CN109407150A - Based on the petrophysical shale reservoir compressibility means of interpretation of statistics and system - Google Patents
Based on the petrophysical shale reservoir compressibility means of interpretation of statistics and system Download PDFInfo
- Publication number
- CN109407150A CN109407150A CN201811485616.7A CN201811485616A CN109407150A CN 109407150 A CN109407150 A CN 109407150A CN 201811485616 A CN201811485616 A CN 201811485616A CN 109407150 A CN109407150 A CN 109407150A
- Authority
- CN
- China
- Prior art keywords
- lithofacies
- seismic
- probability density
- seismic attribute
- classification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 33
- 238000012216 screening Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 abstract description 20
- 239000011707 mineral Substances 0.000 abstract description 20
- 238000011156 evaluation Methods 0.000 abstract description 9
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 16
- 239000011435 rock Substances 0.000 description 6
- 238000000342 Monte Carlo simulation Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000003079 shale oil Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 208000035126 Facies Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910001748 carbonate mineral Inorganic materials 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/301—Analysis for determining seismic cross-sections or geostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/306—Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/62—Physical property of subsurface
- G01V2210/624—Reservoir parameters
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Acoustics & Sound (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本申请提供了一种基于统计岩石物理的页岩储层可压裂性解释方法及系统,包括:对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数;利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合;对获取的地震数据进行地震反演生成最优地震属性组合对应反演剖面;利用贝叶斯分类准则根据最优地震属性组合对应的二维概率密度函数对最优地震属性组合对应的反演剖面进行可压裂性解释。本申请具有兼顾矿物脆性指数与弹性脆性指数各自优势、优化了页岩可压裂性评估标准及提高了地震可压裂性定量地震解释准确性的有益效果。
The present application provides a method and system for interpreting the fractability of a shale reservoir based on statistical petrophysics, including: performing a kernel function non-parametric probability density estimation on the acquired logging data of each lithofacies to generate preset seismic The two-dimensional probability density function corresponding to the attribute combination; the Bayesian classification criterion is used to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate the optimal seismic attribute combination; The inversion profile corresponding to the optimal seismic attribute combination is generated by inversion; the fractability of the inversion profile corresponding to the optimal seismic attribute combination is interpreted according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination using the Bayesian classification criterion. The present application has the beneficial effects of taking into account the respective advantages of mineral brittleness index and elastic brittleness index, optimizing the evaluation standard of shale fractability, and improving the accuracy of quantitative seismic interpretation of seismic fractability.
Description
技术领域technical field
本发明涉及地球物理勘探技术领域,尤其涉及一种基于统计岩石物理的页岩储层可压裂性解释方法及系统。The invention relates to the technical field of geophysical exploration, in particular to a method and system for interpreting fractability of shale reservoirs based on statistical petrophysics.
背景技术Background technique
页岩脆性是描述其可压裂性特征的重要技术参数,脆性特征的描述手段多样,大致可以分为三类:硬度和强度;脆性矿物质量百分比;弹性模量。岩石的硬度和强度信息可以提供细致的脆性描述,但是需要精细的实验测量。而脆性矿物质量分数和弹性模量等信息可以通过测井和地震得到,因此更适用于地震解释。基于脆性矿物含量的脆性指数(BIM)由Jarvie等(2007)和Wang和Gale(2009)提出。岩石的脆性与石英和白云石含量有关,而塑性与粘土和其他矿物含量有关。矿物含量可以通过岩心分析和测井数据得到。基于脆性矿物含量的脆性指数的优势在于能够建立脆性与岩性间的联系,因此在目标层位矿物组成单一的情况下,脆性可以通过岩性解释近似确定。然而除矿物组分外,孔隙及流体等的存在对可压裂性也有很大影响。因此只考虑脆性矿物含量评估可压裂性可能不够有效,尤其是在岩石微结构复杂的情况下。多种弹性模量可用于表征脆性。Rickman等(2008)提出了一种根据杨氏模量和泊松比的不同地质作用,对两者进行归一化平均来表征脆性指数(BIE)。高脆性指数对应高杨氏模量和低泊松比。Guo等(2012)利用拉梅系数定义脆性指数并探索了裂缝和微构造对岩石脆性的影响。Chen等(2014)提出了一种基于杨氏模量和拉梅系数比值的岩石物理建模流程用于脆性评估。弹性脆性指数的优势在于能够从井和地震数据中得到,因此比矿物脆性指数更为实用。另外,弹性脆性指数代表了矿物组分、微构造和孔隙流体的综合作用。但是其问题在于难以像矿物弹性指数一样对岩性有很好的指示作用,因为不同岩性的不同地层可能表现出相同的弹性参数。Shale brittleness is an important technical parameter to describe its fractability characteristics. There are various means of describing brittleness characteristics, which can be roughly divided into three categories: hardness and strength; percentage of brittle mineral content; elastic modulus. Rock hardness and strength information can provide a detailed description of brittleness, but requires sophisticated experimental measurements. The information such as brittle mineral content and elastic modulus can be obtained by logging and seismic, so it is more suitable for seismic interpretation. The brittleness index (BIM) based on brittle mineral content was proposed by Jarvie et al. (2007) and Wang and Gale (2009). The brittleness of rocks is related to the content of quartz and dolomite, while the plasticity is related to the content of clay and other minerals. Mineral content can be obtained from core analysis and well log data. The advantage of the brittleness index based on the content of brittle minerals is that it can establish the relationship between brittleness and lithology, so in the case of a single mineral composition in the target horizon, the brittleness can be approximately determined by lithology interpretation. However, in addition to mineral components, the presence of pores and fluids also has a great impact on fractability. Therefore, only considering the brittle mineral content to assess fractability may not be effective, especially when the rock microstructure is complex. Various elastic moduli can be used to characterize brittleness. Rickman et al. (2008) proposed a brittleness index (BIE) based on the different geological effects of Young's modulus and Poisson's ratio, which were normalized and averaged. A high brittleness index corresponds to a high Young's modulus and a low Poisson's ratio. Guo et al. (2012) used the Lame coefficient to define the brittleness index and explored the effect of fractures and microstructures on rock brittleness. Chen et al. (2014) proposed a petrophysical modeling process based on the ratio of Young's modulus and Lame coefficient for brittleness assessment. The elastic brittleness index has the advantage that it can be derived from well and seismic data and is therefore more practical than the mineral brittleness index. In addition, the elastic brittleness index represents the combined effect of mineral composition, microstructure and pore fluids. But the problem is that it is difficult to have a good indication of lithology like the mineral elasticity index, because different formations with different lithologies may show the same elastic parameters.
因此,如何提供更优的地震可压裂性解释评价方法,以利于可压裂性评估,是当前亟待解决的技术方案。Therefore, how to provide a better interpretation and evaluation method of seismic fractability to facilitate the evaluation of fractability is a technical solution that needs to be solved urgently.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中的缺陷,本发明提供了一种基于统计岩石物理的页岩储层可压裂性解释方法及系统,综合考虑储层内的矿物组分和弹性相关脆性指数变化,用于不同具有地质特征的页岩油气储层可压裂性定量解释,具有兼顾矿物脆性指数与弹性脆性指数各自优势、优化了页岩可压裂性评估标准及提高了地震可压裂性定量地震解释准确性的有益效果。In order to solve the defects in the prior art, the present invention provides a method and system for interpreting the fractability of shale reservoirs based on statistical petrophysics. For the quantitative interpretation of fractability of shale oil and gas reservoirs with different geological characteristics, it has the advantages of taking into account the respective advantages of mineral brittleness index and elastic brittleness index, optimizing the evaluation standard of shale fractability and improving the quantitative seismic fractability of seismic Explain the beneficial effects of accuracy.
为了实现上述目的,本发明提供了一种基于统计岩石物理的页岩储层可压裂性解释方法,该方法包括:In order to achieve the above objects, the present invention provides a method for interpreting the fractability of shale reservoirs based on statistical petrophysics, the method comprising:
对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数;Performing non-parametric probability density estimation of kernel function on the acquired logging data of each lithofacies to generate a two-dimensional probability density function corresponding to each preset combination of seismic attributes;
利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合;Using Bayesian classification criteria to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate an optimal seismic attribute combination;
对获取的地震数据进行地震反演生成所述最优地震属性组合对应的反演剖面;Perform seismic inversion on the acquired seismic data to generate an inversion profile corresponding to the optimal seismic attribute combination;
利用贝叶斯分类准则根据所述最优地震属性组合对应的二维概率密度函数对所述最优地震属性组合对应的反演剖面进行可压裂性解释。The inversion profile corresponding to the optimal seismic attribute combination is interpreted for fractability according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination using Bayesian classification criteria.
本发明还提供了一种基于统计岩石物理的页岩储层可压裂性解释系统,该系统包括:The present invention also provides a shale reservoir fractability interpretation system based on statistical petrophysics, the system comprising:
估计单元,用于对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数;an estimation unit, configured to perform kernel function non-parametric probability density estimation on the acquired logging data of each lithofacies to generate a two-dimensional probability density function corresponding to each preset combination of seismic attributes;
分类单元,用于利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合;A classification unit, configured to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions using Bayesian classification criteria to generate an optimal seismic attribute combination;
反演单元,用于对获取的地震数据进行地震反演生成所述最优地震属性组合对应的反演剖面;an inversion unit, configured to perform seismic inversion on the acquired seismic data to generate an inversion profile corresponding to the optimal seismic attribute combination;
解释单元,用于利用贝叶斯分类准则根据所述最优地震属性组合对应的二维概率密度函数对所述最优地震属性组合对应的反演剖面进行可压裂性解释。An interpretation unit, configured to interpret the inversion profile corresponding to the optimal seismic attribute combination according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination by using the Bayesian classification criterion.
本发明提供的一种基于统计岩石物理的页岩储层可压裂性解释方法及系统,包括:对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数;利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合;对获取的地震数据进行地震反演生成所述最优地震属性组合对应的反演剖面;利用贝叶斯分类准则根据所述最优地震属性组合对应的二维概率密度函数对所述最优地震属性组合对应的反演剖面进行可压裂性解释。本申请具有兼顾矿物脆性指数与弹性脆性指数各自优势、优化了页岩可压裂性评估标准及提高了地震可压裂性定量地震解释准确性的有益效果。The invention provides a method and system for interpreting the fractability of shale reservoirs based on statistical petrophysics, including: performing a kernel function non-parametric probability density estimation on the acquired logging data of each lithofacies to generate preset seismic The two-dimensional probability density function corresponding to the attribute combination; the Bayesian classification criterion is used to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate the optimal seismic attribute combination; Inversion to generate the inversion profile corresponding to the optimal seismic attribute combination; using the Bayesian classification criterion to perform the inversion profile corresponding to the optimal seismic attribute combination according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination Fracability interpretation. The present application has the beneficial effects of taking into account the respective advantages of mineral brittleness index and elastic brittleness index, optimizing the evaluation standard of shale fractability, and improving the accuracy of quantitative seismic interpretation of seismic fractability.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1是本申请的一种基于统计岩石物理的页岩储层可压裂性解释方法流程图;1 is a flow chart of a method for interpreting fractability of shale reservoirs based on statistical petrophysics of the present application;
图2是本申请一实施例中的基于统计岩石物理的页岩储层可压裂性解释方法流程图;2 is a flow chart of a method for explaining fractability of shale reservoirs based on statistical petrophysics in an embodiment of the present application;
图3是本申请一实施例中的基于BIM-BIE交会的岩相定义示意图;3 is a schematic diagram of a petrographic definition based on BIM-BIE intersection in an embodiment of the present application;
图4是本申请一实施例中的Bakcus平均结果与原始测井数据比对示意图;FIG. 4 is a schematic diagram of the comparison between the Bakcus average result and the original logging data in an embodiment of the present application;
图5a及图5b是本申请一实施例中的I类岩相的相关蒙特卡罗模拟结果与原始测井数据比对示意图;Fig. 5a and Fig. 5b are schematic diagrams showing the comparison between the relevant Monte Carlo simulation results of the I-type lithofacies and the original logging data in an embodiment of the present application;
图6a及图6b是本申请一实施例中的II类岩相的相关蒙特卡罗模拟结果与原始测井数据比对示意图;6a and 6b are schematic diagrams showing the comparison between the related Monte Carlo simulation results of type II lithofacies and original logging data in an embodiment of the present application;
图7a及图7b是本申请一实施例中的III类岩相的相关蒙特卡罗模拟结果与原始测井数据比对示意图;FIG. 7a and FIG. 7b are schematic diagrams showing the comparison between the related Monte Carlo simulation results of the Class III lithofacies and the original logging data in an embodiment of the present application;
图8是本申请一实施例中的I类岩相的EI-AI交会示意图;8 is a schematic diagram of the EI-AI intersection of Type I lithofacies in an embodiment of the present application;
图9a是本申请一实施例中的各岩相的弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数示意图;9a is a schematic diagram of a two-dimensional probability density function corresponding to the elastic wave impedance EI (30°)-acoustic wave impedance (AI) of each lithofacies in an embodiment of the present application;
图9b是本申请一实施例中的各岩相的杨氏模量(E)-泊松比(v)对应的二维概率密度函数示意图;Figure 9b is a schematic diagram of a two-dimensional probability density function corresponding to the Young's modulus (E)-Poisson's ratio (v) of each lithofacies in an embodiment of the present application;
图9c是本申请一实施例中的各岩相的、lamda(λ)-mu(μ)对应的二维概率密度函数示意图;Fig. 9c is a schematic diagram of a two-dimensional probability density function corresponding to lamda(λ)-mu(μ) of each lithofacies in an embodiment of the present application;
图9d是本申请一实施例中的各岩相的lamdarho(λρ)-murho(μρ)对应的二维概率密度函数示意图;9d is a schematic diagram of a two-dimensional probability density function corresponding to lamdarho(λρ)-murho(μρ) of each lithofacies in an embodiment of the present application;
图10是本申请一实施例中的每个地震属性组合对各类岩相的分类成功率的对比图;10 is a comparison diagram of the success rate of classification of various types of lithofacies for each seismic attribute combination in an embodiment of the present application;
图11a及图11b是本申请一实施例中的最优地震属性组合对应的反演剖面示意图;11a and 11b are schematic diagrams of inversion profiles corresponding to the optimal seismic attribute combination in an embodiment of the present application;
图12是本申请一实施例中的可压裂性解释结果剖面示意图;FIG. 12 is a schematic cross-sectional view of the interpretation result of fractability in an embodiment of the present application;
图13是本申请的一种基于统计岩石物理的页岩储层可压裂性解释系统的结构示意图;13 is a schematic structural diagram of a shale reservoir fractability interpretation system based on statistical petrophysics of the present application;
图14是本申请一实施例中的估计单元的结构示意图;14 is a schematic structural diagram of an estimation unit in an embodiment of the present application;
图15是本申请一实施例中的分类单元的结构示意图。FIG. 15 is a schematic structural diagram of a classification unit in an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
关于本文中所使用的“第一”、“第二”、……等,并非特别指称次序或顺位的意思,亦非用以限定本发明,其仅为了区别以相同技术用语描述的元件或操作。Regarding the "first", "second", ... etc. used in this document, it does not specifically refer to the order or order, nor is it used to limit the present invention, it is only used to distinguish elements described in the same technical terms or operate.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。As used herein, "comprising," "including," "having," "containing," and the like, are open-ended terms, meaning including but not limited to.
关于本文中所使用的“及/或”,包括所述事物的任一或全部组合。As used herein, "and/or" includes any and all combinations of the stated things.
针对现有技术中存在的缺陷,本发明提供了一种基于统计岩石物理的页岩储层可压裂性解释方法,其流程图如图1所示,该方法包括:In view of the defects existing in the prior art, the present invention provides a method for interpreting the fractability of shale reservoirs based on statistical petrophysics, the flowchart of which is shown in Figure 1, and the method includes:
S101:对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数。S101: Perform a non-parametric probability density estimation of a kernel function on the acquired logging data of each lithofacies to generate a two-dimensional probability density function corresponding to each preset combination of seismic attributes.
S102:利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合。S102: Use Bayesian classification criteria to perform self-classification screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate an optimal seismic attribute combination.
S103:对获取的地震数据进行地震反演生成最优地震属性组合对应的反演剖面。S103: Perform seismic inversion on the acquired seismic data to generate an inversion profile corresponding to the optimal seismic attribute combination.
S104:利用贝叶斯分类准则根据最优地震属性组合对应的二维概率密度函数对最优地震属性组合对应的反演剖面进行可压裂性解释。S104: Using Bayesian classification criteria to interpret the fractability of the inversion profile corresponding to the optimal seismic attribute combination according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination.
由图1所示的流程可知,本申请对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数;利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合;对获取的地震数据进行地震反演生成最优地震属性组合对应的反演剖面;利用贝叶斯分类准则根据最优地震属性组合对应的二维概率密度函数对最优地震属性组合对应的反演剖面进行可压裂性解释。本申请可以用于不同具有地质特征的页岩油气储层可压裂性定量解释,以此指导井区后续的水力压裂工作。本申请综合考虑储层内的矿物组分和弹性相关脆性指数变化,优化了页岩可压裂性评估标准,将该可压裂性评价标准与统计岩石物理解释流程结合,实现了页岩储层可压裂性的定量地震预测。It can be seen from the process shown in FIG. 1 that the present application performs non-parametric probability density estimation of kernel function on the acquired logging data of each lithofacies to generate a two-dimensional probability density function corresponding to each preset combination of seismic attributes; Bayesian classification is used. The criterion is to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate an optimal seismic attribute combination; perform seismic inversion on the acquired seismic data to generate an inversion profile corresponding to the optimal seismic attribute combination; According to the two-dimensional probability density function corresponding to the optimal seismic attribute combination, the Bayesian classification criterion interprets the fractability of the inversion profile corresponding to the optimal seismic attribute combination. The present application can be used for quantitative interpretation of the fractability of shale oil and gas reservoirs with different geological characteristics, so as to guide the subsequent hydraulic fracturing work in the well area. This application comprehensively considers the changes of mineral components and elasticity-related brittleness index in the reservoir, optimizes the evaluation criteria for shale fractability, and combines the evaluation criteria for fractability with the statistical petrophysical interpretation process to realize shale reservoirs. Quantitative seismic prediction of layer fractability.
为了使本领域的技术人员更好的了解本发明,下面列举一个更为详细的实施例,如图2所示,本发明实施例提供一种基于统计岩石物理的页岩储层可压裂性解释方法,该方法包括以下步骤:In order for those skilled in the art to better understand the present invention, a more detailed embodiment is listed below. As shown in FIG. 2 , the embodiment of the present invention provides a shale reservoir fractability based on statistical petrophysics Explain the method, which includes the following steps:
S201:对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数。S201: Perform non-parametric probability density estimation on the acquired logging data of each lithofacies to generate a two-dimensional probability density function corresponding to each preset combination of seismic attributes.
步骤S201具体执行包括以下步骤:The specific execution of step S201 includes the following steps:
S301:对根据脆性指数交会方法获取的各岩相的初始测井数据进行校正生成各测井数据。S301: Correct the initial logging data of each lithofacies obtained according to the brittleness index intersection method to generate each logging data.
具体的,基于工区内测井数据,根据基于脆性矿物含量的脆性指数(BIM)和基于弹性参数的脆性指数(BIE)交会分析,如图3所示,基于BIM-BIE交会的岩相定义利用预设的BIM阈值进行砂岩页岩分类,同时利用BIE进行地可压裂性页岩和高可压裂性页岩分类,获得可压裂性相关岩相及各岩相对应的测井数据。其中,岩相包括:I类岩相:低可压裂性页岩(低BIM和低BIE)、II类岩相:高可压裂性页岩(低BIM和高BIE)及III类岩相:致密砂岩(高BIM和高BIE)。各岩相的测井数据包括:纵波速度、横波速度及ρ密度。Specifically, based on the logging data in the work area, according to the intersection analysis of the brittle mineral content-based brittleness index ( BIM ) and the elastic parameter-based brittleness index ( BIE ) , as shown in Figure 3, based on the BIM- BIE intersection analysis Lithofacies definition Use preset BIM thresholds to classify sandstone shale, and use BIE to classify geofractable shale and high fractability shale to obtain fractability-related lithofacies and lithofacies Corresponding logging data. Among them, lithofacies include: Type I lithofacies: low fracturability shale (low BIM and low BI E ), Type II lithofacies: high fractability shale (low BIM and high BI E ) and Type III lithofacies: tight sandstones (high BIM and high BI E ). The logging data of each lithofacies include: longitudinal wave velocity, shear wave velocity and ρ density.
基于脆性矿物含量的脆性指数(BIM)如公式(1)所示:The brittleness index ( BIM ) based on the brittle mineral content is given by equation (1):
BIM=(fQ+fCarb)/(fQ+fCarb+foth+TOC) (1)BIM = (f Q +f Carb )/(f Q +f Carb + foth + TOC) (1)
其中,fQ为石英的质量分数,fCarb为碳酸盐岩矿物的质量分数,foth为除石英、碳酸盐岩和TOC外的矿物的质量分数,TOC为总有机质含量。Among them, f Q is the mass fraction of quartz, f Carb is the mass fraction of carbonate minerals, f oth is the mass fraction of minerals except quartz, carbonate rocks and TOC, and TOC is the total organic matter content.
基于弹性参数的脆性指数(BIE)如公式(2)所示:The brittleness index (BI E ) based on elastic parameters is shown in formula (2):
其中,是杨氏模量,是泊松比,Emax为杨氏模量的最大值,Emin为杨氏模量的最小值,νmax泊松比最大值,νmin为泊松比最小值,Vp为纵波速度、Vs为横波速度及ρ为密度。in, is Young's modulus, is the Poisson’s ratio, E max is the maximum value of Young’s modulus, E min is the minimum value of Young’s modulus, ν max is the maximum Poisson’s ratio, ν min is the minimum value of Poisson’s ratio, Vp is the longitudinal wave velocity, Vs is the shear wave velocity and ρ is the density.
S302:根据各测井数据预设各地震属性组合。S302: Preset each seismic attribute combination according to each well logging data.
具体的,预设的地震属性组合包括:弹性波阻抗EI(30°)-声波阻抗(AI),杨氏模量(E)-泊松比(v),lamda(λ)-mu(μ)及lamdarho(λρ)-murho(μρ)等,本申请不以此为限。Specifically, the preset seismic attribute combination includes: elastic wave impedance EI (30°) - acoustic wave impedance (AI), Young's modulus (E) - Poisson's ratio (v), lamda (λ) - mu (μ) and lamdarho(λρ)-murho(μρ), etc., which are not limited in this application.
S303:利用Backus平均对各岩相的测井数据进行尺度放大生成各岩相的放大测井数据。S303: Use Backus average to amplify the logging data of each lithofacies to generate the amplified logging data of each lithofacies.
具体的,Backus平均如公式(3)所示:Specifically, the Backus average is shown in formula (3):
其中,λ及μ均为拉梅系数,ρ为密度,为等效纵波速度,为等效横波速度,ρ*为密度参数,<>为窗口内一定时窗内的加权平均,时窗长度需要根据地震波波长来确定。一般做法为将对应深度位置上的波长长度作为时窗长度,并将该时窗的中心点设置在需要开展尺度粗化的位置上。Among them, λ and μ are Lame coefficients, ρ is the density, is the equivalent longitudinal wave velocity, is the equivalent shear wave velocity, ρ * is the density parameter, <> is the weighted average within a certain time window within the window, and the length of the time window needs to be determined according to the wavelength of the seismic wave. The general practice is to take the wavelength length at the corresponding depth position as the length of the time window, and set the center point of the time window at the position where scale coarsening needs to be carried out.
利用Backus平均对各岩相的测井数据进行尺度放大生成各岩相的放大测井数据。如图4所示,Bakcus平均结果为灰线条,原始测井数据(即S301中获得的测井数据)为黑线条。The logging data of each lithofacies is scaled up by Backus average to generate the amplified logging data of each lithofacies. As shown in Fig. 4, the Bakcus average result is a gray line, and the original logging data (ie, the logging data obtained in S301) is a black line.
S304:利用蒙特卡罗对各岩相的放大测井数据进行数据量扩充生成各岩相的扩充测井数据。S304: Use Monte Carlo to expand the data volume of the amplified logging data of each lithofacies to generate expanded logging data of each lithofacies.
具体的,相关蒙特卡罗方法如公式(4)所示:Specifically, the relevant Monte Carlo method is shown in formula (4):
其中,ω为第ω个岩相,i代表第i次采样,Fω()为各岩相的累积概率密度函数,xi代表0到1内的随机数,N代表扩充点数。Among them, ω is the ω-th lithofacies, i represents the i-th sampling, F ω () is the cumulative probability density function of each lithofacies, xi represents a random number from 0 to 1, and N represents the number of expansion points.
利用蒙特卡罗对各岩相的放大测井数据进行数据量扩充生成各岩相的扩充测井数据。如图5a及图5b所示,利用蒙特卡罗对I类岩相的纵波速度Vp-横波速度Vs及纵波速度Vp-密度进行数据量扩充生成扩充的I类岩相的纵波速度Vp-横波速度Vs及纵波速度Vp-密度。如图6a及图6b所示,利用蒙特卡罗对II类岩相的纵波速度Vp-横波速度Vs及纵波速度Vp-密度进行数据量扩充生成扩充的II类岩相的纵波速度Vp-横波速度Vs及纵波速度Vp-密度。如图7a及图7b所示,利用蒙特卡罗对III类岩相的纵波速度Vp-横波速度Vs及纵波速度Vp-密度进行数据量扩充生成扩充的III类岩相的纵波速度Vp-横波速度Vs及纵波速度Vp-密度。The enlarged logging data of each lithofacies is expanded by Monte Carlo to generate the expanded logging data of each lithofacies. As shown in Fig. 5a and Fig. 5b, the data volume of the compressional wave velocity Vp-shear wave velocity Vs and the compressional wave velocity Vp-density of the type I lithofacies are expanded by Monte Carlo to generate the expanded compressional wave velocity Vp-shear wave velocity of the type I lithofacies Vs and longitudinal wave velocity Vp-density. As shown in Fig. 6a and Fig. 6b, the data volume of the compressional wave velocity Vp-shear wave velocity Vs and the compressional wave velocity Vp-density of the type II lithofacies are expanded by Monte Carlo to generate the expanded compressional wave velocity Vp-shear wave velocity of the type II lithofacies Vs and longitudinal wave velocity Vp-density. As shown in Fig. 7a and Fig. 7b, using Monte Carlo to expand the data volume of the compressional wave velocity Vp-shear wave velocity Vs and compressional wave velocity Vp-density of the III lithofacies to generate the expanded compressional wave velocity Vp-shear wave velocity of the III lithofacies Vs and longitudinal wave velocity Vp-density.
S305:分别对每种岩相的扩充测井数据进行核函数非参数概率密度估计生成各地震属性组合对应的二维概率密度函数。S305: Perform kernel function non-parametric probability density estimation on the extended logging data of each lithofacies, respectively, to generate a two-dimensional probability density function corresponding to each seismic attribute combination.
具体的,核函数用于光滑三类岩相对应的测井数据,高斯核函数用作滤波模板,在由地震属性组合组成的二维坐标中,坐标点(i,j)位置处的高斯核函数值如公式(5)所示:Specifically, the kernel function is used for the logging data corresponding to the three types of smooth rocks, and the Gaussian kernel function is used as a filter template. The function value is shown in formula (5):
其中,σ为标准差,(i,j)为由地震属性组合组成的二维坐标中的坐标点,i及j均为正整数,(2k+1)*(2k+1)为滤波模板尺寸。Among them, σ is the standard deviation, (i, j) is the coordinate point in the two-dimensional coordinate composed of seismic attribute combination, i and j are positive integers, (2k+1)*(2k+1) is the filter template size .
如图8所示,以I类岩相的弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数为例。将弹性波阻抗EI(30°)作为横坐标,声波阻抗(AI)作为纵坐标,构建二维坐标轴,根据公式(5)对I类岩相的扩充测井数据进行核函数非参数概率密度估计,则生成I类岩相的弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数。再根据公式(5)对I类岩相的扩充测井数据进行核函数非参数概率密度估计,分别生成I类岩相的杨氏模量(E)-泊松比(v)对应的二维概率密度函数、lamda(λ)-mu(μ)对应的二维概率密度函数及lamdarho(λρ)-murho(μρ)对应的二维概率密度函数。如图9a、图9b、图9c及图9d所示,以此类推分别计算出II类岩相的弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数、杨氏模量(E)-泊松比(v)对应的二维概率密度函数、lamda(λ)-mu(μ)对应的二维概率密度函数及lamdarho(λρ)-murho(μρ)对应的二维概率密度函数,以及III类岩相的弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数、杨氏模量(E)-泊松比(v)对应的二维概率密度函数、lamda(λ)-mu(μ)对应的二维概率密度函数及lamdarho(λρ)-murho(μρ)对应的二维概率密度函数。其中,图9a为各岩相的弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数,图9b为各岩相的杨氏模量(E)-泊松比(v)对应的二维概率密度函数,图9c为各岩相的lamda(λ)-mu(μ)对应的二维概率密度函数,图9d为各岩相的lamdarho(λρ)-murho(μρ)对应的二维概率密度函数。As shown in Fig. 8, the two-dimensional probability density function corresponding to the elastic wave impedance EI(30°)-acoustic wave impedance (AI) of the I-type lithofacies is taken as an example. Taking the elastic wave impedance EI (30°) as the abscissa and the acoustic wave impedance (AI) as the ordinate, a two-dimensional coordinate axis is constructed, and the non-parametric probability density of the kernel function is performed on the extended logging data of the I-type lithofacies according to formula (5). If estimated, the two-dimensional probability density function corresponding to the elastic wave impedance EI(30°)-acoustic wave impedance (AI) of the I-type lithofacies is generated. Then, according to formula (5), the non-parametric probability density estimation of kernel function is performed on the extended logging data of type I lithofacies, and the two-dimensional values corresponding to Young's modulus (E) - Poisson's ratio (v) of type I lithofacies are generated respectively. The probability density function, the two-dimensional probability density function corresponding to lamda(λ)-mu(μ), and the two-dimensional probability density function corresponding to lamdarho(λρ)-murho(μρ). As shown in Fig. 9a, Fig. 9b, Fig. 9c and Fig. 9d, by analogy, the two-dimensional probability density function corresponding to the elastic wave impedance EI(30°)-acoustic wave impedance (AI) of type II lithofacies, Young's The two-dimensional probability density function corresponding to modulus (E)-Poisson's ratio (v), the two-dimensional probability density function corresponding to lamda(λ)-mu(μ), and the two-dimensional probability density function corresponding to lamdarho(λρ)-murho(μρ) The probability density function, and the two-dimensional probability density function corresponding to the elastic wave impedance EI(30°)-acoustic wave impedance (AI) of the III lithofacies, and the two-dimensional probability density function corresponding to the Young's modulus (E)-Poisson's ratio (v) The probability density function, the two-dimensional probability density function corresponding to lamda(λ)-mu(μ), and the two-dimensional probability density function corresponding to lamdarho(λρ)-murho(μρ). Among them, Fig. 9a is the two-dimensional probability density function corresponding to the elastic wave impedance EI(30°)-acoustic wave impedance (AI) of each lithofacies, and Fig. 9b is the Young's modulus (E)-Poisson's ratio ( v) The corresponding two-dimensional probability density function, Fig. 9c is the two-dimensional probability density function corresponding to lamda(λ)-mu(μ) of each lithofacies, Fig. 9d is the lamdarho(λρ)-murho(μρ) of each lithofacies The corresponding two-dimensional probability density function.
S202:利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合。S202: Use Bayesian classification criteria to perform self-classification screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate an optimal seismic attribute combination.
具体的步骤S202执行时包括以下步骤:The specific step S202 includes the following steps when executed:
S401:利用贝叶斯分类准则根据各所述地震属性组合及各所述地震属性组合对应的二维概率密度函数生成贝叶斯分类混淆矩阵。S401: Generate a Bayesian classification confusion matrix according to each seismic attribute combination and a two-dimensional probability density function corresponding to each seismic attribute combination by using a Bayesian classification criterion.
具体实施时,贝叶斯分类准则的表达式如公式(6)所示:In specific implementation, the expression of the Bayesian classification criterion is shown in formula (6):
ψ=argmax(p(r|ω)p(ω)) (6)ψ=argmax(p(r|ω)p(ω)) (6)
其中,ψ为贝叶斯分类;r为任一地震属性组合;ω为各岩相;p(r|ω)为各地震属性组合对应的二维概率密度函数;p(ω)为预设的初始概率。Among them, ψ is the Bayesian classification; r is any combination of seismic attributes; ω is each lithofacies; p(r|ω) is the two-dimensional probability density function corresponding to each combination of seismic attributes; p(ω) is a preset initial probability.
贝叶斯分类混淆矩阵的表达式如公式(7)所示:The expression of the Bayesian classification confusion matrix is shown in formula (7):
其中,CM为贝叶斯分类混淆矩阵,Pst为第s类岩相被分类成第t类岩相的概率,s及t均为正整数;当s=t时,Pst为第s类岩相分类成功的概率。Among them, C M is the Bayesian classification confusion matrix, P st is the probability that the s-th lithofacies is classified into the t-th lithofacies, and both s and t are positive integers; when s=t, P st is the s-th lithofacies Probability of successful lithofacies classification.
S402:根据贝叶斯分类混淆矩阵生成每个地震属性组合对各岩相的分类成功率。S402: Generate a classification success rate of each lithofacies for each seismic attribute combination according to the Bayesian classification confusion matrix.
具体的,如图10所示,根据贝叶斯分类混淆矩阵CM分别生成弹性波阻抗EI(30°)-声波阻抗(AI)对I类岩相、II类岩相及III类岩相的分类成功率;杨氏模量(E)-泊松比(v)对I类岩相、II类岩相及III类岩相的分类成功率;lamda(λ)-mu(μ)对I类岩相、II类岩相及III类岩相的分类成功率;lamdarho(λρ)-murho(μρ)对I类岩相、II类岩相及III类岩相的分类成功率。Specifically, as shown in Fig. 10, according to the Bayesian classification confusion matrix CM , the elastic wave impedance EI(30°)-acoustic wave impedance (AI) of the type I lithofacies, the type II lithofacies and the type III lithofacies are generated respectively. Classification success rate; Young's modulus (E)-Poisson's ratio (v) for the classification success rate of I-type lithofacies, II-type lithofacies and III-type lithofacies; lamda(λ)-mu(μ) for I-type lithofacies The classification success rate of lithofacies, type II lithofacies and type III lithofacies; the classification success rate of lamdarho(λρ)-murho(μρ) for type I lithofacies, type II lithofacies and type III lithofacies.
S403:将每个地震属性组合对各岩相的分类成功率做和生成各地震属性组合对应的总分类成功率。S403: Calculate the classification success rate of each seismic attribute combination for each lithofacies and generate a total classification success rate corresponding to each seismic attribute combination.
具体的,以弹性波阻抗EI(30°)-声波阻抗(AI)的总分类成功率为例,如图10所示,弹性波阻抗EI(30°)-声波阻抗(AI)对I类岩相的分类成功率为0.95,弹性波阻抗EI(30°)-声波阻抗(AI)对II类岩相的分类成功率为0.78,弹性波阻抗EI(30°)-声波阻抗(AI)对III类岩相的分类成功率为0.79,则弹性波阻抗EI(30°)-声波阻抗(AI)的总分类成功率为0.95+0.78+0.79=2.52。以此类推,分别计算杨氏模量(E)-泊松比(v)的总分类成功率、lamda(λ)-mu(μ)的总分类成功率、lamdarho(λρ)-murho(μρ)的总分类成功率。Specifically, taking the total classification success rate of elastic wave impedance EI(30°)-acoustic wave impedance (AI) as an example, as shown in Fig. The classification success rate of facies is 0.95, the classification success rate of elastic wave impedance EI(30°)-acoustic wave impedance (AI) for II lithofacies is 0.78, elastic wave impedance EI(30°)-acoustic wave impedance (AI) for III The classification success rate of lithofacies is 0.79, then the total classification success rate of elastic wave impedance EI(30°)-acoustic wave impedance (AI) is 0.95+0.78+0.79=2.52. And so on, calculate the total classification success rate of Young's modulus (E)-Poisson's ratio (v), the total classification success rate of lamda(λ)-mu(μ), lamdarho(λρ)-murho(μρ) The overall classification success rate.
S404:对各分类成功率进行排序并将最高的分类成功率对应的地震属性组合作为最优地震属性组合。S404: Sort each classification success rate and use the seismic attribute combination corresponding to the highest classification success rate as the optimal seismic attribute combination.
具体的,假设弹性波阻抗EI(30°)-声波阻抗(AI)的总分类成功率最高,则将弹性波阻抗EI(30°)-声波阻抗(AI)作为最优地震属性组合。Specifically, assuming that the total classification success rate of elastic wave impedance EI(30°)-acoustic wave impedance (AI) is the highest, then elastic wave impedance EI(30°)-acoustic wave impedance (AI) is used as the optimal seismic attribute combination.
S203:对获取的地震数据进行地震反演生成最优地震属性组合对应的反演剖面。S203: Perform seismic inversion on the acquired seismic data to generate an inversion profile corresponding to the optimal seismic attribute combination.
具体实施时,假设最优地震属性组合为弹性波阻抗EI(30°)-声波阻抗(AI),如图11a及图11b所示,则对获取的地震数据进行地震反演生成弹性波阻抗EI(30°)对应的反演剖面及声波阻抗(AI)对应的反演剖面。In specific implementation, it is assumed that the optimal combination of seismic attributes is elastic wave impedance EI (30°) - acoustic wave impedance (AI), as shown in Figure 11a and Figure 11b , then perform seismic inversion on the acquired seismic data to generate elastic wave impedance EI (30°) corresponding inversion profile and acoustic impedance (AI) corresponding inversion profile.
S204:利用贝叶斯分类准则根据最优地震属性组合对应的二维概率密度函数对最优地震属性组合对应的反演剖面进行可压裂性解释。S204: Using Bayesian classification criteria to interpret the fractability of the inversion profile corresponding to the optimal seismic attribute combination according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination.
具体实施时,如图12所示,假设最优地震属性组合为弹性波阻抗EI(30°)-声波阻抗(AI),利用贝叶斯分类准则根据弹性波阻抗EI(30°)-声波阻抗(AI)对应的二维概率密度函数对弹性波阻抗EI(30°)-声波阻抗(AI)的反演剖面进行可压裂性解释生成可压裂性解释结果剖面。In specific implementation, as shown in Fig. 12, it is assumed that the optimal seismic attribute combination is elastic wave impedance EI(30°)-acoustic wave impedance (AI). The corresponding two-dimensional probability density function of (AI) performs fractability interpretation on the inversion profile of elastic wave impedance EI(30°)-acoustic wave impedance (AI) to generate fractability interpretation result profile.
基于与上述基于统计岩石物理的页岩储层可压裂性解释方法相同的申请构思,本发明还提供了一种基于统计岩石物理的页岩储层可压裂性解释系统,如下面实施例所述。由于该基于统计岩石物理的页岩储层可压裂性解释系统解决问题的原理与基于统计岩石物理的页岩储层可压裂性解释方法相似,因此该基于统计岩石物理的页岩储层可压裂性解释系统的实施可以参见基于统计岩石物理的页岩储层可压裂性解释方法的实施,重复之处不再赘述。Based on the same application concept as the above-mentioned method for interpreting fractability of shale reservoirs based on statistical petrophysics, the present invention also provides a system for interpreting fractability of shale reservoirs based on statistical petrophysics, as shown in the following embodiments said. Because the principle of solving the problem of the shale reservoir fractability interpretation system based on statistical petrophysics is similar to that of the shale reservoir fractability interpretation method based on statistical petrophysics, the shale reservoir based on statistical petrophysics For the implementation of the fractability interpretation system, please refer to the implementation of the fractability interpretation method for shale reservoirs based on statistical petrophysics, and the repetition will not be repeated.
图13为本申请实施例的一种基于统计岩石物理的页岩储层可压裂性解释系统的结构示意图,如图13所示,该系统包括:估计单元101、分类单元102、反演单元103及解释单元104。Fig. 13 is a schematic structural diagram of a shale reservoir fractability interpretation system based on statistical petrophysics according to an embodiment of the application. As shown in Fig. 13, the system includes: an estimation unit 101, a classification unit 102, and an inversion unit 103 and interpretation unit 104.
估计单元101,用于对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数。The estimation unit 101 is configured to perform non-parametric probability density estimation of a kernel function on the acquired logging data of each lithofacies to generate a two-dimensional probability density function corresponding to each preset combination of seismic attributes.
分类单元102,用于利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合。The classification unit 102 is configured to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions using a Bayesian classification criterion to generate an optimal seismic attribute combination.
反演单元103,用于对获取的地震数据进行地震反演生成最优地震属性组合对应的反演剖面。The inversion unit 103 is configured to perform seismic inversion on the acquired seismic data to generate an inversion profile corresponding to the optimal seismic attribute combination.
解释单元104,用于利用贝叶斯分类准则根据最优地震属性组合对应的二维概率密度函数对最优地震属性组合对应的反演剖面进行可压裂性解释。The interpretation unit 104 is configured to perform fractability interpretation on the inversion profile corresponding to the optimal seismic attribute combination according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination by using the Bayesian classification criterion.
在一个实施例中,如图14所示,估计单元101包括:获取模块201、预设模块202、放大模块203、扩充模块204及估计模块205。In one embodiment, as shown in FIG. 14 , the estimation unit 101 includes: an acquisition module 201 , a preset module 202 , an amplification module 203 , an expansion module 204 and an estimation module 205 .
获取模块201,用于对根据脆性指数交会方法获取的各所述岩相的初始测井数据进行校正生成各所述测井数据。The obtaining module 201 is configured to correct the initial logging data of each of the lithofacies obtained according to the brittleness index intersection method to generate each of the logging data.
预设模块202,用于根据各所述测井数据预设各所述地震属性组合。The preset module 202 is configured to preset each of the seismic attribute combinations according to each of the well logging data.
放大模块203,用于利用Backus平均对各岩相的测井数据进行尺度放大生成各岩相的放大测井数据;The amplification module 203 is used to perform scale amplification on the logging data of each lithofacies using the Backus average to generate the amplified logging data of each lithofacies;
扩充模块204,用于利用蒙特卡罗对各岩相的放大测井数据进行数据量扩充生成各岩相的扩充测井数据;The expansion module 204 is used to expand the data volume of the amplified logging data of each lithofacies by using Monte Carlo to generate the expanded logging data of each lithofacies;
估计模块205,用于分别对每种岩相的扩充测井数据进行核函数非参数概率密度估计生成各地震属性组合对应的二维概率密度函数。The estimation module 205 is configured to perform kernel function non-parametric probability density estimation on the extended logging data of each lithofacies, respectively, to generate a two-dimensional probability density function corresponding to each combination of seismic attributes.
在一个实施例中,如图15所示,分类单元102包括:分类模块301、成功率生成模块302、求和模块303及排序模块304。In one embodiment, as shown in FIG. 15 , the classification unit 102 includes: a classification module 301 , a success rate generation module 302 , a summation module 303 and a sorting module 304 .
分类模块301,用于利用贝叶斯分类准则根据各所述地震属性组合及各所述地震属性组合对应的二维概率密度函数生成贝叶斯分类混淆矩阵;A classification module 301, configured to generate a Bayesian classification confusion matrix according to each of the seismic attribute combinations and the two-dimensional probability density functions corresponding to each of the seismic attribute combinations by using Bayesian classification criteria;
成功率生成模块302,用于根据贝叶斯分类混淆矩阵生成每个地震属性组合对各岩相的分类成功率;a success rate generation module 302, configured to generate a classification success rate of each lithofacies for each seismic attribute combination according to the Bayesian classification confusion matrix;
求和模块303,用于将每个地震属性组合对各岩相的分类成功率做和生成各地震属性组合对应的总分类成功率;The summation module 303 is used for summing the classification success rate of each seismic attribute combination to each lithofacies and generating the total classification success rate corresponding to each seismic attribute combination;
排序模块304,用于对各总分类成功率进行排序并将最高的总分类成功率对应的地震属性组合作为最优地震属性组合。The sorting module 304 is configured to sort each total classification success rate and use the seismic attribute combination corresponding to the highest total classification success rate as the optimal seismic attribute combination.
本发明提供的一种基于统计岩石物理的页岩储层可压裂性解释方法及系统,包括:对获取的各岩相的测井数据进行核函数非参数概率密度估计生成预设的各地震属性组合对应的二维概率密度函数;利用贝叶斯分类准则根据各所述二维概率密度函数对各所述地震属性组合进行自分类筛选生成最优地震属性组合;对获取的地震数据进行地震反演生成最优地震属性组合对应的反演剖面;利用贝叶斯分类准则根据最优地震属性组合对应的二维概率密度函数对最优地震属性组合对应的反演剖面进行可压裂性解释。本申请综合考虑储层内的矿物组分和弹性相关脆性指数变化,优化了页岩可压裂性评估标准,将该可压裂性评价标准与统计岩石物理解释流程结合,实现了页岩储层可压裂性的定量地震预测。The invention provides a method and system for interpreting the fractability of shale reservoirs based on statistical petrophysics, including: performing a kernel function non-parametric probability density estimation on the acquired logging data of each lithofacies to generate preset seismic The two-dimensional probability density function corresponding to the attribute combination; the Bayesian classification criterion is used to perform self-classification and screening on each of the seismic attribute combinations according to each of the two-dimensional probability density functions to generate the optimal seismic attribute combination; Inversion generates the inversion profile corresponding to the optimal seismic attribute combination; the Bayesian classification criterion is used to explain the fractability of the inversion profile corresponding to the optimal seismic attribute combination according to the two-dimensional probability density function corresponding to the optimal seismic attribute combination . This application comprehensively considers the changes of mineral components and elasticity-related brittleness index in the reservoir, optimizes the evaluation criteria for shale fractability, and combines the evaluation criteria for fractability with the statistical petrophysical interpretation process to realize shale reservoirs. Quantitative seismic prediction of layer fractability.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by one skilled in the art, embodiments of the present invention may be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。In the present invention, the principles and implementations of the present invention are described by using specific embodiments, and the descriptions of the above embodiments are only used to help understand the method and the core idea of the present invention; The idea of the invention will have changes in the specific implementation and application scope. To sum up, the content of this specification should not be construed as a limitation to the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811485616.7A CN109407150A (en) | 2018-12-06 | 2018-12-06 | Based on the petrophysical shale reservoir compressibility means of interpretation of statistics and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811485616.7A CN109407150A (en) | 2018-12-06 | 2018-12-06 | Based on the petrophysical shale reservoir compressibility means of interpretation of statistics and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109407150A true CN109407150A (en) | 2019-03-01 |
Family
ID=65457531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811485616.7A Pending CN109407150A (en) | 2018-12-06 | 2018-12-06 | Based on the petrophysical shale reservoir compressibility means of interpretation of statistics and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109407150A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110333534A (en) * | 2019-06-19 | 2019-10-15 | 中国地质大学(武汉) | A Bayesian time-shifted AVO inversion method and system based on Biot theory |
CN111425193A (en) * | 2020-01-21 | 2020-07-17 | 东北石油大学 | A reservoir compressibility evaluation method based on cluster analysis logging petrophysical facies division |
US20210255359A1 (en) * | 2020-02-19 | 2021-08-19 | Manzar Fawad | Method for estimating rock brittleness from well-log data |
CN113622905A (en) * | 2021-07-20 | 2021-11-09 | 中国地质大学(武汉) | Shale reservoir brittleness evaluation method based on multi-factor comprehensive analysis |
CN114048627A (en) * | 2021-11-24 | 2022-02-15 | 中国石油大学(华东) | Shale reservoir fracture and brittleness prediction method and system based on Bayesian inversion |
CN115222053A (en) * | 2022-09-20 | 2022-10-21 | 中国石油大学(华东) | A Probabilistic Analysis Method of Formation Compressibility Based on Monte Carlo Method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060212225A1 (en) * | 2003-10-28 | 2006-09-21 | Ran Bachrach | Method for estimating porosity and saturation in a subsurface reservoir |
CN101894369A (en) * | 2010-06-30 | 2010-11-24 | 清华大学 | A Real-time Method for Computing Camera Focal Length from Image Sequence |
CN103245861A (en) * | 2013-05-03 | 2013-08-14 | 云南电力试验研究院(集团)有限公司电力研究院 | Transformer fault diagnosis method based on Bayesian network |
CN106772570A (en) * | 2015-11-24 | 2017-05-31 | 中国石油化工股份有限公司 | Igneous rock opens seam earthquake prediction method |
-
2018
- 2018-12-06 CN CN201811485616.7A patent/CN109407150A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060212225A1 (en) * | 2003-10-28 | 2006-09-21 | Ran Bachrach | Method for estimating porosity and saturation in a subsurface reservoir |
CN101894369A (en) * | 2010-06-30 | 2010-11-24 | 清华大学 | A Real-time Method for Computing Camera Focal Length from Image Sequence |
CN103245861A (en) * | 2013-05-03 | 2013-08-14 | 云南电力试验研究院(集团)有限公司电力研究院 | Transformer fault diagnosis method based on Bayesian network |
CN106772570A (en) * | 2015-11-24 | 2017-05-31 | 中国石油化工股份有限公司 | Igneous rock opens seam earthquake prediction method |
Non-Patent Citations (1)
Title |
---|
王林: "基于统计岩石物理的储层脆性定量地震解释", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110333534A (en) * | 2019-06-19 | 2019-10-15 | 中国地质大学(武汉) | A Bayesian time-shifted AVO inversion method and system based on Biot theory |
CN111425193A (en) * | 2020-01-21 | 2020-07-17 | 东北石油大学 | A reservoir compressibility evaluation method based on cluster analysis logging petrophysical facies division |
US20210255359A1 (en) * | 2020-02-19 | 2021-08-19 | Manzar Fawad | Method for estimating rock brittleness from well-log data |
CN113622905A (en) * | 2021-07-20 | 2021-11-09 | 中国地质大学(武汉) | Shale reservoir brittleness evaluation method based on multi-factor comprehensive analysis |
CN114048627A (en) * | 2021-11-24 | 2022-02-15 | 中国石油大学(华东) | Shale reservoir fracture and brittleness prediction method and system based on Bayesian inversion |
CN114048627B (en) * | 2021-11-24 | 2024-12-13 | 中国石油大学(华东) | Shale reservoir fracture and brittleness prediction method and system based on Bayesian inversion |
CN115222053A (en) * | 2022-09-20 | 2022-10-21 | 中国石油大学(华东) | A Probabilistic Analysis Method of Formation Compressibility Based on Monte Carlo Method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109407150A (en) | Based on the petrophysical shale reservoir compressibility means of interpretation of statistics and system | |
US9201164B2 (en) | System and method of using spatially independent subsets of data to calculate property distribution uncertainty of spatially correlated reservoir data | |
RU2601535C1 (en) | Identification of orientation clusters from microseismic data | |
CN105954804B (en) | Shale gas reservoir fragility earthquake prediction method and device | |
Spikes et al. | Probabilistic seismic inversion based on rock-physics models | |
US9355070B2 (en) | System and method of using spatially independent subsets of data to determine the uncertainty of soft-data debiasing of property distributions for spatially correlated reservoir data | |
US11112516B2 (en) | Data fusion technique to compute reservoir quality and completion quality by combining various log measurements | |
AU2013402201B2 (en) | In-situ wellbore, core and cuttings information system | |
EP2795527B1 (en) | Systems and methods for selecting facies model realizations | |
AU2014384715B2 (en) | Facies definition using unsupervised classification procedures | |
CN109856674B (en) | Engineering dessert evaluation method | |
CN111596354A (en) | Seismic reservoir prediction method considering space constraint under machine learning framework | |
Grana et al. | Petroelastic and geomechanical classification of lithologic facies in the Marcellus Shale | |
US10677947B1 (en) | Horizontal fracture prediction method, device and equipment | |
CN117418831B (en) | Lithology identification method and device for sandstone reservoir using multiple logging parameters | |
Goovaerts | Geostatistical modeling of the spaces of local, spatial, and response uncertainty for continuous petrophysical properties | |
Wang et al. | Quantitative seismic interpretation of rock brittleness based on statistical rock physics | |
CN114488301B (en) | A method for predicting the porosity of tight sandstone reservoirs | |
Colombo et al. | MICP-based elastic rock typing characterisation of carbonate reservoir | |
Mooney et al. | Using a discrete fracture network and spatial point processes to populate veins and model grade in a coarse gold deposit | |
Liu et al. | Seismic facies discrimination incorporating relative rock physics | |
Wang et al. | Study on a New Rock Fracability Evaluation Model of Shale Gas Reservoir | |
Tihonova et al. | Multi-disciplinary approach for identifying and forecasting high-porosity vuggy zones in the Riphean reservoir of the Yurubcheno-Tokhomskoye field (Russian) | |
Abdi et al. | Wellbore Stability Analysis in Laminated Shaly Formations Through Anisotropic Geomechanics and Advanced Sonic Measurements | |
Carlton et al. | PSHA compatible probabilistic seismic site response analysis for Oslo, Norway |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190301 |
|
RJ01 | Rejection of invention patent application after publication |