CN109413302A - 一种用于像素响应频域测量的动态干涉条纹畸变矫正方法 - Google Patents

一种用于像素响应频域测量的动态干涉条纹畸变矫正方法 Download PDF

Info

Publication number
CN109413302A
CN109413302A CN201811043632.0A CN201811043632A CN109413302A CN 109413302 A CN109413302 A CN 109413302A CN 201811043632 A CN201811043632 A CN 201811043632A CN 109413302 A CN109413302 A CN 109413302A
Authority
CN
China
Prior art keywords
pixel
interference fringe
dynamic interference
dynamic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811043632.0A
Other languages
English (en)
Other versions
CN109413302B (zh
Inventor
曹阳
李保权
李海涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Science Center of CAS
Original Assignee
National Space Science Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Science Center of CAS filed Critical National Space Science Center of CAS
Priority to CN201811043632.0A priority Critical patent/CN109413302B/zh
Publication of CN109413302A publication Critical patent/CN109413302A/zh
Application granted granted Critical
Publication of CN109413302B publication Critical patent/CN109413302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise

Abstract

本发明公开了一种用于像素响应频域测量的动态干涉条纹畸变矫正方法,所述方法包括:步骤1)获得预处理后的静态干涉条纹图像;步骤2)获得静态干涉条纹的真实空间频率;步骤3)CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组动态干涉条纹图像;获得预处理后的动态干涉条纹图像;步骤4)计算动态干涉条纹的受到卷帘快门影响的空间频率以及每个像素输出的对比度和相位;步骤5)利用静态干涉条纹的真实空间频率和受到卷帘快门影响的空间频率,计算动态干涉条纹的移动速度;步骤6)利用静态干涉条纹的真实空间频率和动态干涉条纹的移动速度,对步骤4)中所得的每个像素输出的相位进行矫正,得到畸变校正后的像素输出相位。

Description

一种用于像素响应频域测量的动态干涉条纹畸变矫正方法
技术领域
本发明涉及天文学和空间技术领域,特别涉及一种用于像素响应测量的动态干涉条纹畸变矫正方法。
背景技术
近年来,随着超大规模集成电路工艺的发展,CMOS图像传感器的分辨率、灵敏度、量子效率等技术指标有了大幅提升,再加上其本身体积小、质量轻、功耗低、读出帧率高、抗辐照能力强、造价低等优势,CMOS图像传感器在很多领域已经成为CCD的有力竞争对手,已被广泛应用于天文成像、光谱、天体测量、空间技术等领域。常见的CMOS图像传感器多采用卷帘快门,除了成本和工艺的限制外,相比于采用全局快门的CMOS,采用卷帘快门的CMOS在灵敏度、动态范围、噪声、帧率等方面有很大优势。但采用卷帘快门带来的一个问题是,在传感器和拍摄目标之间有相对运动时,所拍摄的图像会存在有几何畸变,在很多应用中需要对这种畸变进行矫正。
为了提高相应测量系统的精度,许多对图像传感器像素输入光强分布和输出分布之间关系进行标定的方法和技术被提了出来。但是这些方法考虑的最小单元均为1个像素,也就是假设一个像素内部不同位置对光的响应是相同的。但实际上,由于光刻工艺和相邻像素的干扰等问题,像素内不同位置的量子效率(即像素响应函数)是不相同的,很多情况下不能忽略这个问题。尤其是在天体测量和天文光度测量等应用当中,所成图像多为降采样或临界采样图像,忽略像素内部响应不均匀性会对测量结果产生很大影响。目前唯一能够对探测器阵列全部像素的响应函数进行标定的方法只有频域标定法。这类方法利用外差式激光干涉装置产生具有频差的两束激光,从而在探测器表面形成动态干涉条纹,通过对条纹图像的处理可以对探测器的像素响应频域特性进行反演,如图1所示。而如果用采用卷帘式快门的CMOS图像处理器采集动态干涉条纹图像,卷帘快门效应会使得图像产生几何畸变,在实际应用过程中需要对畸变图像进行矫正。
发明内容
本发明的目的在于克服用动态干涉条纹对卷帘快门CMOS图像传感器像素响应进行标定时图像存在卷帘快门畸变的缺陷,从而提供一种用于像素响应频域测量的动态干涉条纹畸变矫正方法。
为了实现上述目的,本发明提供了一种用于像素响应测量的动态干涉条纹畸变矫正方法,所述方法包括:
步骤1)调节激光束频差为0,在CMOS图像传感器表面产生静态干涉条纹,CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组静态干涉条纹图像;对静态干涉条纹图像进行预处理,获得预处理后的静态干涉条纹图像;
步骤2)对步骤1)所得到的预处理后的静态干涉条纹图像进行处理,得到静态干涉条纹的真实空间频率;
步骤3)调节激光束存在一定频差,保持实验条件与步骤1)相同,在CMOS图像传感器表面产生动态干涉条纹,CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组动态干涉条纹图像;对动态干涉条纹图像进行预处理,获得预处理后的动态干涉条纹图像;
步骤4)对步骤3)所得到的预处理后的动态干涉条纹图像进行处理,得到动态干涉条纹的受到卷帘快门影响的空间频率,以及每个像素输出的对比度和相位;
步骤5)利用步骤2)所得的静态干涉条纹的真实空间频率,和步骤4)所得到的受到卷帘快门影响的空间频率,计算得到动态干涉条纹的移动速度;
步骤6)利用步骤2)所得的静态干涉条纹的真实空间频率和步骤5)得到的动态干涉条纹的移动速度,对步骤4)中所得的每个像素输出的相位进行矫正,得到畸变校正后的像素输出相位。
作为上述方法的一种改进,所述步骤1)和步骤3)的预处理包括:减去暗场图像、扣除暗噪声和本底噪声,进行平场修正,将所有图像进行平均减少随机噪声。
作为上述方法的一种改进,所述步骤2)的具体实现过程为:针对预处理之后的静态干涉条纹图像,利用下式(1)对其进行拟合,得到的静态干涉条纹的真实空间频率的横向分量kx和纵向分量ky
gmn=B(1+Vcos(kxn+kym+φ0)) (1)
其中,m为像素的行序号,n为像素的列序号,gmn是静态条纹图像中第(m,n)像素的值,B为输出值的直流偏置值,V为输出的对比度,φ0为初始相位值。
作为上述方法的一种改进,所述步骤4)具体包括:
步骤4-1)对步骤3)的动态干涉条纹图像的(m,n)像素的输出值gmn(t),分别用最小二乘法拟合,求得(m,n)像素输出的对比度Vmn和相位
步骤4-2)对相位进行解包裹,得到所有像素输出的解包裹相位
步骤4-3)对所得的解包裹相位用下式(3)进行拟合,得到动态干涉条纹的受到卷帘快门影响的空间频率的横向分量和纵向分量
作为上述方法的一种改进,所述步骤5)的具体实现过程为:使用静态干涉条纹的真实空间频率横向分量kx和纵向分量ky,和动态干涉条纹的受到卷帘快门影响的空间频率横向分量和纵向分量计算动态干涉条纹移动速度的横向分量vx和纵向分量vy
其中,td是卷帘快门相邻两行像素曝光时刻的差值。
作为上述方法的一种改进,所述步骤6)的具体实现过程为:
矫正后的像素输出相位为:
本发明的优点在于:
本发明的方法具有计算方法简单、计算速度快,能够精确消除卷帘快门造成的影响等优点。
附图说明
图1是外差式激光干涉装置标定示意图;
图2是本发明的用于像素响应测量的动态干涉条纹畸变矫正方法的流程图。
具体实施方式
现结合附图对本发明作进一步的描述。
用外差式激光干涉装置产生的动态干涉条纹对卷帘快门CMOS图像传感器的像素响应特性进行标定时,由于干涉条纹的移动,采集的图像受到卷帘快门影响产生几何畸变,如果不对其进行校正,像素响应特性的测量精度会受到很大影响。
本发明充分考虑受卷帘快门影响的干涉条纹图像的性质,提出一种用于像素响应测量的动态干涉条纹畸变矫正方法。
参考图2,本发明的一种用于像素响应测量的动态干涉条纹畸变矫正方法,包括以下步骤:
步骤1)、调节激光束频差为0,在CMOS图像传感器表面产生静态干涉条纹,CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组静态干涉条纹图像。对静态干涉条纹图像进行预处理,减去暗场图像扣除暗噪声和本底噪声,进行平场修正,将所有图像进行平均减少随机噪声,最终获得预处理后的静态干涉条纹图像。
步骤2)、对步骤1)所得到的预处理后的静态干涉条纹图像进行处理,得到干涉条纹的真实空间频率。
步骤3)调节激光束存在一定频差,保持其他实验条件与步骤1)相同,在CMOS图像传感器表面产生动态干涉条纹,CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组动态干涉条纹图像。对动态干涉条纹图像进行预处理,减去暗场图像扣除暗噪声和本底噪声,最终获得预处理后的动态干涉条纹图像。
步骤4)对步骤3)所得到的预处理后的动态干涉条纹图像进行处理,得到动态干涉条纹的受到卷帘快门影响的空间频率,以及每个像素输出的对比度和相位。
步骤5)利用步骤2)所得的干涉条纹的真实空间频率,和步骤4)所得到的受到卷帘快门影响的空间频率,计算得到动态干涉条纹的移动速度。
步骤6)利用步骤2)所得的干涉条纹的真实空间频率和步骤5)得到的动态干涉条纹的移动速度,对步骤4)中所得的每个像素输出的相位进行矫正,得到畸变校正后的像素输出相位。
下面对本发明方法中的各个步骤做进一步的说明。
在步骤2)中,静态干涉条纹图像不受卷帘快门影响。针对预处理之后的静态干涉条纹图像,利用下式(1)对其进行拟合,得到的干涉条纹的真实空间频率kx,ky
gmn=B(1+Vcos(kxn+kym+φ0)) (1)
其中(m,n)为像素的行数和列数,gmn是静态条纹图像中第(m,n)像素的值,kx、ky分别为干涉条纹空间频率的横向和纵向分量,B为输出值的直流偏置值,V为输出的对比度,φ0为初始相位值。
在步骤3)中,在动态干涉条纹照射下,卷帘快门CMOS传感器像素输出的表达式如下式(2)所示:
其中gmn(t)是t时刻(m,n)像素的输出值,Bmn为(m,n)像素输出值的直流偏置值,Vmn为(m,n)像素处条纹的对比度,为(m,n)像素的像素响应函数Qmn(x,y)的傅里叶变换,也就是像素响应函数的频域表示,td是卷帘快门相邻两行像素曝光时刻的差值,vx和vy是动态条纹移动速度的x轴方向和y轴方向的分量,Δω为两根光纤输出的频差。
在步骤4)中,根据公式(2)知每个像素的输出值均呈正弦曲线形状,对每一个像素的输出值,分别用最小二乘法拟合,求得每个像素输出的对比度Vmn和相位
对相位进行解包裹,得到所有像素输出的解包裹相位
对所得的解包裹相位用下式(3)进行拟合,得到动态干涉条纹的受到卷帘快门影响的空间频率
在步骤5)中,根据公式(2),可以知道使用条纹速度干涉条纹的真实空间频率kx,ky和受到卷帘快门影响的空间频率如何计算条纹移动速度,具体的计算方法如下式(4)(5):
在步骤6)中,可以知道,用动态干涉条纹对探测器的像素响应频域特性进行反演的关键是每个像素输出的对比度和相位的获取,因为它们当中分别包含了像素响应函数频谱的幅值信息和幅角信息。根据公式(2),卷帘快门不会对像素输出的对比度产生影响,因此不需要对对比度进行矫正;而卷帘快门会对像素输出的相位造成影响,因此在进行后续的像素响应频域特性反演之前,需要对像素输出的相位进行矫正,具体的矫正处理计算方法如下:
其中,是矫正后的像素输出相位,其中已去除了像素的位置影响和卷帘快门的影响。在步骤1)中,标定结果记为qmn,即第(m,n)像素的平场响应不均匀性。
最终Vmn就是卷帘快门畸变矫正的结果,可以用正常操作对其进行后续的像素响应频域特性反演处理。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种用于像素响应频域测量的动态干涉条纹畸变矫正方法,所述方法包括:
步骤1)调节激光束频差为0,在CMOS图像传感器表面产生静态干涉条纹,CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组静态干涉条纹图像;对静态干涉条纹图像进行预处理,获得预处理后的静态干涉条纹图像;
步骤2)对步骤1)所得到的预处理后的静态干涉条纹图像进行处理,得到静态干涉条纹的真实空间频率;
步骤3)调节激光束存在一定频差,保持实验条件与步骤1)相同,在CMOS图像传感器表面产生动态干涉条纹,CMOS图像传感器在一段时间内以固定帧频进行曝光采集一组动态干涉条纹图像;对动态干涉条纹图像进行预处理,获得预处理后的动态干涉条纹图像;
步骤4)对步骤3)所得到的预处理后的动态干涉条纹图像进行处理,得到动态干涉条纹的受到卷帘快门影响的空间频率,以及每个像素输出的对比度和相位;
步骤5)利用步骤2)所得的静态干涉条纹的真实空间频率,和步骤4)所得到的受到卷帘快门影响的空间频率,计算得到动态干涉条纹的移动速度;
步骤6)利用步骤2)所得的静态干涉条纹的真实空间频率和步骤5)得到的动态干涉条纹的移动速度,对步骤4)中所得的每个像素输出的相位进行矫正,得到畸变校正后的像素输出相位。
2.根据权利要求1所述的用于像素响应频域测量的动态干涉条纹畸变矫正方法,其特征在于,所述步骤1)和步骤3)的预处理包括:减去暗场图像、扣除暗噪声和本底噪声,进行平场修正,将所有图像进行平均减少随机噪声。
3.根据权利要求2所述的用于像素响应频域测量的动态干涉条纹畸变矫正方法,其特征在于,所述步骤2)的具体实现过程为:针对预处理之后的静态干涉条纹图像,利用下式(1)对其进行拟合,得到的静态干涉条纹的真实空间频率的横向分量kx和纵向分量ky
gmn=B(1+Vcos(kxn+kym+φ0)) (1)
其中,m为像素的行序号,n为像素的列序号,gmn是静态条纹图像中第(m,n)像素的值,B为输出值的直流偏置值,V为输出的对比度,φ0为初始相位值。
4.根据权利要求3所述的用于像素响应频域测量的动态干涉条纹畸变矫正方法,其特征在于,所述步骤4)具体包括:
步骤4-1)对步骤3)的动态干涉条纹图像的(m,n)像素的输出值gmn(t),分别用最小二乘法拟合,求得(m,n)像素输出的对比度Vmn和相位
步骤4-2)对相位进行解包裹,得到所有像素输出的解包裹相位
步骤4-3)对所得的解包裹相位用下式(3)进行拟合,得到动态干涉条纹的受到卷帘快门影响的空间频率的横向分量和纵向分量
5.根据权利要求4所述的用于像素响应频域测量的动态干涉条纹畸变矫正方法,其特征在于,所述步骤5)的具体实现过程为:使用静态干涉条纹的真实空间频率横向分量kx和纵向分量ky,和动态干涉条纹的受到卷帘快门影响的空间频率横向分量和纵向分量计算动态干涉条纹移动速度的横向分量vx和纵向分量vy
其中,td是卷帘快门相邻两行像素曝光时刻的差值。
6.根据权利要求5所述的用于图像传感器标定的动态干涉条纹畸变矫正方法,其特征在于,所述步骤6)的具体实现过程为:
矫正后的像素输出相位为:
CN201811043632.0A 2018-09-07 2018-09-07 一种用于像素响应频域测量的动态干涉条纹畸变矫正方法 Active CN109413302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811043632.0A CN109413302B (zh) 2018-09-07 2018-09-07 一种用于像素响应频域测量的动态干涉条纹畸变矫正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811043632.0A CN109413302B (zh) 2018-09-07 2018-09-07 一种用于像素响应频域测量的动态干涉条纹畸变矫正方法

Publications (2)

Publication Number Publication Date
CN109413302A true CN109413302A (zh) 2019-03-01
CN109413302B CN109413302B (zh) 2020-10-23

Family

ID=65464594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811043632.0A Active CN109413302B (zh) 2018-09-07 2018-09-07 一种用于像素响应频域测量的动态干涉条纹畸变矫正方法

Country Status (1)

Country Link
CN (1) CN109413302B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945209A (zh) * 2021-08-26 2022-01-18 北京控制工程研究所 一种基于高精度外差干涉的图像探测器像素位置偏差测量装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104320598A (zh) * 2014-11-06 2015-01-28 中国科学院光电研究院 一种基于ccd阵列像素响应函数频域标定的无像差图像重构方法
CN104796689A (zh) * 2015-04-07 2015-07-22 中国科学院空间科学与应用研究中心 一种ccd像素位置偏差计算方法
US20150268095A1 (en) * 2014-03-24 2015-09-24 Servomex Group Limited Method and System for Correcting Incident Light Fluctuations in Absorption Spectroscopy
CN105590302A (zh) * 2016-02-05 2016-05-18 中国科学院国家空间科学中心 一种用于图像传感器标定的干涉条纹畸变矫正方法
CN105890540A (zh) * 2016-04-08 2016-08-24 山东师范大学 基于数字图像相关的物体离面变形相位测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268095A1 (en) * 2014-03-24 2015-09-24 Servomex Group Limited Method and System for Correcting Incident Light Fluctuations in Absorption Spectroscopy
CN104320598A (zh) * 2014-11-06 2015-01-28 中国科学院光电研究院 一种基于ccd阵列像素响应函数频域标定的无像差图像重构方法
CN104796689A (zh) * 2015-04-07 2015-07-22 中国科学院空间科学与应用研究中心 一种ccd像素位置偏差计算方法
CN105590302A (zh) * 2016-02-05 2016-05-18 中国科学院国家空间科学中心 一种用于图像传感器标定的干涉条纹畸变矫正方法
CN105890540A (zh) * 2016-04-08 2016-08-24 山东师范大学 基于数字图像相关的物体离面变形相位测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
万磊等: ""大面阵CMOS航空相机双重退化图像恢复"", 《光学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113945209A (zh) * 2021-08-26 2022-01-18 北京控制工程研究所 一种基于高精度外差干涉的图像探测器像素位置偏差测量装置及方法
CN113945209B (zh) * 2021-08-26 2022-07-29 北京控制工程研究所 一种基于高精度外差干涉的图像探测器像素位置偏差测量装置及方法

Also Published As

Publication number Publication date
CN109413302B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
Pan et al. An active imaging digital image correlation method for deformation measurement insensitive to ambient light
Ninan et al. The Habitable-Zone Planet Finder: improved flux image generation algorithms for H2RG up-the-ramp data
CN101706951B (zh) 一种基于特征融合的气动光学图像质量客观评价方法、装置及系统
CN105590302B (zh) 一种用于图像传感器标定的干涉条纹畸变矫正方法
CN105738073B (zh) 一种在空间频率域进行像素响应函数测量的方法
CN113048876A (zh) 一种应用于移相式激光干涉仪的振动检测预处理方法
CN109413302A (zh) 一种用于像素响应频域测量的动态干涉条纹畸变矫正方法
CN101285712B (zh) 基于分立光强测量器件的线性相位反演波前传感器
CN106767523A (zh) 一种提高相位精度的方法及装置
Bechter et al. Assessing the suitability of H4RG near-infrared detectors for precise Doppler radial velocity measurements
Sakagami et al. A new full-field motion compensation technique for infrared stress measurement using digital image correlation
Alici Extraction of modulation transfer function by using simulated satellite images
CN109286809B (zh) 一种图像传感器全阵列像素响应函数测量方法
CN102607444A (zh) 采用线光源的图像传感器像素间距测量方法与装置
Wang et al. Effect of image motion and vibration on image quality of TDICCD camera
Florczak et al. Bad pixel detection for on-board data quality improvement of remote sensing instruments in CubeSats
Song et al. An Augmented $ H_\infty $ Filter for Satellite Jitter Estimation Based on ASTER/SWIR and Blurred Star Images
McCullough Inter-pixel capacitance: prospects for deconvolution
CN102620670A (zh) 基于线光源的图像传感器像素间距测量方法与装置
Xiang et al. MTF measurement and imaging quality evaluation of digital camera with slanted-edge method
CN113048877A (zh) 一种应用于移相式激光干涉仪的抗振移相方法
JP2017006468A (ja) 放射線撮像装置および微分方向推定方法
Feng et al. An Improved Fourier-Mellin Transform-Based Registration Used in TDI-CMOS
Wei et al. Iterative Fourier domain offset estimation algorithm for Shack-Hartmann wave-front sensors
Shimin et al. Online nonuniformity correction and simulation for interference infrared spectrometer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant