实施方式
本公开涉及具有电极层的触觉设备,该电极层在不直接接收触觉信号的情况下生成触觉效果。这些电极被称为“浮动的(floating)”,因为它们未被导电连接到任何信号源或地或设备地。在基板的触摸表面(诸如触摸屏组件的盖透镜)上提供电极的这个“上层”。通常,上层由覆盖层覆盖,覆盖层可以是透明的。覆盖层可以是硬的透明涂层,诸如像玻璃的蓝宝石,并且它可以是多层涂层,其中一些层提供折射率匹配、抗反射、防眩光、疏油、抗划伤或抗细菌功能,如本领域中已知的。覆盖层可以具有覆盖上层中的触觉电极的光滑表面,或者它可以具有纹理,以便改善光学或触知属性。在一个实施例中,覆盖层、上层和位于上层下方的介电层安装在触摸屏的顶表面上。
当人的手指或其它附肢放置在上层上的一个或多个电极上方时,产生触觉效果,并且上层中位于手指下方的至少一个但可能多个电极的电势不同于手指的电势。在这种情况下,在手指和触摸表面之间生成吸引力,这趋于将手指拉动到与触摸表面更紧密的接触,从而修改摩擦。摩擦的这种变化——其可以作为时间或手指位置或其它变量的函数被调节——被经历为触觉效果。
在本发明中,上层中的电极不彼此导电连接,或导电连接到控制电子器件。但是,还提供了控制电极的“下层”,该“下层”导电连接到控制电子器件。在本发明中,经由下层上的电极引入用于提供触觉以及触摸感测的电信号。上层和下层被中间层隔开,该中间层可以是透明的。中间层通常足够厚,以便为下层提供机械保护。在一个实施例中,中间层的厚度在10μm至10mm之间。
图1描绘了触觉设备的低级别中的控制电极的典型布置。这种在本领域中众所周知的布置由两个电极轴组成。电极102沿着第一轴定向并经由第一信号线106连接,并且电极104沿着通常正交的第二轴定向并通过第二信号线108连接。这种布置(在没有任何顶层电极的情况下)常常用于感测触摸位置。
使用两种方法,自电容和互电容,来检测触摸设备中的位置。自电容方法由对每条单个线路的电压改变给定量所需的电流或电荷的一系列测量组成。如果手指放在电极附近,那么它将更改电流或电荷测量,从而给出信号。可以通过检查两个轴上的这些信号来推断触摸位置。互电容方法要求将电极的一个轴视为发射器,将电极的第二轴视为接收器。可以将电压施加到传输电极,并且可以在每个接收电极处测量结果所得的信号,通常是电荷或电流。如果手指放置在第一轴上的电极与第二轴上的另一个电极的交叉点附近,那么它将更改接收电极上的信号。值得注意的是,两种感测策略可以与本发明结合使用,但是上层电极的存在可以修改实现的细节。
控制电极102和104还可以用于引入触觉信号。例如,施加到一个控制电极的电压将经由电容耦合更改上层中每个浮动电极的电势。这种电势的变化可以造成相对于人的手指的电势差,从而导致如上所述的摩擦的变化。使用单个控制电压(相对于某个地,诸如地球地或触摸设备的局部地)被称为“单极”操作。触觉效果也可以是双极的,在这种情况下,它是由在分开的控制电极102和104上同时使用正电压和负电压(相对于某个地,诸如地球地或触摸设备的局部地)造成的。例如,正电压可以经由信号线106施加到第一轴上的控制电极102,并且负电压可以经由信号线108施加到第二轴上的控制电极104。在没有上层的情况下,无论手指或身体的电势如何,放置在电极102和104上方的触摸表面上并且靠近它们相交的位置的手指将经历触觉效果。但是,这种效果的强度将取决于中间层的厚度,随着中间层变厚而减小。但是,同样的策略也可以用本发明实现(甚至用更厚的中间层),但重要的是确保从下层到上层的电容耦合被配置为使得上层上的浮动电极可以采用彼此不同的电势。在下文中,我们教导适当的电极配置。
在一个实施例中,浮动电极的配置与控制电极的配置完全相同(例如,如图1中所示)。唯一的区别是没有将浮动电极连接到控制电子器件的信号线106、108。换句话说,浮动电极可以彼此不电连通。此外,两层可以对准,使得每个浮动电极直接位于对应的控制电极上方。这种“镜像”布置建立了从每个控制电极到其对应的浮动电极的强电容耦合,使得施加到控制电极的信号很大程度地被传递到浮动电极。这种方法的优点是浮动电极可以被认为是控制电极的延伸,并且可以使用用于感测和触觉(以及同时感测和触觉)的已知技术而无需修改。在另一个实施例中,浮动电极的配置不同于控制电极的配置。
“镜像”方法的缺点在于浮动电极不能由单层导电材料制造,因为需要一个轴跨越另一个轴。虽然可以使用已知技术(诸如两个紧密间隔的子层或导电桥),但这些增加了成本和复杂性。而且,某些技术(诸如桥)可能对于前表面实现而言太脆弱。出于这些原因,优选的是由单层导电材料形成浮动电极而没有桥。
图2描绘了浮动电极的单层集合的一个实施例。在这里,浮动电极202可以具有几乎任何形状,但是远小于控制电极204的间距。例如,如果控制电极204的间距是5mm,那么浮动电极202可以各自跨大约0.5mm。浮动电极202的小尺寸意味着它们不会在表面上横向传送量大到足以干扰感测的电荷。不过,只要浮动电极202的宽度大于指尖皮肤上的凸起物之间的特征距离,电荷就将横向传送到皮肤和表面之间接触最紧密的那些位置。在这些位置处,与完全不存在浮动电极202的情况相比,将生成强法向力。因此,即使非常小的浮动电极202也将具有增加触觉效果的强度的益处。
虽然小浮动电极202提供一些益处,但是更大的浮动电极会产生更大的益处,因为更大的尺寸将增加与下层上的控制电极的电容耦合。图3描绘了浮动电极303的单层集合的另一个实施例,其中每个电极303的尺寸被增加。在这里,每个浮动电极302是单个菱形贴片,其与下面的控制电极102或104的菱形形状对准。这个实施例具有简单、低制造成本和健壮性的优点。与上述实施例一样,这些浮动电极302不会干扰感测策略。此外,越大的浮动电极302提供的与下层的电容耦合越强。应当注意的是,从控制电极102或104到每个浮动电极302的连接强度取决于重叠的面积。在这个实施例中,重叠的面积是单个菱形的尺寸。虽然这比前一实施例中看到的要大得多,但它仍然比与菱形的整行或列相关联的重叠面积小得多,如在“镜像”方法中那样。
增加重叠的面积的一种方式是对浮动电极302采用较大的菱形形状。例如,菱形的宽度可以是两倍,从而提供四倍的面积。在这种情况下,浮动菱形将在第一轴上的一个控制电极102和第二轴上的一个控制电极104的交叉处对准。为了产生强烈的触觉信号,相同的电压将施加到两个控制电极102和104中的每一个。但是,这种方法的困难在于手指可能不够大以至于不能位于超过一个这样更大的菱形电极之上。如上所述,手指优选地位于至少两个具有不同电势的电极之上。
因此,替代实施例由“平铺”贴片组成,如图4-7中所示。在这里,每个浮动电极是通过两个或更多个菱形的互连制成的瓦片,其中菱形与下面的控制电极的菱形形状对准。而且,给定瓦片上的所有菱形与电极的单个轴上的下面的菱形对准。因此,在瓦片中也看到如图1中描绘的下面的电极的“棋盘”图案。瓦片可以以一族不同的尺寸产生。
这族浮动电极中的最小瓦片各自由两个以“哑铃”形状连接的菱形组成,如图4A中所示。两个菱形402和404经由迹线406连接,从而形成基本上为“哑铃”形状。每个哑铃可以在单个控制电极102或104上与两个菱形对准,或者在两个相邻的控制电极102或104上与两个菱形对准。在任一情况下,下面的菱形应当被控制到基本相同的电压,以便产生最强的可能触觉效果。此外,可以使在两个不同轴上与控制电极102和104对准的哑铃具有不同的电势。
图4B描绘了哑铃的布置,其中第一哑铃集408具有与第二哑铃集410相反的电荷。作为说明性示例,第一哑铃集408可以具有正电荷而第二哑铃集410可以具有负电荷。相邻的第一哑铃集408被接合第二哑铃集410中的电极的迹线406分开。
图5A描绘了在同一族中具有较大瓦片的一组浮动电极502的一个实施例。在这里,瓦片由位于3×3棋盘图案的对角线上的菱形组成。要注意的是,仍然有可能用这些瓦片平铺平面,并且仍然有可能将每个瓦片与单个轴上下面的电极对准。这种较大的瓦片图案具有与下面的电极具有更大重叠面积的优点。与这个实施例一致,中心电极504经由迹线508连接到至少四个径向电极506。在一个实施例中,每个径向电极506之间的角度基本相同。在另一个实施例中,每个径向电极506之间的角度在每个径向电极506之间变化。
在一个实施例中,控制电极102和104以及浮动电极502具有基本相同的尺寸和形状。在另一个实施例中,控制电极102和104以及浮动电极502具有不同的尺寸和形状。在另一个实施例中,上层包括一个浮动电极。在另一个实施例中,上层包括多个浮动电极。
图5B描绘了各组浮动电极502的布置的一个实施例。每组浮动电极502具有与相邻组的浮动电极502不同的电荷。相邻组的浮动电极502上另外的径向电极506被迹线508分开。在一个实施例中,由浮动电极502生成的触觉信号是单极的。在另一个实施例中,由浮动电极生成的触觉信号是双极的。
图6和7示出了这族中接下来的两个更大的瓦片图案,它们分别来自4×4和5×5棋盘。遵循相同的基本“分支辐条(branched spoke)”图案,甚至更大的图案也是可能的。越大的图案具有增加来自下面的控制电极的电容耦合的优点,但是可以使感测更加困难:由于浮动电极的尺寸,它们将把手指更强地耦合到整个集合的控制电极,从而使得位置信息更加弥散。
图8和9描绘了电极布置的另一个实施例,该布置结合了大浮动电极的益处与高分辨率感测的需要。这种方法完全省去了菱形形状,而是代替地使用镜像的瓦片,因此两层上的瓦片具有相同的形状并对准。而且,电极的尺寸设计成提供从下层到上层的强电容耦合,其中瓦片足够大,使得覆盖触摸表面所需的总数是合理的(例如,与由使用x和y个电极的传统图案使用的电极总数相当),并且每个瓦片以使得手指总是与多个电极接触的方式互锁,并且总是有可能根据测得的信号来计算独特的手指位置。
图8是可以用于控制电极和浮动电极的电极形状的示例。每个电极800包括由第一电极802和第二电极804组成的图案。第一电极802基本上是星形的,并且第二电极804具有与星形相互缠绕的形状。在一个实施例中,第二电极的形状类似于“小花(floret)”。在一个实施例中,第二电极804是彼此互锁的大的分支形状。值得注意的是,小花的空间范围远大于它们的间隔。例如,如图8中所描绘的,第二电极804沿着水平轴的宽度几乎是第二电极804的水平间距的两倍。在另一个实施例中,第二电极804的水平和垂直间距可以是20mm,并且被单个第二电极804覆盖的面积可以是大约380mm2。相反,如图1中所示的菱形图案可以具有5mm的对角线,每个菱形可以具有12.5mm2的面积。因此,一个第二电极804具有与大约30个菱形或者长度为150mm的电极相同的面积。第一电极802远小于第二电极804并且不互锁,但是它们提供可以用于计算准确触摸位置的附加信号。在一个实施例中,底层上的每个第二电极804被单独控制,但是第一电极802可以被成组控制。例如,一种可能性是具有四组第一电极802。沿着每个水平行,交替的第一电极802将在相同的组中被控制,并且沿着每个垂直列,交替的第二电极将在相同的组中被控制。将第一电极802分组在一起减少了控制第一电极802所需的控制通道的数量。在正常操作期间,当第一电极802被手指或其它附件接合时,来自第一电极802的信号和来自一个或多个第二电极804的信号的组合将用于确定触摸的确切位置。
无论手指放置在顶表面上的哪个位置,它都将紧邻多个第二电极804以及可能紧邻第一电极802电极。重要的是,来自每个可能的手指位置的信号是独特的,这使得有可能基于从电极获得的信号来计算手指位置。存在多种方式来执行这种从信号中提取触摸坐标的“逆”计算。例如,一种方法是为每个触摸位置存储信号集,然后使用这些存储的信号作为返回触摸坐标的查找表。此外,有利的是存储每个触摸位置处的梯度集。梯度信息可以被表示为特定于位置的雅可比矩阵(Jacobian Matrix):
在这里,[δs]表示从位置(x,y)附近的手指位置[δx,δy]T的微小变化可以预期的信号增量,并且J(x,y)是雅可比矩阵。当进行测量时,通过在查找表中找到最近的信号集,可以找到近似的xy位置,然后可以通过计算上面的等式的伪逆并且将其乘以测得的信号与查找出的信号之间的差,然后将结果添加到查找出的xy位置来改善那个近似位置。应当注意的是,可以预先计算伪逆并将其作为查找表的一部分存储在存储器中。当然,也可以使用估计触摸位置的其它方法。例如,可以使用神经网络。
基于手指位置,可以选择电极来驱动触觉。作为说明性示例,可以如上所述使用控制电极来确定触摸表面与附件的接合位置,并且在与控制电极分离并且与控制电极导电交互的层上的浮动电极可以执行触觉功能,如前面讨论过的。一般而言,优选的是以一个极性驱动手指下方区域的大约一半,并且以相反极性驱动该区域的大约一半。还优选的是对相同极性的电极进行分组,使得它们之间的互电容增强信号强度。
可以如图9和10中所示的那样进行与各种电极的电连接。首先参考图10,触摸面板包括底层1002、绝缘层1004、互连层1006、中间层1008、上层1010和覆盖层1012。底层1002可以利用使用本领域已知的许多材料和工艺中的任何一种的绝缘层1004涂覆。例如,绝缘层1004可以由透明聚合物制成。绝缘层1004可以被丝网印刷、光刻蚀刻或以其它方式图案化,以便留下可以接近底层上的每个电极的开口。互连层1006可以施加到绝缘层1004的表面,然后被图案化,以产生与每个电极的电连接。可替代地,可以使用银纳米线或肉眼不易看到的其它导体来形成电连接。还可以施加用于钝化、互连保护、折射率匹配和与电噪声的隔离(未示出)的附加层。
图9描绘了互连层1006上的电连接图案的一个实施例。第一连接线902将一行中交替的第一电极802与连接未连接到第一连接线902的第一电极802的第二连接线904连接。每条连接线902和904由透明导体制成。附加的连接线906、908、910和912各自连接到一个第二电极804。此外,通常存在小的删除线,而不是这些导体之间的宽间隙。在优选实施例中,删除线的宽度将是100微米,但也可以使用更细或更粗的线。删除线的形状也可以是略微不规则的,而不是如图所示的完全笔直,以使视觉检测更加困难。图9中的半圆形和圆形区域指示互连电极将穿过绝缘层并与底层的电极连接的位置。
如图9中所指示的,如果期望,那么可以将所有电连接带到一个边缘。可替代地,可以沿着多个边缘进行电连接。图9还图示了被分成四组的第一电极802的分组。与每个组相关联的是汇流条914、916、918或920,其可以是底层的一部分。在其它实施例中,根据需要执行第一电极802的互连,以使用其它方法(诸如但不限于柔性电缆或者在控制板或芯片上)进行分组。
许多其它图案也可以用于形成上浮动电极。例如,有可能省去第一电极802并仅使用第二电极804。第二电极804的小花可以采用平铺表面的几乎任何形状。唯一重要的是它们足够好地电容耦合到下电极以产生必要的触觉和感测信号。
这里呈现的浮动上层1010和受控下层1012体系架构的重要益处在于它容忍对触摸屏的典型形式的损坏,诸如划痕。这是因为,其一,下层电极1002由相对厚的中间透明层1008保护,其二,上层电极1010经由到下层电极1002的电容耦合而不是到控制电子器件的导电耦合来获得其信号。横切电极的划痕会损害导电耦合,而电容耦合则不会。利用本发明,对顶层电极1010的损坏会导致某种性能(例如,触觉效果的强度)损失,但是不应当完全阻止或者触摸感测或者触觉输出起作用。除了保护免受划痕的影响之外,本发明还类似地提供保护免受其它形式的损坏,诸如磨损、潮湿、化学品、静电放电,以及甚至覆盖透镜的完全断裂(假定下层是与覆盖透镜分离的部件)的影响。
图11描绘了用于制造触觉设备的过程的示意性表示。在步骤1102中,中间层1008的顶表面被涂覆有上电极层1010。在步骤1104中,从上层1010图案化浮动电极。浮动电极可以在单件、多层(multi-up)(母板)或混合过程(首先从片材形式开始,并且在该过程中的某个地方切割成单个传感器并继续单件处理)中进行处理。可以使用本文描述的任何方法形成浮动电极。在步骤1106中,将覆盖层1012施加在顶层1010中的浮动电极上方。覆盖层1012可以包括诸如疏油、蓝宝石状玻璃、折射率匹配、抗菌涂层和本领域中已知的其它涂层之类的膜。在步骤1108中,在中间层1008的相对侧上形成标准P-cap传感器(如图1中所描绘的)(可替代地,有可能将标准P-cap传感器层压到玻璃的相对侧;而且可替代地,对于某些实施例,有可能在底层上形成镜像电极)。
由于硬质外涂层(hard overcoat)在P-帽传感器层存在于玻璃上之前被处理,因此可以在外涂层的沉积或退火中使用更高的处理温度,这导致更好的性能和更广泛的材料选择。
层压P-cap传感器和使用包含触觉电极的覆盖片材是实现本发明的另一种方式。向现有的P-cap传感器添加覆盖片材/透镜使得其成本有效并且可以轻松地将触觉添加到现场已有的传感器中。在这种情况下,需要将用于增强触觉信号的额外电路添加到电子器件。可替代地,可以从标准的P-cap触摸屏开始,并用触觉电极和可选的外涂层涂覆相对的(触摸)表面。
中间层厚度可以在5微米至6mm的范围内,但是优选的厚度为100至500微米。厚度取决于所需的机械强度、处理能力、所需的触觉信号强度、最大施加电压、光学特性等。
如本领域普通技术人员将认识到的,本公开可以在各种静电设备上实现,以降低驱动电压并保持相同的期望触觉效果。这种设备的示例是静电卡盘、基于电粘附的设备(机器人、材料处理等)。在一个实施例中,触摸表面是刚性表面。在另一个实施例中,触摸表面是柔性表面,包括平坦的、曲线的、弯曲的,变形的或其它柔性表面。另外,由于触觉电极不需要直接连接到触觉信号,因此可以反复堆叠电极/非导电基板,以在底部电极和最外部电极之间获得极大的分离。
在本公开中,词语“一”或“一个”应被视为包括单数和复数。相反,任何对多个项目的提及都应酌情包括单数。
应当理解的是,对本文公开的目前优选的实施例的各种改变和修改对于本领域技术人员而言是显而易见的。这种改变和修改可以在不脱离本公开的精神和范围的情况下并且在不会减少其预期的优点的情况下进行。因此,旨在这些改变和修改由所附权利要求覆盖。

Claims (20)

1.一种触觉触摸屏,包括:
下层,包括多个控制电极;
上层,包括多个触觉电极;
在下层和上层之间的中间层,
其中触觉电极未被导电连接到控制电子器件。
2.如权利要求1所述的触觉触摸屏,其中触觉电极彼此不电连通。
3.如权利要求1所述的触觉触摸屏,其中每个触觉电极镜像控制电极。
4.如权利要求1所述的触觉触摸屏,其中每个触觉电极的宽度大于指尖的皮肤上的凸起物之间的特征距离。
5.如权利要求1所述的触觉触摸屏,其中每个触觉电极是菱形的并且与对应的菱形控制电极对准。
6.如权利要求5所述的触觉触摸屏,其中每个触觉电极与至少一个触觉电极互连。
7.如权利要求1所述的触觉触摸屏,其中每个触觉电极是哑铃形的。
8.如权利要求1所述的触觉触摸屏,其中每个触觉电极具有比每个控制电极的间距更小的间距。
9.如权利要求8所述的触觉触摸屏,其中每个控制电极的间距是大约5mm,并且每个触觉电极是5mm宽。
10.如权利要求1所述的触觉触摸屏,其中触觉电极被分组,每组触觉电极具有不同电荷。
11.一种创建触觉触摸屏的方法,所述方法包括:
形成包括多个触觉电极的上层;
形成包括多个控制电极的下层;
在下层和上层之间形成中间层,
其中触觉电极未被导电连接到控制电子器件。
12.如权利要求11所述的方法,其中触觉电极彼此不电连通。
13.如权利要求11所述的方法,其中每个触觉电极镜像控制电极。
14.如权利要求11所述的方法,其中每个触觉电极的宽度大于指尖的皮肤上的凸起物之间的特征距离。
15.如权利要求11所述的方法,其中每个触觉电极是菱形的并且与对应的菱形控制电极对准。
16.如权利要求15所述的方法,其中每个触觉电极与至少一个触觉电极互连。
17.如权利要求11所述的方法,其中每个触觉电极是哑铃形的。
18.如权利要求1所述的触觉触摸屏,其中每个触觉电极具有比每个控制电极的间距更小的间距。
19.如权利要求18所述的方法,其中每个控制电极的间距是大约5mm,并且每个触觉电极是5mm宽。
20.如权利要求11所述的方法,其中触觉电极被分组,每组触觉电极具有不同电荷。
CN201780040447.3A 2016-05-27 2017-05-26 触觉触摸屏及其操作方法 Active CN109416582B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662342594P 2016-05-27 2016-05-27
US62/342,594 2016-05-27
PCT/US2017/034750 WO2017205785A1 (en) 2016-05-27 2017-05-26 Haptic touch screen and method of operating the same

Publications (2)

Publication Number Publication Date
CN109416582A true CN109416582A (zh) 2019-03-01
CN109416582B CN109416582B (zh) 2022-05-27

Family

ID=65463400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780040447.3A Active CN109416582B (zh) 2016-05-27 2017-05-26 触觉触摸屏及其操作方法

Country Status (2)

Country Link
EP (1) EP3465390A4 (zh)
CN (1) CN109416582B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159893A1 (en) * 2004-01-19 2005-07-21 Kazuyoshi Isaji Collision possibility determination device
CN101727226A (zh) * 2008-10-10 2010-06-09 乐金显示有限公司 触摸传感设备以及校正其输出的方法
CN102208144A (zh) * 2011-05-24 2011-10-05 中兴通讯股份有限公司 屏幕触感功能的实现方法及装置
CN102667692A (zh) * 2009-12-18 2012-09-12 辛纳普蒂克斯公司 具有欧姆接缝的跨电容传感器装置
CN202694260U (zh) * 2012-05-10 2013-01-23 孙晓颖 一种基于静电力触觉再现的装置
US20130063394A1 (en) * 2011-09-09 2013-03-14 Hiroshi Wakuda Tactile stimulus generation apparatus
US20130106758A1 (en) * 2011-10-26 2013-05-02 Nokia Corporation Apparatus and Associated Methods
CN104714688A (zh) * 2013-12-13 2015-06-17 乐金显示有限公司 单片触觉型触摸屏、其制造方法以及包含其的显示装置
WO2015127270A2 (en) * 2014-02-21 2015-08-27 Northwestern University Haptic display with simultaneous sensing and actuation
US20150355710A1 (en) * 2014-06-05 2015-12-10 Immersion Corporation Systems and Methods for Induced Electrostatic Haptic Effects
US20160070399A1 (en) * 2005-03-04 2016-03-10 Apple Inc. Multi-functional hand-held device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050159893A1 (en) * 2004-01-19 2005-07-21 Kazuyoshi Isaji Collision possibility determination device
US20160070399A1 (en) * 2005-03-04 2016-03-10 Apple Inc. Multi-functional hand-held device
CN101727226A (zh) * 2008-10-10 2010-06-09 乐金显示有限公司 触摸传感设备以及校正其输出的方法
CN102667692A (zh) * 2009-12-18 2012-09-12 辛纳普蒂克斯公司 具有欧姆接缝的跨电容传感器装置
CN102208144A (zh) * 2011-05-24 2011-10-05 中兴通讯股份有限公司 屏幕触感功能的实现方法及装置
US20130063394A1 (en) * 2011-09-09 2013-03-14 Hiroshi Wakuda Tactile stimulus generation apparatus
US20130106758A1 (en) * 2011-10-26 2013-05-02 Nokia Corporation Apparatus and Associated Methods
CN202694260U (zh) * 2012-05-10 2013-01-23 孙晓颖 一种基于静电力触觉再现的装置
CN104714688A (zh) * 2013-12-13 2015-06-17 乐金显示有限公司 单片触觉型触摸屏、其制造方法以及包含其的显示装置
WO2015127270A2 (en) * 2014-02-21 2015-08-27 Northwestern University Haptic display with simultaneous sensing and actuation
US20150355710A1 (en) * 2014-06-05 2015-12-10 Immersion Corporation Systems and Methods for Induced Electrostatic Haptic Effects

Also Published As

Publication number Publication date
EP3465390A4 (en) 2019-12-25
EP3465390A1 (en) 2019-04-10
CN109416582B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
KR102443039B1 (ko) 햅틱 터치스크린 및 그 제조방법
JP5753084B2 (ja) 複合電極の製造方法
US11886641B2 (en) Method and apparatus for finger position tracking and haptic display using conductive islands
US6970160B2 (en) Lattice touch-sensing system
US9817523B2 (en) Capacitive touch panel for mitigating and/or exaggerating floating condition effects
US8723818B2 (en) Touch screen poly layer electrode distribution
JP2012515967A (ja) 入力装置
CN105138988A (zh) 互容式指纹识别器件及制备方法、显示面板及显示设备
WO2019030987A1 (ja) 触覚提示パネル、触覚提示タッチパネル、および触覚提示タッチディスプレイ
CN110502152A (zh) 触控面板、触控显示面板及触控显示装置
KR20190044625A (ko) 터치 패널용 부재
CN105549787A (zh) 触控基板及其制作方法、触控装置
US20140104234A1 (en) Capacitance-type touch sensor
CN109416582A (zh) 触觉触摸屏及其操作方法
CN104199582B (zh) 电容式触控感应器及电容式触控面板
US20110080249A1 (en) Layout For Inductive Loops Of The Electromagnetic-Induction System
US11520406B2 (en) Bipolar projected haptics with balanced loading
US9703442B2 (en) Position detection device
CN105323962A (zh) 软性电子结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant