CN109401750B - 基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法 - Google Patents

基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法 Download PDF

Info

Publication number
CN109401750B
CN109401750B CN201811354705.8A CN201811354705A CN109401750B CN 109401750 B CN109401750 B CN 109401750B CN 201811354705 A CN201811354705 A CN 201811354705A CN 109401750 B CN109401750 B CN 109401750B
Authority
CN
China
Prior art keywords
thermochromic material
mbp
bond
iodoargentate
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811354705.8A
Other languages
English (en)
Other versions
CN109401750A (zh
Inventor
于探来
郭艳梅
武国兴
王中慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luliang University
Original Assignee
Luliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luliang University filed Critical Luliang University
Priority to CN201811354705.8A priority Critical patent/CN109401750B/zh
Publication of CN109401750A publication Critical patent/CN109401750A/zh
Application granted granted Critical
Publication of CN109401750B publication Critical patent/CN109401750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/127Preparation from compounds containing pyridine rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Pyridine Compounds (AREA)

Abstract

本发明申请属于无机‑有机杂化材料技术领域,具体公开了一种基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法,以1,1′‑亚甲基‑双(4,4′‑联吡啶)阳离子作为结构导向剂和电子受体,以富电子的碘银酸盐为电子给体,通过室温溶液挥发法合成了基于离子键和配位键的碘银酸盐热致变色材料。本发明主要用于显示、传感、防伪标识等领域,以解决卤金属酸盐热致变色材料变色不明显的问题。

Description

基于离子键和配位键协同构建碘银酸盐热致变色材料及其制 备方法
技术领域
本发明属于无机-有机杂化材料技术领域,具体公开了一种基于离子键和配位键协同构 建碘银酸盐热致变色材料及其制备方法。
背景技术
热致变色材料由于其在示温材料、智能材料、化学防伪以及高科技领域的应用受到广泛 关注。目前,热致变色材料主要分为四类:无机类、有机类、液晶类和无机-有机杂化类。 相比前三类变色材料,无机-有机杂化材料兼具无机化合物的热稳定性、高强度和有机化合 物易于调变或加工的双重特点,甚至能通过协同作用产生一些新的性能。因此,设计与合成 具有优异热致变色性能的杂化材料成为了当前科学研究的热点之一。
在电子结构可调的卤金属酸盐杂化物领域,铅碘酸盐和铋碘酸盐杂化物也经常表现出热 致变色行为,其变色归因于热诱导的相变行为或晶格收缩;不同于上述的变色机理,付云龙 小组在2014年报道了一类新型的卤金属酸盐热致变色材料-氰基吡啶阳离子导向的碘银酸盐 杂化材料,其变色源于温度依赖的分子间的电荷转移几率变化。但是目前该领域仍存在以下 几个问题:(1)分子间电荷转移受温度影响较小,使得现有的卤金属酸盐热致变色不明显; (2)设计与合成策略比较单一,制备化合物均为离子型化合物,使得应用范围变小;(3) 热致变色材料均简单描述其具有可逆特性,但其抗疲劳性未深入调研。
发明内容
本发明的目的在于提供一种基于离子键和配位键协同构建碘银酸盐热致变色材料及其 制备方法,以解决卤金属酸盐热致变色材料变色不明显的问题。
为了达到上述目的,本发明的基础方案为:基于离子键和配位键协同构建碘银酸盐热 致变色材料,以1,1′-亚甲基-双(4,4′-联吡啶)阳离子作为结构导向剂和电子受体,以富电 子的碘银酸盐阴离子为电子给体,通过室温溶液挥发法合成了基于离子键和配位键形成的碘 银酸盐热致变色材料的化合物,碘银酸盐热致变色材料的化学式为[(MBP)(Ag3I5)]n,其中, MBP2+为1,1′-亚甲基-双(4,4′-联吡啶)阳离子,[Ag3I5]n 2n-阴离子为一维链状结构,MBP2+的结构如下:
Figure BDA0001865784200000021
本基础方案的有益效果在于:
(1)经过发明人长期实验发现,合成具有变色明显的卤金属酸盐热致变色材料仍是一 个挑战,通过改变设计与和合成的策略,经过多次实验发现了离子键和配位键协同构建的碘 银酸盐热致变色材料,本发明通过离子键和配位键协同构建策略有效地提高了给受体间的电 荷转移,使得热致变色材料的稳定性提高,本发明的热致变色材料明显的颜色和在 400nm-600nm范围内的可见吸收带归属于富电子特性的碘银酸盐到缺电子特性的MBP2+阳 离子间的相互分子间电荷转移(ICT);
(2)本发明的热致变色材料变色明显(深红色到橘色),响应速度快(变色小于1s),抗疲劳性好(循环大于10次)的可逆低温热致变色;
(3)本发明的热致变色材料中的键距、键角和π···π堆积相互作用利于电荷转移,使得 变色效果明显;
(4)本发明的热致变色材料不同于常见的N-位点全部质子化或烷基化吡啶盐阳离子导 向的碘银酸盐离子型化合物,所述1,1′-亚甲基-双(4,4′-联吡啶)阳离子MBP2+不仅可以通 过正电荷来发挥导向效应,而且具有潜在的配位位点,易于形成同时具有离子键和配位键的 杂化材料。
进一步,碘银酸盐热致变色材料的X射线单晶衍射仪测定,使用石墨单色器Mo-Kα辐 射
Figure BDA0001865784200000022
作为X射线源,以ω扫描方式收集数据;碘银酸盐热致变色材料的单晶 结构是通过利用直接法解析得到,并用全矩阵最小二乘法对结构进行精修;单晶结构分析表 明化合物[(MBP)(Ag3I5)]n结晶于单斜晶系C2/c空间群,其非对称单元里包括三个晶体学上独 立的Ag原子,五个碘原子和一个MBP2+阳离子;在该化合物中,Ag(2)和Ag(3)原子与四个碘原子配位形成Ag(2)I4、Ag(3)I4的四面体,Ag(1)原子与三个碘原子和一个来自MBP2+阳离子的N原子配位形成Ag(1)I3N的四面体,均采取畸变的四面体的配位几何环境:其中,Ag-I键的键长范围从2.7131(11)到
Figure BDA0001865784200000031
Ag-N键的键长为
Figure BDA0001865784200000032
I-Ag-I和N-Ag-I键角范围分别处于97.39(3)-120.36(3)和
Figure BDA0001865784200000033
的范围内。
进一步,Ag(1)I3N,Ag(2)I4和Ag(3)I4四面体通过共边形成三核的簇状单元,相邻的 簇状单元通过共用Ag-I键连接并进一步与MBP2+阳离子配位形成一维的配位链。
进一步,相邻的配位链交替排列,并通过吡啶环之间的π···π堆积相互作用形成了一个 3D超分子主客体电子给受型化合物,吡啶环之间的质心距离为
Figure BDA0001865784200000034
化合 物中最短的N···I距离是
Figure BDA0001865784200000035
N2…I3的方向和吡啶环平面的角度为 115.69(23)°(I3···N2-C6)。π···π堆积相互作用便于电荷转移,利于后续观察热致变色材料的 颜色变化。
碘银酸盐热致变色材料的制备方法,包括以下步骤:
(1)将1,1′-亚甲基-双(4,4′-联吡啶)二溴盐(MBP·Br2)、AgI和KI/HI溶液按照摩尔比为1:3:1的量依次加入到3-7mL DMF/DMSO中,搅拌形成深红色的混合清液;
(2)向步骤(1)中的混合清液中加入5-10滴水搅拌均匀后,室温放置挥发得到深红色菱形片状晶体;
(3)将步骤(2)中的片状晶体用乙醇或水洗涤2-3次后,抽滤晾干得到碘银酸盐热致 变色材料[(MBP)(Ag3I5)]n
本发明中的制备方法相比水/溶剂热合成法,室温溶剂挥发法具有操作简单方便,不需 要加热,易于观察和低能耗的特点;所得碘银酸盐热致变色材料为纯相且具有高的产率;制 备产物具有较宽的合成范围,有利于其在产业化中应用;使用本制备方法过程中,避免了使 用反应釜,减少了打开和关闭反应釜的操作步骤,减少了操作时间。
所述的基于离子键和配位键协同构建碘银酸盐热致变色材料可作为热致变色材料的应 用。
附图说明
图1是本发明实施例1中碘银酸盐热致变色材料的非对称基元图;
图2是本发明实施例1中碘银酸盐热致变色材料的一维配合物结构示意图;
图3是本发明实施例1中碘银酸盐热致变色材料的基于π...π堆积相互作用形成的3D超 分子骨架结构示意图;
图4是本发明实施例1中碘银酸盐热致变色材料的X-射线粉末衍射图;
图5是本发明实施例1中碘银酸盐热致变色材料的低温热致变色图;
图6是本发明实施例1中碘银酸盐热致变色材料的光学吸收图。
具体实施方式
下面通过具体实施方式进一步详细说明:
下面以实施例1为例详细说明基于离子键和配位键协同构建碘银酸盐热致变色材料的制 备方法,使用的原料为1,1′-亚甲基-双(4,4′-联吡啶)二溴盐、KI或质量分数为45%的 HI溶液和AgI合成。
所有实施例均按照以下步骤合成:
(1)将1,1′-亚甲基-双(4,4′-联吡啶)二溴盐(MBP·Br2)、AgI和KI/HI溶液按照摩尔比为1:3:1的量依次加入到3-7mL DMF/DMSO中,搅拌形成深红色的混合清液;
(2)向步骤(1)中的混合清液中加入5-10滴水搅拌均匀后,室温放置挥发得到深红色菱形片状晶体;
(3)将步骤(2)中的片状晶体用乙醇或水洗涤2-3次后,抽滤晾干得到碘银酸盐热致 变色材料[(MBP)(Ag3I5)]n
实施例1
将1,1′-亚甲基-双(4,4′-联吡啶)二溴盐(MBP·Br2)(0.1mmol,0.048g)、质量分数 为45%HI(1.0mmol,0.284g)溶液和AgI(0.3mmol,0.071g)依次加入到7ml DMF溶液中,用胶头滴管滴加10滴水并搅拌得到深红色溶液,室温放置挥发溶剂后,得到深红色的菱形片状晶体,乙醇洗涤2-3次后晾干得到[(MBP)(Ag3I5)]n。产率:70.1%(基于Ag)。元素分 析:C21H18N4Ag3I5:C,19.63;H,1.41;N,4.36.Found:C,19.58;H,1.50,N,4.31。
实施例2
将1,1’-亚甲基-双(4,4-联吡啶盐)二溴化物(MBP·Br2)(0.1mmol,0.048g)、质量分 数为45%HI(1.0mmol,0.284g)溶液和AgI(0.3mmol,0.071g),依次加入到3ml DMF溶液中并用胶头滴管滴加5滴水得到深红色溶液,室温放置挥发溶剂,得到深红色的菱形片状晶体,乙醇洗涤2-3次后晾干得到[(MBP)(Ag3I5)]n。产率:43.2%(基于Ag)。
实施例3
将1,1’-亚甲基-双(4,4-联吡啶盐)二溴化物(MBP·Br2)(0.1mmol,0.048g)、质量分 数为45%HI(1.0mmol,0.284g)溶液和AgI(0.3mmol,0.071g)依次加入到5ml DMF溶液中,用胶头滴管滴加10滴水并搅拌得到深红色溶液,室温放置挥发溶剂后,得到深红色的菱形片状晶体,乙醇洗涤2-3次后晾干得到[(MBP)(Ag3I5)]n。产率:55.5%(基于Ag)。
实施例4
将1,1’-亚甲基-双(4,4-联吡啶盐)二溴化物(MBP·Br2)(0.1mmol,0.048g)、质量分 数为45%HI(1.0mmol,0.284g)溶液和AgI(0.3mmol,0.071g)依次加入到7ml DMSO溶 液中,滴加10滴水并搅拌得到深红色溶液,室温放置挥发溶剂后,得到深红色的菱形片状 晶体,乙醇洗涤2-3次后晾干得到[(MBP)(Ag3I5)]n。产率:52.4%(基于Ag)。
实施例5
将1,1’-亚甲基-双(4,4-联吡啶盐)二溴化物(MBP·Br2)(0.1mmol,0.048g)、KI(1.0mmol, 0.166g)和AgI(0.3mmol,0.071g)依次加入到7ml DMSO溶液中,用胶头滴管滴加10滴水 并搅拌得到深红色溶液,室温放置挥发溶剂后,得到深红色的菱形片状晶体,乙醇洗涤2-3 次后晾干得到[(MBP)(Ag3I5)]n。产率:54.7%(基于Ag)。
实施例1中得到的[(MBP)(Ag3I5)]在显微镜下挑选出具有良好光泽度和0.20*0.18*0.02 mm尺寸的深红色菱形片状单晶用于X-射线单晶结构分析。化合物[(MBP)(Ag3I5)]n的X射线 晶体射数数据是在298K下采用安捷伦公司的Gemini EX-射线单晶衍射仪测定的,并使用石 墨单色器Mo-Kα辐射
Figure BDA0001865784200000051
作为X射线源,以ω扫描方式收集数据。单晶结构 是通过SHELXS软件,利用直接法解析得到的,并用全矩阵最小二乘法对结构进行精修。 所有的非氢原子都被各向异性,化合物[(MBP)(Ag3I5)]n的主要晶体学参数见表1,选择性键 长和键角见表2。
表1化合物[(MBP)(Ag3I5)]n的晶体学参数
Figure BDA0001865784200000052
Figure BDA0001865784200000061
表2化合物[(MBP)(Ag3I5)]n的选择性键长和键角
Figure BDA0001865784200000062
对称代码:#1x,-y+1,z-1/2;#2x,-y+1,z+1/2。
下面以实施例1中的产物进行测试,将实施例1中的碘银酸盐热致变色材料[(MBP)(Ag3I5)]n经过X射线晶体射数数据采用安捷伦公司的Gemini EX-射线单晶衍射仪测定,使用石墨单色器Mo-Kα辐射
Figure BDA0001865784200000063
作为X射线源,以ω扫描方式收集数据; 碘银酸盐热致变色材料的单晶结构是通过SHELXS软件利用直接法解析得到单晶结构,并 用全矩阵最小二乘法对结构进行精修;单晶结构分析表明化合物[(MBP)(Ag3I5)]n结晶于单斜晶系C2/c空间群,其非对称单元里包括三个晶体学上独立的Ag原子,五个碘原子和一个 1,1’-亚甲基-双(4,4-联吡啶盐)阳离子MBP2+(如图1所示)。在该化合物中,Ag(2)和Ag(3) 原子与四个碘原子配位形成Ag(2)I4、Ag(3)I4的四面体,Ag(1)原子与三个碘原子和一个来自MBP2+阳离子的N原子配位形成Ag(1)I3N的四面体,均采取畸变的四面体的配位几何环境:其中,Ag-I键的键长范围从2.7131(11)到
Figure BDA0001865784200000071
Ag-N键的键长为
Figure BDA0001865784200000072
I-Ag-I和N-Ag-I键角范围分别处于97.39(3)-120.36(3)和
Figure BDA0001865784200000073
的范围内。
如图2所示,Ag(1)I3N、Ag(2)I4和Ag(3)I4四面体通过共边形成三核的簇状单元,进一 步相邻的簇状单元通过共用Ag-I键连接并进一步与MBP2+阳离子配位形成一维的配位链。 相邻的配位链交替排列,并通过吡啶环之间的π...π堆积相互作用(环之间的最近距离为
Figure BDA0001865784200000074
形成了一个罕见的3D超分子主客体电子给受型化合物(如图3所示),吡啶环之间的质心距离为
Figure BDA0001865784200000075
其中最短的N…I距离是
Figure BDA0001865784200000076
而N2…I3方向和吡啶环平面的角度为115.69(23)°(I3...N2-C6),该距离和角度符合发生分子间 的电子转移的条件。
如图4所示,将实施例1中的碘银酸盐热致变色材料[(MBP)(Ag3I5)]n实测的X射线粉 末衍射图基本与理论模拟的粉末图的衍射峰基本吻合,说明所合成的化合物具有很高的 相纯度。
将实施例1中的碘银酸盐热致变色材料[(MBP)(Ag3I5)]n进行紫外吸收光谱和热致变色表 征,[(MBP)(Ag3I5)]n的固体紫外-可见吸收光谱是在室温下Varian Cary 5000紫外可见分光度 光谱仪上测试得到的,扫描的波长范围为200-800nm。取约50mg的原始样品放置到石英片 上,压成直径大约2厘米的圆形片,置于样品池中进行扫描得到原始的紫外吸收光谱(黑色 粗线,标记为:常温)。然后在样品后加低温装置通入液氮,待温度稳定时再次在相同条件 下进行扫描,获得样品低温的吸收光谱(红色细虚线,标记为:低温)。进一步,用Origin 软件对样品在不同状态下的紫外-可见吸收数据进行合并,得到相应的叠加图。叠加后的化 合物[(MBP)(Ag3I5)]n明显的颜色和在400nm-600nm范围内的可见吸收带应该归属于富电子 特性的碘银酸盐到缺电子特性的MBP2+阳离子间的相互分子间电荷转移(ICT)。
将实施例1中的碘银酸盐热致变色材料[(MBP)(Ag3I5)]n的单晶放置到表面皿中,并用数 码相机拍照记录,接着,将液氮倒入表面皿中待晶体颜色稳定后,并再次用数码相机拍照记 录。经观察化合物[(MBP)(Ag3I5)]n变色明显,响应速度快(变色小于1s),抗疲劳性好(循 环大于10次)的可逆低温热致变色,颜色从深红色变为橘色,然后随着液氮的挥发和温度 的升高,晶体又恢复到起始的颜色(结合图5所示)。为了阐明变色的原因,将上述碘银酸 盐热致变色材料[(MBP)(Ag3I5)]n的变温紫外吸收光谱进行对比,如图6所示,发现该化合物 的可见区的吸收在低温时存在明显反差,归因于温度依赖的相互分子间电荷转移的几率,不 同于碘铅酸盐/碘铋酸盐相变或晶格收缩导致的热致变色。
本发明通过以1,1’-亚甲基-双(4,4-联吡啶盐)阳离子作为结构导向剂和电子受体(D) 和富电子的碘银酸盐为电子给体(A),通过室温溶液挥发法,合成了第一例基于配位键和 离子键的协同作用构筑的新型D-A配合物材料。通过单晶结构、紫外光谱和热致变色性能 表征,发现其兼具色度比高、响应速率快(小于1s)和抗疲劳性好(循环次数大于10次)。 该研究对于设计新型热致变色D-A配合物提供了一个好的策略,也为其在显示、传感、防 伪标识等领域的应用提供了指导,同时,本发明的化合物可作为热致变色材料的应用。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描 述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若 干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专 利的实用性。

Claims (6)

1.基于离子键和配位键协同构建碘银酸盐热致变色材料,其特征在于,以1,1′-亚甲基-双(4,4′-联吡啶)阳离子作为结构导向剂和电子受体,以富电子的碘银酸盐阴离子为电子给体,通过室温溶液挥发法合成了基于离子键和配位键形成的碘银酸盐热致变色材料的化合物,碘银酸盐热致变色材料的化学式为[(MBP)(Ag3I5)]n,其中,MBP2+为1,1′-亚甲基-双(4,4′-联吡啶)阳离子,[Ag3I5]n 2n-阴离子为一维链状结构,MBP2+的结构如下:
Figure FDA0003038308540000011
所述热致变色材料的晶体学参数为:
Figure FDA0003038308540000012
2.根据权利要求1所述的基于离子键和配位键协同构建碘银酸盐热致变色材料,其特征在于,碘银酸盐热致变色材料的X射线单晶衍射仪测定,使用石墨单色器Mo-Kα辐射
Figure FDA0003038308540000013
Figure FDA0003038308540000014
作为X射线源,以ω扫描方式收集数据;碘银酸盐热致变色材料的单晶结构是通过利用直接法解析得到,并用全矩阵最小二乘法对结构进行精修;单晶结构分析表明化合物[(MBP)(Ag3I5)]n结晶,其非对称单元里包括三个晶体学上独立的Ag原子,五个碘原子和一个MBP2+阳离子;在该化合物中,Ag(2)和Ag(3)原子与四个碘原子配位形成Ag(2)I4、Ag(3)I4的四面体,Ag(1)原子与三个碘原子和一个来自MBP2+阳离子的N原子配位形成Ag(1)I3N的四面体,均采取畸变的四面体的配位几何环境:其中,Ag-I键的键长范围从2.7131(11)到
Figure FDA0003038308540000021
Ag-N键的键长为
Figure FDA0003038308540000022
I-Ag-I和N-Ag-I键角范围分别处于97.39(3)-120.36(3)和
Figure FDA0003038308540000023
的范围内。
3.根据权利要求2所述的基于离子键和配位键协同构建碘银酸盐热致变色材料,其特征在于,Ag(1)I3N,Ag(2)I4和Ag(3)I4四面体通过共边形成三核的簇状单元,相邻的簇状单元通过共用Ag-I键连接并进一步与MBP2+阳离子配位形成一维的配位链。
4.根据权利要求3所述的基于离子键和配位键协同构建碘银酸盐热致变色材料,其特征在于,相邻的配位链交替排列,并通过吡啶环之间的π···π堆积相互作用形成了一个3D超分子主客体电子给受型化合物,吡啶环之间的质心距离为
Figure FDA0003038308540000024
化合物中最短的N…I距离是
Figure FDA0003038308540000025
N2…I3的方向和吡啶环平面的角度为115.69(23)°(I3…N2-C6)。
5.根据权利要求1所述的碘银酸盐热致变色材料的制备方法,其特征在于,包括以下步骤:
(1)将1,1′-亚甲基-双(4,4′-联吡啶)二溴盐(MBP·Br2)、AgI和KI/HI溶液按照摩尔比为1:3:1的量依次加入到3-7mL DMF/DMSO中,搅拌形成深红色的混合清液;
(2)向步骤(1)中的混合清液中加入5-10滴水搅拌均匀后,室温放置挥发得到深红色菱形片状晶体;
(3)将步骤(2)中的片状晶体用乙醇或水洗涤2-3次后,抽滤晾干得到碘银酸盐热致变色材料[(MBP)(Ag3I5)]n
6.根据权利要求1-4任一项所述的基于离子键和配位键协同构建碘银酸盐热致变色材料作为热致变色材料的应用。
CN201811354705.8A 2018-11-14 2018-11-14 基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法 Active CN109401750B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811354705.8A CN109401750B (zh) 2018-11-14 2018-11-14 基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811354705.8A CN109401750B (zh) 2018-11-14 2018-11-14 基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法

Publications (2)

Publication Number Publication Date
CN109401750A CN109401750A (zh) 2019-03-01
CN109401750B true CN109401750B (zh) 2021-08-17

Family

ID=65473465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811354705.8A Active CN109401750B (zh) 2018-11-14 2018-11-14 基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109401750B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116929B (zh) * 2019-12-02 2021-09-28 西北大学 一种具有宽温区可逆热致变色性质的镍配位聚合物材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105837834B (zh) * 2016-05-05 2019-04-19 中国计量大学 一种银碘阴离子高聚螺旋链基有机无机杂化半导体材料
CN105924388B (zh) * 2016-05-11 2018-06-05 山西师范大学 基于碘银酸盐杂化物的热致和光致变色材料及其制备方法
CN106279214B (zh) * 2016-08-05 2018-01-19 山西师范大学 一种光致和热致双功能碘银酸盐变色材料及其制备方法
CN108409670B (zh) * 2018-01-24 2020-11-03 山西师范大学 双甲基化2-苯基苯并咪唑碘银酸盐杂化物及制备与应用

Also Published As

Publication number Publication date
CN109401750A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Li et al. Robot-accelerated perovskite investigation and discovery
Liao et al. α-and β-A2Hg3M2S8 (A= K, Rb; M= Ge, Sn): Polar quaternary chalcogenides with strong nonlinear optical response
Yu et al. Two thermochromic layered iodoargentate hybrids directed by 4-and 3-cyanopyridinium cations
Xing et al. From AgGaS 2 to AgHgPS 4: vacancy defects and highly distorted HgS 4 tetrahedra double-induced remarkable second-harmonic generation response
CN104372412A (zh) 甲胺卤化铅酸盐化合物大尺寸晶体生长方法及装置
CN109401750B (zh) 基于离子键和配位键协同构建碘银酸盐热致变色材料及其制备方法
Yu et al. Synthesis, structure characterization and optical properties of a new lead cadmium borate
Wu et al. Highly efficient and uncommon photoluminescence behavior combined with multiple dielectric response in manganese (II) based hybrid phase transition compounds
Buikin et al. Methyl viologen iodobismuthates
Zhang et al. Semiconductive K2MSbS3 (SH)(M= Zn, Cd) Featuring One-Dimensional∞ 1 [M2Sb2S6 (SH2)] 4–Chains
Wan et al. Reversible thermochromism to tune the bandgap of organic–inorganic hybrid materials
CN108914207B (zh) 一种金属有机骨架晶体功能材料及其制备方法和应用
CN110054628A (zh) 一种水稳定杂化铅碘钙钛矿材料及其应用
CN106279214A (zh) 一种光致和热致双功能碘银酸盐变色材料及其制备方法
Zhang et al. A new polymorph of Cd 3 B 2 O 6: synthesis, crystal structure and phase transformation
Li et al. Synthesis, crystal structure, and optical properties of a new lead barium borate, PbBa2 (B3O6) 2
Zhang et al. Visual low-high interchange in a dielectric switch for trimethylchloroethylamine tetrachlorozincate with a large leap symmetry breaking
Meundaeng et al. Copper coordination polymers constructed from thiazole-5-carboxylic acid: Synthesis, crystal structures, and structural transformation
CN105036192B (zh) 一种四元硫代锑酸盐化合物半导体材料及其制备方法和用途
CN111116929B (zh) 一种具有宽温区可逆热致变色性质的镍配位聚合物材料及其制备方法和应用
Peppel et al. Salts with the [NiBr3 (L)]− complex anion (L= 1-methylimidazole, 1-methylbenzimidazole, quinoline, and triphenylphosphane) and low melting points: A comparative study
Zhang et al. Synthesis, characterization and temperature-triggered phase transition of organic-inorganic hybrid compound:(C6H18N2)(HSO4) 2
CN114716461B (zh) 一种无机-有机杂化化合物晶体K10Cu9I7L12·xH2O及其制备方法和应用
Zhang et al. Reversible color changes of chiral double salts of d-(+)-camphoric diammonium and transition-metal sulfates via gain and loss of crystalline and coordination water molecules
CN109206444A (zh) 光致收缩金属有机框架化合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant