CN109401813A - 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法 - Google Patents

一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法 Download PDF

Info

Publication number
CN109401813A
CN109401813A CN201811443794.3A CN201811443794A CN109401813A CN 109401813 A CN109401813 A CN 109401813A CN 201811443794 A CN201811443794 A CN 201811443794A CN 109401813 A CN109401813 A CN 109401813A
Authority
CN
China
Prior art keywords
poss
base
space radiation
composition
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811443794.3A
Other languages
English (en)
Inventor
周峰
于强亮
蔡美荣
张朝阳
裴小维
刘维民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201811443794.3A priority Critical patent/CN109401813A/zh
Publication of CN109401813A publication Critical patent/CN109401813A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • C10M2229/0445Siloxanes with specific structure containing silicon-to-hydrogen bonds used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/051Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen
    • C10M2229/0515Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/052Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为1~4%的超分子凝胶因子与余量为基础润滑油组成。所述超分子凝胶因子是指等摩尔量的氨丙基POSS和十二羟基硬脂酸通过分子间和分子内氢键进行超分子组装而成。本发明还公开了该组合物的制备方法。本发明不但具有空间润滑剂防爬移泄露和抗空间辐照的性能,而且同时满足空间润滑剂的长效润滑需求,进而对我国航空航天事业以及润滑领域的前沿发展具有非常重要的意义。

Description

一种抗空间辐照POSS基凝胶润滑剂组合物及其制备方法
技术领域
本发明涉及空间润滑剂技术领域,尤其涉及一种抗空间辐照POSS基凝胶润滑剂组合物及其制备方法。
背景技术
为满足航空、航天等机械设备运动部件的高效润滑,研发高性能空间润滑剂已经成为越来越重要的研究领域。一直以来,润滑剂的性能发挥与润滑油结构设计及组分调制等具有直接的关联。为了进一步满足空间润滑部件向精密化、智能化发展,研究人员必须对润滑油的分子组成、结构及性能加以设计,以满足不同环境下的工况需求。此外,空间环境复杂多样,尤其是高真空环境中带电粒子、中性粒子、电磁辐射等将对空间机械的寿命和稳定性造成严重的破坏(Chen, J.; Ding, N. W.; Li, Z. F.; Wang, W. Prog. Aerosp. Sci., 2016, 83, 37-56. 沈自才; 姜海富; 徐坤博; 丁义刚; 刘宇明.宇航材料工艺,2016, 2, 1-8.),为此,发展一类具有抗空间辐照的润滑剂或者润滑剂组合物具有更加重要的意义。
目前国际上报道已应用的空间润滑剂主要包括多烷基环戊烷(MACs)、硅碳氢油、全氟聚醚油、含氟氯苯基的硅油、离子液体及其相应的润滑脂(Quan, X.; Hu, M.; Gao,X. M.; Fu, Y. L.; Weng, L. J.; Wang, D. S.; Jiang, D.; Sun, J. Y. Tribol. Int., 2016, 99, 1186-1194. Guo, R. S.; Hua, H. Y.; Liu, Z. L.; Wang, X. L.;Zhou, F. RSC Adv., 2014, 4, 28780-28785. Lv, M.; Yang, L. J.; Wang, Q. H.;Wang, T. M.; Liang, Y. M. Tribol. Lett., 2015, 59:20. Yu, Q. L.; Wu, Y.; Li,D. M.; Cai, M. R.; Zhou, F.; Liu, W. M. J. Colloid. Interf. Sci., 2017, 487,130-140. 程亚洲; 胡献国; 徐玉福; 孙晓军. 航天器环境工程, 2013, 30, 14-19.Fan, X. Q.; Wang, L. P. ACS Appl. Mater. Interfaces, 2014, 6, 14660-14671.)。但是,诸如此类的空间润滑剂在高真空环境下,尤其是受到微重力作用时,极易从空间润滑设备的润滑界面处爬移、泄露或者由于挥发损失从而引起空间润滑设备的润滑失效。而已有研究证明,利用超分子凝胶因子在润滑基础油中发生超分子相互作用,可形成三维的超分子网络结构,能够有效避免润滑剂的爬移泄露,而且能够有效改善润滑剂的摩擦性能(J. Mater. Chem. 21 (2011) 13399-1340; ACS Appl. Mater. Interfaces 6 (2014) 15783–15794;Tribol Lett (2016) DOI 10.1007/s11249-015-0634-y; Tribol. Inter. 95 (2016) 55–65); Advanced Materials Interfaces, (2015)DOI: 10.1002/ admi.201500489)。
事实上,航天器的运行多处于200~700 km 高度范围的低地球轨道,在该轨道运行环境中,航天器遭受严重的原子氧(AO)的破坏(Gonzalez, R.I.; Phillips, S. H.;Hoflund, G. B. J Spacecraft Rockets, 2000, 37, 463-467)。国内外研究已证明,AO具有极强的反应活性,通过化学键断裂、分解、氧化和聚合等多种形式对空间润滑剂造成严重的侵蚀破坏作用,导致空间润滑剂的物理化学性能发生退化而失效,对航天器的运行安全造成了严重的威胁(Wang, H. Z.; Wang, X. L.; Qiao, D.; Sun, X. J.; Feng, D. P.;Liu, W. M. Chem. Lett., 2014, 43,1578-1580.)。我国现在使用的航空航天润滑剂,本身均不具备抗AO和UV辐照性能,长期服役于空间环境中很容易造成润滑失效。近年来,多面体低聚倍半硅氧烷(Polyhedral Oligomerie Silsesquioxane,简称POSS)及其衍生物因具有高的热稳定性、抗氧化、高韧性、耐燃、不产生挥发性物质、无气味和环境友好等诸多优点,广泛用于空间聚合物复合材料的添加剂,以减轻辐照对材料的损伤(Lei, X. F.;Qiao, M. T.; Tian, L. D.; Yao, P.; Ma, Y.; Zhang, H. P.; Zhang, Q. Y. Corros. Sci.,2015, 90, 223-238. Minton, T. K.; Wright, M. E.; Tomczak, S. J.;Marquez, S. A.; Shen, L. H.; Brunsvold, A. L.;Cooper, R.; Zhang, J. M.; Vij,V.; Guenthner, A. J.; Petteys, B. J. ACS Appl. Mater. Interfaces, 2012, 4,492-502.)。而且研究已经表明将POSS基团引入聚合物基体或者与聚合物单体发生共聚后,能够显著提高聚合物材料的机械性能(强度、模量、刚性)以及抗AO和UV辐照性能(Zhou,H.; Ye, Q.; Xu, J .W. Mater. Chem. Front. 2017, 1, 212-230.),同时,引入POSS体系的聚合在原子氧轰击和紫外辐照后表现出了更好的材料稳定性(Verker, R.;Grossman, E.; Eliaz, N. Acta Mater., 2009, 57, 1112-1119.)。这些研究均证明,POSS作为一类新型聚合物材料,具有非常优异的抗空间原子氧辐照的性能。而目前尚无抗空间辐照POSS基凝胶润滑剂组合物的相关文献报道。
发明内容
本发明所要解决的技术问题是提供一种性能优异的抗空间辐照POSS基凝胶润滑剂组合物。
本发明所要解决的另一个技术问题是提供该抗空间辐照POSS基凝胶润滑剂组合物的制备方法。
为解决上述问题,本发明所述的一种抗空间辐照POSS基凝胶润滑剂组合物,其特征在于:该组合物由质量百分数为1~4 %的超分子凝胶因子与余量为基础润滑油组成;所述超分子凝胶因子是指等摩尔量的氨丙基POSS和十二羟基硬脂酸通过分子间和分子内氢键进行超分子组装而成。
所述基础润滑剂油是指合成润滑油MACs、硅碳氢油、含氟氯苯基硅油、离子液体和石蜡基矿物油500 SN中的任意一种。
将超分子凝胶因子和基础润滑油混合后加热,于80~120 ℃搅拌10~40 min至完全溶解,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
本发明与现有技术相比具有以下优点:
1、本发明设计制备包含POSS结构单元的凝胶因子,并利用超分子组装理念以此为组装单元,构建合理的空间环境下使用的凝胶润滑剂组合物,使其不但具有空间润滑剂防爬移泄露和抗空间辐照的性能,而且同时满足空间润滑剂的长效润滑需求,进而对我国航空航天事业以及润滑领域的前沿发展具有非常重要的意义。
2、经对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明抗空间辐照POSS基凝胶润滑剂组合物的热稳定性的对比测试,可以发现本发明中加入凝胶因子后,MACs的热分解温度提高了近15℃(参见表1),这个在空间润滑剂是一个很大提高。
表1 抗空间辐照POSS基凝胶润滑剂组合物的分解温度
注:采用奥地利安东帕公司生产的SVM3000石油产品运动粘度仪测定运动粘度和粘度指数。使用德国耐驰公司生产的STA 449 F3 TGA-DSC(NETZSCH)同步热分析仪对它们的热稳定性进行了分析,试验条件为:氮气气氛,但其流速50 mL/分钟升温速率10 ℃/分钟,升温区间室温~500 ℃。
3、经对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明抗空间辐照POSS基凝胶润滑剂组合物的摩擦学性能的对比测试可以发现,与MACs相比本发明POSS基凝胶的摩擦系数相比较MACs减少了35%,磨损体积减少了80%多(参见表2)。
表2 抗空间辐照POSS基凝胶润滑组合物的平均摩擦系数和平均磨损体积
注:采用德国Optimol油脂公司生产的SRV-IV微振动摩擦磨损试验机对其减摩抗磨性能进行评价。
SRV-IV微振动摩擦磨损试验机的摩擦副接触方式为球-盘点接触,测试条件为:温度25 ℃,频率25赫兹,振幅1毫米,实验时间30分钟,大气压力在85-88×103 Pa,环境相对湿度23-38%;试验上试球为直径10毫米的AISI 52100钢球。下试样为直径24毫米、厚度7.9毫米,硬度为59-61HRC的AISI 52100钢块,试验所采用载荷为100牛,下试样的磨损体积由BRUKER-NPFLEX三维光学轮廓仪测得。
4、本发明所述的抗空间辐照POSS基凝胶润滑剂组合物在真空原子氧辐照后,通过一系列的摩擦实验,证明本发明所述的抗空间辐照POSS基凝胶润滑剂组合物的确表现出了优异的减摩抗磨性能和稳定的长效润滑性能,能够在空间苛刻的工况下,代替传统空间润滑剂而发挥其潜在的应用价值。
5、对市售合成空间润滑基础油多烷基环戊烷(MACs)润滑剂组合物和本发明抗空间辐照POSS基凝胶润滑剂组合物进行抗原子氧空间辐照实验:
将3% POSS-Gel润滑剂置于直径25 mm的钢块上进行原子氧辐照,控制POSS基凝胶润滑组合物的厚度不超过4 mm; 原子氧束流由上而下垂直入射3% POSS-Gel表面,束流的通量密度5.6×1015 atoms/( cm2·s),平均动能为5 eV,辐照环境的真空度为3.0 ×10-2 Pa,原子氧辐照时间分别为4 h。将经过原子氧辐照的3% POSS-Gel均匀涂抹在钢块表面进行摩擦试验,测试其摩擦系数随时间的变化。图1所示为原子氧辐照对MACs和抗空间辐照POSS基凝胶润滑剂组合物摩擦系数的影响,在真空球-盘式摩擦试验机上测试其摩擦系数,采用GCr15不锈钢圆块作为下试样,表面粗糙度Ra为0. 02 μm,硬度为800~900 HV,上试样为直径3mm的9Cr18钢球。摩擦试验条件:法向载荷2.0 牛,盘转速300 转/分,摩擦时间30 min,摩擦轨迹的半径为5.0 mm,真空度优于4×10-4 Pa。
结果表明:原子氧辐照后的POSS-Gel的润滑性能没有丧失,摩擦系数波动相当小。相比之下,POSS-Gel表现出了优异的抗紫外辐照性能,在原子氧辐照近240 min后,样品依然具有非常稳定,非常低的摩擦系数,而且辐照后的摩擦系数相比MACs辐照后减少了40%左右(参见表3、图1),这也进一步证明这类凝胶润滑剂组合物有望作为新型空间防爬移泄露和抗空间辐照的润滑剂而广泛受到关注和应用。
表3 原子氧辐照对MACs和抗空间辐照POSS基凝胶润滑剂组合物室温的平均摩擦系数
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1为原子氧辐照对MACs和抗空间辐照POSS基凝胶润滑剂组合物摩擦系数的影响。
具体实施方式
实施例1 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为1%的超分子凝胶因子与99%的合成润滑油MACs组成。
其制备方法是指:将超分子凝胶因子和合成润滑油MACs混合后加热,于80 ℃搅拌40 min至完全溶解,此时所含凝胶因子的合成润滑油MACs混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例2 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为2%的超分子凝胶因子与98%的合成润滑油MACs组成。
其制备方法是指:将超分子凝胶因子和合成润滑油MACs混合后加热,于120 ℃搅拌10 min至完全溶解,此时所含凝胶因子的合成润滑油MACs混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例3 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为3%的超分子凝胶因子与97%的合成润滑油MACs组成。
其制备方法是指:将超分子凝胶因子和合成润滑油MACs混合后加热,于90 ℃搅拌30 min至完全溶解,此时所含凝胶因子的合成润滑油MACs混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例4 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为4%的超分子凝胶因子与96%的合成润滑油MACs组成。
其制备方法是指:将超分子凝胶因子和基础润滑油混合后加热,于100℃搅拌20min至完全溶解,此时所含凝胶因子的合成润滑油MACs混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例5 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为1%的超分子凝胶因子与99%的石蜡基矿物油500 SN组成。
其制备方法是指:将超分子凝胶因子和石蜡基矿物油500 SN混合后加热,于110℃搅拌15 min至完全溶解,此时所含凝胶因子的石蜡基矿物油500 SN混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例6一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为2 %的超分子凝胶因子与99%的石蜡基矿物油500 SN组成。
其制备方法是指:将超分子凝胶因子和石蜡基矿物油500 SN混合后加热,于85 ℃搅拌35 min至完全溶解,此时所含凝胶因子的石蜡基矿物油500 SN混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例7 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为1.5 %的超分子凝胶因子与98.5%的硅碳氢油组成。
其制备方法是指:将超分子凝胶因子和硅碳氢油混合后加热,于95 ℃搅拌25 min至完全溶解,此时所含凝胶因子的硅碳氢油混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例8 一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为2.5 %的超分子凝胶因子与97.5%的含氟氯苯基硅油组成。
其制备方法是指:将超分子凝胶因子和含氟氯苯基硅油混合后加热,于105 ℃搅拌18 min至完全溶解,此时所含凝胶因子的含氟氯苯基硅油混合物完全透明,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
实施例9一种抗空间辐照POSS基凝胶润滑剂组合物,该组合物由质量百分数为3.5%的超分子凝胶因子与余量为离子液体组成。
其制备方法是指:将超分子凝胶因子和离子液体混合后加热,于115 ℃搅拌10min至完全溶解,此时所含凝胶因子的离子液体混合物完全透明,室温下冷却静置5~10min,即得抗空间辐照POSS基凝胶润滑剂组合物。
上述实施例1~9中,超分子凝胶因子是指等摩尔量的氨丙基POSS和十二羟基硬脂酸通过分子间和分子内氢键进行超分子组装而成。
氨丙基POSS的结构式为:,式中R1为C1~C18的烷基。
十二羟基硬脂酸的结构式为:
应该理解,这里讨论的实施例和实施方案只是为了说明,对熟悉该领域的人可以提出各种改进和变化,这些改进和变化将包括在本申请的精神实质和范围以及所附的权利要求范围内。

Claims (3)

1.一种抗空间辐照POSS基凝胶润滑剂组合物,其特征在于:该组合物由质量百分数为1~4 %的超分子凝胶因子与余量为基础润滑油组成;所述超分子凝胶因子是指等摩尔量的氨丙基POSS和十二羟基硬脂酸通过分子间和分子内氢键进行超分子组装而成。
2.如权利要求1所述的一种抗空间辐照POSS基凝胶润滑剂组合物,其特征在于:所述基础润滑剂油是指合成润滑油MACs、硅碳氢油、含氟氯苯基硅油、离子液体和石蜡基矿物油500 SN中的任意一种。
3.如权利要求1所述的一种抗空间辐照POSS基凝胶润滑剂组合物的制备方法,其特征在于:将超分子凝胶因子和基础润滑油混合后加热,于80~120 ℃搅拌10~40 min至完全溶解,室温下冷却静置5~10 min,即得抗空间辐照POSS基凝胶润滑剂组合物。
CN201811443794.3A 2018-11-29 2018-11-29 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法 Pending CN109401813A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811443794.3A CN109401813A (zh) 2018-11-29 2018-11-29 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811443794.3A CN109401813A (zh) 2018-11-29 2018-11-29 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法

Publications (1)

Publication Number Publication Date
CN109401813A true CN109401813A (zh) 2019-03-01

Family

ID=65456231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811443794.3A Pending CN109401813A (zh) 2018-11-29 2018-11-29 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法

Country Status (1)

Country Link
CN (1) CN109401813A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635804A (zh) * 2019-11-22 2020-09-08 中国科学院兰州化学物理研究所 一种全氟聚醚超分子凝胶复合纳米颗粒润滑剂及其制备方法和应用
CN114703002A (zh) * 2021-11-11 2022-07-05 中国科学院兰州化学物理研究所 一种复合润滑材料及其制备方法和在空间润滑中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111635804A (zh) * 2019-11-22 2020-09-08 中国科学院兰州化学物理研究所 一种全氟聚醚超分子凝胶复合纳米颗粒润滑剂及其制备方法和应用
CN114703002A (zh) * 2021-11-11 2022-07-05 中国科学院兰州化学物理研究所 一种复合润滑材料及其制备方法和在空间润滑中的应用
CN114703002B (zh) * 2021-11-11 2022-09-13 中国科学院兰州化学物理研究所 一种复合润滑材料及其制备方法和在空间润滑中的应用

Similar Documents

Publication Publication Date Title
Barnhill et al. Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics
Battez et al. Phosphonium cation-based ionic liquids as neat lubricants: Physicochemical and tribological performance
Cai et al. Imidazolium ionic liquids as antiwear and antioxidant additive in poly (ethylene glycol) for steel/steel contacts
Cigno et al. Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes
Qu et al. Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive
Ge et al. Superlubricity of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid induced by tribochemical reactions
Fan et al. Tribological properties of conductive lubricating greases
CN109401813A (zh) 一种抗空间辐照poss基凝胶润滑剂组合物及其制备方法
Fan et al. DOSS–based QAILs: as both neat lubricants and lubricant additives with excellent tribological properties and good detergency
Zhu et al. Investigation on three oil-miscible ionic liquids as antiwear additives for polyol esters at elevated temperature
Guo et al. Tribological behavior of ammonium-based protic ionic liquid as lubricant additive
Wang et al. Conductive lubricating grease synthesized using the ionic liquid
CN110105228B (zh) 一种质子型离子液体及其制备方法和作为水基润滑添加剂的应用
Espinosa et al. New alkylether–thiazolium room-temperature ionic liquid lubricants: surface interactions and tribological performance
Wen et al. High-temperature superlubricity realized with chlorinated-phenyl and methyl-terminated silicone oil and hydrogen-ion running-in
Han et al. Influence of competitive adsorption on lubricating property of phosphonate ionic liquid additives in PEG
Wu et al. High load capacity with ionic liquid-lubricated tribological system
Qiao et al. Tribological performance and mechanism of phosphate ionic liquids as additives in three base oils for steel-on-aluminum contact
Barnhill et al. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives
Sanes et al. New epoxy-ionic liquid dispersions. Room temperature ionic liquid as lubricant of epoxy resin-stainless steel contacts
Khatri et al. Halogen-free ammonium–organoborate ionic liquids as lubricating additives: the effect of alkyl chain lengths on the tribological performance
Zhu et al. Tribological characteristics of bisphenol AF bis (diphenyl phosphate) as an antiwear additive in polyalkylene glycol and polyurea grease for significantly improved lubrication
Ma et al. In situ synthesized phosphate-based ionic liquids as high-performance lubricant additives
Zeng The lubrication performance and viscosity behavior of castor oil under high temperature
CN109852455B (zh) 一种胆固醇类超分子凝胶润滑剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination