CN109400883B - 一种抗空间辐照poss基原位离子液体及其制备方法和应用 - Google Patents

一种抗空间辐照poss基原位离子液体及其制备方法和应用 Download PDF

Info

Publication number
CN109400883B
CN109400883B CN201811445300.5A CN201811445300A CN109400883B CN 109400883 B CN109400883 B CN 109400883B CN 201811445300 A CN201811445300 A CN 201811445300A CN 109400883 B CN109400883 B CN 109400883B
Authority
CN
China
Prior art keywords
ionic liquid
poss
fatty acid
space
situ
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811445300.5A
Other languages
English (en)
Other versions
CN109400883A (zh
Inventor
周峰
于强亮
蔡美荣
张朝阳
裴小维
刘维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201811445300.5A priority Critical patent/CN109400883B/zh
Publication of CN109400883A publication Critical patent/CN109400883A/zh
Application granted granted Critical
Publication of CN109400883B publication Critical patent/CN109400883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/052Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种抗空间辐照POSS基原位离子液体,该离子液体为季铵离子液体,其阳离子为POSS季铵盐,阴离子为脂肪酸根。本发明还公开了该离子液体的制备方法及应用。本发明具有优良的减摩抗磨性能以及高的承载能力,可有效提高空间润滑油脂的抗辐照性能,延长空间设备的使用寿命和服役情况,不仅对我国航空航天事业的发展起到重要影响,而且对我国空间润滑领域的前沿发展具有深远的意义。

Description

一种抗空间辐照POSS基原位离子液体及其制备方法和应用
技术领域
本发明涉及空间润滑剂技术领域,尤其涉及一种抗空间辐照POSS基原位离子液体及其制备方法和应用。
背景技术
航空、航天等机械设备运动部件长期服役在空间等苛刻条件下,为保障航空、航天等机械设备的安全服役,必须满足航空、航天等设备的高效润滑,研发高性能空间润滑剂已经成为越来越重要的研究热点。一直以来,润滑剂的性能与润滑剂的分子结构及组分调制等具有直接关系。为了进一步满足空间润滑部件向精密化、智能化发展,研究人员通过设计空间润滑剂的分子、组成、结构使其发挥出优异的性能,进而满足不同苛刻工况下的需求。另一方面,空间环境复杂多变,尤其是高真空环境、原子氧、紫外、带电粒子、中性粒子、电磁辐射等对航天设备的寿命和正常运行造成了严重的破坏(Chen, J.; Ding, N.W.; Li,Z.F.; Wang, W. Prog. Aerosp. Sci., 2016, 83, 37-56.沈自才; 姜海富; 徐坤博; 丁义刚; 刘宇明.宇航材料工艺, 2016, 2, 1-8.),为此,发展一类具有抗空间辐照的润滑剂或者润滑添加剂具有更加重要的意义。
目前国际上报道已应用的空间润滑剂主要包括多烷基环戊烷(MACs)、硅碳氢油、全氟聚醚油、含氟氯苯基的硅油、离子液体及其相应的润滑脂(Quan, X.; Hu, M.; Gao,X.M.; Fu, Y.L.; Weng, L.J.; Wang, D.S.; Jiang, D.; Sun, J.Y. Tribol.Int.,2016, 99, 1186-1194..; Hu, M.; Gao, X.M.; Fu, Y.L.; Weng, L.J.; Wang, D.S.;Jiang, D.; Sun, J.Y. Tribol.Int., 2016, 99, 1186-1194.Guo, R.S.; Hua, H.Y.;Liu, Z.L.; Wang, X.L.; Zhou, F.RSC Adv., 2014, 4, 28780-28785.Lv, M.; Yang,L.J.; Wang, Q.H.; Wang, T.M.; Liang, Y.M. Tribol.Lett., 2015, 59:20.Yu, Q.L.;Wu, Y.; Li, D.M.; Cai, M.R.; Zhou, F.; Liu, W.M. J. Colloid. Interf.Sci.,2017, 487,130-140.程亚洲; 胡献国; 徐玉福; 孙晓军. 航天器环境工程, 2013, 30,14-19.Fan X, Wang L. Highly conductive ionic liquids toward high-performancespace-lubricating greases[J]. ACS Applied Materials &Interfaces, 2014, 6(16):14660-14671.)、
离子液体作为一类重要的润滑剂及润滑添加剂,自2001年发明人所在课题组首次报道以后(Ye C, Liu W, Chen Y, et al. Room-temperature ionic liquids: a novelversatile lubricant[J]. Chemical Communications, 2001 (21): 2244-2245.),已经成为全世界摩擦学方向的研究热点。事实证明,离子液体作为高性能润滑剂及添加剂的确具有非常优良的减摩抗磨性能,并且具有很好的承载能力(Palacio M, Bhushan B. Areview of ionic liquids for green molecular lubrication in nanotechnology[J].Tribology Letters, 2010, 40(2): 247-268; Yao M, Fan M, Liang Y, et al.Imidazolium hexafluorophosphate ionic liquids as high temperature lubricantsfor steel–steel contacts[J]. Wear, 2010, 268(1-2): 67-71; Song Z, Yu Q, CaiM, et al. Green ionic liquid lubricants prepared from anti-inflammatory drug[J]. Tribology Letters, 2015, 60(3): 38; Fan M, Zhang C, Guo Y, et al. Aninvestigation on the friction and wear properties of perfluorooctanesulfonate ionic liquids[J]. Tribology Letters, 2016, 63(1): 11.)
但是,从空间环境的使用工况去考虑,已见报道的离子液体润滑剂或者添加剂均不具备抗空间辐照的特性。众所周知,航天器的运行多处于200~700 km 高度范围的低地球轨道,在该轨道运行环境中,航天器遭受严重的原子氧(AO)、空间紫外(UV)的破坏(Gonzalez R I, Phillips S H, Hoflund G B. In situ oxygen-atom erosion studyof polyhedral oligomeric silsesquioxane-siloxane copolymer[J]. Journal ofSpacecraft and Rockets, 2000, 37(4): 463-467.)。国内外研究已证明,AO具有极强的反应活性,通过化学键断裂、分解、氧化和聚合等多种形式对空间润滑剂造成严重的侵蚀破坏作用,导致空间润滑剂的物理化学性能发生退化而失效,对航天器的运行安全造成了严重的威胁(Wang H, Wang X, Qiao D, et al. Novel Fluorine-containingTrisilahydrocarbon Lubricants and Their Antiatomic Oxygen Irradiation underSimulated Space[J]. Chemistry Letters, 2014, 43(10): 1578-1580.)。
近年来,多面体低聚倍半硅氧烷(Polyhedral OligomerieSilsesquioxane,简称POSS)及其衍生物因具有高的抗氧化、耐燃、热稳定性、高韧性、不产生挥发性物质、无气味和环境友好等诸多优点,广泛用于空间聚合物材料的添加剂,以减轻辐照对材料的损伤(Lei X F, Qiao M T, Tian L D, et al. Improved space survivability ofpolyhedral oligomeric silsesquioxane (POSS) polyimides fabricated via novelPOSS-diamine[J]. Corrosion Science, 2015, 90: 223-238.Minton T K, Wright M E,Tomczak S J, et al. Atomic oxygen effects on POSS polyimides in low earthorbit[J]. ACS Applied Materials &Interfaces, 2012, 4(2): 492-502.)。而且研究已经表明将POSS基团引入聚合物基体或者与聚合物单体发生共聚后,能够显著提高聚合物材料的机械性能(强度、模量、刚性)以及抗AO辐照性能(Zhou H, Ye Q, Xu J. Polyhedraloligomeric silsesquioxane-based hybrid materials and their applications[J].Materials Chemistry Frontiers, 2017, 1(2): 212-230.)。同时,引入POSS体系后的聚合在原子氧轰击后表现出了更好的材料稳定性(Verker R, Grossman E, Eliaz N.Erosion of POSS-polyimide films under hypervelocity impact and atomic oxygen:The role of mechanical properties at elevated temperatures[J].ActaMaterialia, 2009, 57(4): 1112-1119.)。这些研究均已经证明,POSS作为一类新型的抗辐照材料,具有非常优异的抗空间原子氧辐照的性能。
事实证明,传统离子液体制备过程繁琐、成本高、不溶于基础油等等,极大限制其大量的工业化应用。目前的解决办法就是构建原位离子解决其复杂合成问题,另一方面就是通过发展系列的油溶性离子液体来提高其油溶性及减摩抗磨性能(Fan M, Song Z,Liang Y, et al. In situ formed ionic liquids in synthetic esters forsignificantly improved lubrication[J]. ACS Applied Materials &Interfaces,2012, 4(12): 6683-6689.Wu X, Liu J, Zhao Q, et al.In situ formed ionicliquids in polyol esters as high performance lubricants for steel/steelcontacts at 300°C[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(9):2281-2290.Huang G, Yu Q, Ma Z, et al. Probing the lubricating mechanism ofoil-soluble ionic liquids additives[J]. Tribology International, 2017, 107:152-162.)。而目前尚无抗空间辐照POSS基原位有溶性离子液体润滑添加剂的相关文献报道。
发明内容
本发明所要解决的技术问题是提供一种具有优良的减摩抗磨性能以及高承载能力的抗空间辐照POSS基原位离子液体。
本发明所要解决的另一个技术问题是提供该抗空间辐照POSS基原位离子液体的制备方法。
本发明所要解决的第三个技术问题是提供该抗空间辐照POSS基原位离子液体的应用。
为解决上述问题,本发明所述的一种抗空间辐照POSS基原位离子液体,其特征在于:该离子液体为季铵离子液体,其阳离子为POSS季铵盐,阴离子为脂肪酸根,其通式如下:
Figure 314566DEST_PATH_IMAGE001
式中:R为异丁基;B所代表的脂肪酸是指饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸、饱和脂肪二酸中的任意一种。
所述饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸或饱和脂肪二酸的碳原子数目均为6~20。
如上所述的一种抗空间辐照POSS基原位离子液体的制备方法,其特征在于:在基础油MACs中依次加入氨丙基POSS和脂肪酸,于50~80℃加热反应10~30分钟后,使其完全溶解,冷却至室温即得原位离子液体;所述氨丙基POSS与所述脂肪酸的摩尔比为1~2:1。
如上所述的一种抗空间辐照POSS基原位离子液体在润滑剂方面的应用,其特征在于:该离子液体作为钢-钢摩擦副的润滑剂或空间润滑剂添加剂。
本发明与现有技术相比具有以下优点:
1、本发明以POSS为结构单元构建新型的POSS基抗空间辐照离子液体,可有效提高空间润滑油脂的抗辐照性能,延长空间设备的使用寿命和服役情况,不仅对我国航空航天事业的发展起到重要影响,而且对我国空间润滑领域的前沿发展具有深远的意义。
2、经对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明原位油溶性离子液体添加剂的粘温特性的对比测试,可以发现随着添加剂含量的增加,本发明所得的离子液体的粘度也是增加的,粘度指数几乎没有改变,表明随着添加剂的加入,几乎没有影响其粘温特性(参见表1)。
表1 MACs和POSS原位油溶性离子液体润滑剂的运动粘度、粘度指数
Figure 643916DEST_PATH_IMAGE002
注:采用奥地利安东帕公司生产的SVM3000石油产品运动粘度仪测定运动粘度和粘度指数。
3、经对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明POSS原位油溶性离子液体添加剂的热稳定性的对比测试,可以发现随着添加剂量的增加,POSS原位油溶性离子液体添加剂的热分解温度增加,当添加剂的量增加到4%时,其热分解温度提高了近25℃,这在空间环境里已经是非常大的提高(参见表2)。
表2 MACs和POSS原位油溶性离子液体润滑剂的分解温度和相应质量损失温度
Figure 842816DEST_PATH_IMAGE003
注:使用德国耐驰公司生产的STA 449 F3 TGA-DSC(NETZSCH)同步热分析仪对它们的热稳定性进行了分析,试验条件为:氮气气氛,氮气流速50 mL/分钟,升温速率10℃/分钟,升温区间25~600 ℃。
4、经对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明POSS原位油溶性离子液体润滑添加剂的摩擦磨损性能的对比测试可以发现,与MACs相比本发明所得的POSS原位离子液体润滑添加剂的摩擦系数减小了35%左右,抗磨性能减小了80%左右,其减摩和抗磨性能都有非常大的提高(参见表3)。
表3 MACs和POSS原位离子液添加剂作为钢-钢摩擦副润滑添加剂
室温的平均摩擦系数和平均磨损体积
Figure 574012DEST_PATH_IMAGE004
注:采用德国Optimol油脂公司生产的SRV-IV微振动摩擦磨损试验机评价摩擦磨损性能。测试条件为:温度25℃,频率25赫兹,振幅1毫米,实验时间30分钟;试验上试球为直径10毫米的AISI 52100钢球。下试样为直径24毫米、厚度7.9毫米,硬度为59-61HRC的AISI52100钢块,试验所采用载荷为150牛,下试样的磨损体积由BRUKER-NPFLEX三维光学轮廓仪测得。
5、对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明POSS原位油溶性离子液体润滑添加剂进行抗原子氧空间辐照实验:
将POSS原位油溶性离子液体润滑添加剂分别置于直径25 mm的钢块上进行原子氧辐照,控制润滑剂的厚度不超过4 mm;原子氧束流由上而下垂直入射POSS原位离子液体润滑添加剂表面,束流的通量密度5.6×1015 atoms/( cm2·s),平均动能为5 eV,辐照环境的真空度为3.0 ×10-2 Pa,原子氧辐照时间分别为4 h。将经过原子氧辐照的POSS原位油溶性离子液体润滑添加剂均匀涂抹在钢块表面进行摩擦试验,测试其摩擦系数随时间的变化。在真空球-盘式摩擦试验机上测试其摩擦系数,采用GCr15不锈钢圆块作为下试样,表面粗糙度Ra为0. 02 μm,硬度为800~900 HV,上试样为直径3 mm的9Cr18钢球。摩擦试验条件:法向载荷2.0 N,盘转速300 r /min,摩擦时间30 min,摩擦轨迹的半径为5.0 mm,真空度优于4×10-4 Pa。
结果表明:POSS原位油溶性离子液体相比较MACs,表现出了优异的抗原子氧辐照性能,在原子氧辐照近240分钟后,样品依然具有较低的摩擦系数(参见表4、图1),这也进一步证明这类POSS原位油溶性离子液体有望作为空间润滑和抗原子氧辐照添加剂而应用。
表4 MACs润滑钢-钢摩擦副的平均摩擦系数
原子氧辐照后MACs和4%原位油溶性离子液体润滑添加剂室温的平均摩擦系数
Figure 567375DEST_PATH_IMAGE005
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为原子氧辐照对MACs和POSS原位油溶性离子液体添加剂摩擦系数影响。
具体实施方式
一种抗空间辐照POSS基原位离子液体,该离子液体为季铵离子液体,其阳离子为POSS季铵盐,阴离子为脂肪酸根,其通式如下:
Figure 446338DEST_PATH_IMAGE001
式中:R为异丁基;B所代表的脂肪酸是指饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸、饱和脂肪二酸中的任意一种。
饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸或饱和脂肪二酸的碳原子数目均为6~20。
实施例1 1% 单脂肪酸原位离子液体的制备反应方程式(以油酸为例说明)如下:
Figure 245667DEST_PATH_IMAGE006
在5.76 g基础油MACs中依次加入0.1 mmol氨丙基POSS和0.1 mmol油酸,于60℃加热反应10分钟后,使其完全溶解,冷却至室温即得原位离子液体。
实施例2 2% 单脂肪酸原位离子液体的制备反应方程式(以油酸为例说明)同实施例1。
在5.50 g基础油MACs中依次加入0.2 mmol氨丙基POSS和0.2 mmol油酸,于60℃加热反应10分钟后,使其完全溶解,冷却至室温即得原位离子液体。
实施例3 2% 双脂肪酸原位离子液体的制备反应方程式(以癸二酸为例说明)如下:
Figure 769052DEST_PATH_IMAGE007
在5.50 g基础油MACs中依次加入0.2 mmol氨丙基POSS和0.1 mmol癸二酸,于60℃加热反应10分钟后,使其完全溶解,冷却至室温即得原位离子液体。
实施例4 2% 双脂肪酸原位离子液体的制备反应方程式(以癸二酸为例说明)同实施例3。
在5.50 g基础油MACs中依次加入0.2 mmol氨丙基POSS和0.2 mmol癸二酸,于50℃加热反应30分钟后,使其完全溶解,冷却至室温即得原位离子液体。
实施例5 2% 双脂肪酸原位离子液体的制备反应方程式(以癸二酸为例说明)同实施例3。
在5.50 g基础油MACs中依次加入0.2 mmol氨丙基POSS和0.2 mmol癸二酸,于80℃加热反应20分钟后,使其完全溶解,冷却至室温即得原位离子液体。
上述实施例1~5中的抗空间辐照POSS基原位离子液体在润滑剂方面的应用是指:该离子液体作为钢-钢摩擦副的润滑剂或空间润滑剂添加剂。
应该理解,这里讨论的实施例和实施方案只是为了说明,对熟悉该领域的人可以提出各种改进和变化,这些改进和变化将包括在本申请的精神实质和范围以及所附的权利要求范围内。

Claims (3)

1.一种抗空间辐照POSS基原位离子液体,其特征在于:该离子液体为季铵离子液体,其阳离子为POSS季铵盐,阴离子为脂肪酸根,其通式如下:
Figure DEST_PATH_IMAGE001
式中:R为异丁基;B所代表的脂肪酸是指饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸中的任意一种;所述饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸的碳原子数目均为6~20;
其制备方法:在基础油MACs中依次加入氨丙基POSS和脂肪酸,于50~80℃加热反应10~30分钟后,使其完全溶解,冷却至室温即得原位离子液体;所述氨丙基POSS与所述脂肪酸的摩尔比为1~2:1。
2.如权利要求1所述的一种抗空间辐照POSS基原位离子液体,其特征在于:所述脂肪酸是指饱和脂肪二酸,该饱和脂肪二酸的碳原子数目为6~20。
3.如权利要求1所述的一种抗空间辐照POSS基原位离子液体在润滑剂方面的应用,其特征在于:该离子液体作为钢-钢摩擦副的润滑剂或空间润滑剂添加剂。
CN201811445300.5A 2018-11-29 2018-11-29 一种抗空间辐照poss基原位离子液体及其制备方法和应用 Active CN109400883B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811445300.5A CN109400883B (zh) 2018-11-29 2018-11-29 一种抗空间辐照poss基原位离子液体及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811445300.5A CN109400883B (zh) 2018-11-29 2018-11-29 一种抗空间辐照poss基原位离子液体及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109400883A CN109400883A (zh) 2019-03-01
CN109400883B true CN109400883B (zh) 2021-03-30

Family

ID=65456328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811445300.5A Active CN109400883B (zh) 2018-11-29 2018-11-29 一种抗空间辐照poss基原位离子液体及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109400883B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023621A (ja) * 2011-07-22 2013-02-04 Kyodo Yushi Co Ltd 潤滑グリース組成物
CN103160365A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 一种润滑油组合物及其制备方法
CN103865613A (zh) * 2012-12-18 2014-06-18 中国科学院兰州化学物理研究所 含抗腐蚀性离子液体的润滑剂组合物
WO2015140822A1 (en) * 2014-03-18 2015-09-24 Council Of Scientific & Industrial Research Halogen free ionic liquids as lubricant or lubricant additives and a process for the preparation thereof
CN105924465A (zh) * 2016-05-23 2016-09-07 上海大学 Poss基耐高温的室温离子液体及其制备方法
CN107828056A (zh) * 2017-11-23 2018-03-23 上海大学 Poss基季铵盐类离子液体及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016093898A2 (en) * 2014-08-14 2016-06-16 Ues, Inc. Lubricant additive

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023621A (ja) * 2011-07-22 2013-02-04 Kyodo Yushi Co Ltd 潤滑グリース組成物
CN103160365A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 一种润滑油组合物及其制备方法
CN103865613A (zh) * 2012-12-18 2014-06-18 中国科学院兰州化学物理研究所 含抗腐蚀性离子液体的润滑剂组合物
WO2015140822A1 (en) * 2014-03-18 2015-09-24 Council Of Scientific & Industrial Research Halogen free ionic liquids as lubricant or lubricant additives and a process for the preparation thereof
CN105924465A (zh) * 2016-05-23 2016-09-07 上海大学 Poss基耐高温的室温离子液体及其制备方法
CN107828056A (zh) * 2017-11-23 2018-03-23 上海大学 Poss基季铵盐类离子液体及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POSS–Tetraalkylammonium Salts: A New Class of Ionic Liquids;Paola Cardiano,et al;《EUROPEAN JOURNAL OF INORGANIC CHEMISTRY》;20121008(第34期);第5668-5676页 *

Also Published As

Publication number Publication date
CN109400883A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
Mousavi et al. Experimental investigation of MoS2/diesel oil nanofluid thermophysical and rheological properties
Fan et al. Tribological properties of conductive lubricating greases
Huang et al. Insight into the lubricating mechanism for alkylimidazolium phosphate ionic liquids with different alkyl chain length
Wu et al. Halogen-free ionic liquids as excellent lubricants for PEEK-stainless steel contacts at elevated temperatures
Wen et al. High-temperature superlubricity realized with chlorinated-phenyl and methyl-terminated silicone oil and hydrogen-ion running-in
Yegin et al. The effect of nanoparticle functionalization on lubrication performance of nanofluids dispersing silica nanoparticles in an ionic liquid
Han et al. Functional alkylimidazolium ionic liquids as lubricants for steel/aluminum contact: Influence of the functional groups on tribological performance
Zhao et al. Synthesis, characterization and tribological evaluation of novel 1, 4-diazabicyclo [2.2. 2] octane based dicationic ionic liquids as efficient antiwear lubricant additives
CN107653024B (zh) 一种减摩耐磨润滑剂的制备方法
Ye et al. Mechanochemical in-situ construction of ionic liquid-functionalized covalent organic frameworks for anti-wear and friction reduction
CN109400883B (zh) 一种抗空间辐照poss基原位离子液体及其制备方法和应用
Guo et al. Friction and wear properties of halogen-free and halogen-containing ionic liquids used as neat lubricants, lubricant additives and thin lubricant layers
Wu et al. Silver/graphene nanocomposite as an additive for aqueous lubrication
Li et al. Tribological properties of 1-octyl–3-methylimidazolium lactate ionic liquid as a lubricant additive
CN115353922A (zh) 氮化碳量子点基聚乙二醇润滑添加剂及其制备方法
Wang et al. Tribological properties of surface-functionalized Zr-based MOF as a lubricant additive
Yang et al. Tribological performance study of oil‐soluble ILs as lubricant additives by the four‐ball method
Yu et al. POSS-based ionic liquid lubricants with excellent resistance to atomic oxygen irradiation
CN109401813A (zh) 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法
CN100569417C (zh) 一种金属纳米微粒表面调理剂
CN109553637B (zh) 一种抗空间辐照poss基离子液体及其制备方法和应用
CN115895765A (zh) 一种润滑液用添加剂及类离子液体润滑液
CN115947752B (zh) 一种磷酸酯类质子型离子液体及其制备方法和作为基础润滑液添加剂的应用
Guan et al. The synthesis of nanocarbon-poly (ricinoleic acid) composite as a lubricant additive with improved dispersity and anti-wear properties
Sun et al. Amino acid-based ionic liquids as water-ethylene glycol additives towards superior lubricity and corrosion resistance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant