CN109374770A - 一种甲鱼油挥发性成分的检测方法 - Google Patents

一种甲鱼油挥发性成分的检测方法 Download PDF

Info

Publication number
CN109374770A
CN109374770A CN201811358616.0A CN201811358616A CN109374770A CN 109374770 A CN109374770 A CN 109374770A CN 201811358616 A CN201811358616 A CN 201811358616A CN 109374770 A CN109374770 A CN 109374770A
Authority
CN
China
Prior art keywords
turtle oil
volatile component
detection method
temperature
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811358616.0A
Other languages
English (en)
Inventor
宋恭帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Bang Watson Biotechnology Co Ltd
Original Assignee
Hangzhou Bang Watson Biotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Bang Watson Biotechnology Co Ltd filed Critical Hangzhou Bang Watson Biotechnology Co Ltd
Priority to CN201811358616.0A priority Critical patent/CN109374770A/zh
Publication of CN109374770A publication Critical patent/CN109374770A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/12Preparation by evaporation
    • G01N2030/126Preparation by evaporation evaporating sample
    • G01N2030/128Thermal desorption analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种甲鱼油挥发性成分的检测方法,它是使用激光照射辅助的方式对甲鱼油样本进行吸附萃取,再使用GC‑MS检测方式进行检测。本发明是一种高效、简便、低成本、精确、全面的甲鱼油挥发性成分检测方法。

Description

一种甲鱼油挥发性成分的检测方法
技术领域
本发明涉及一种甲鱼油挥发性成分的检测方法,属于食品检测技术领域。
背景技术
甲鱼油中富含n-3系多不饱和脂肪酸(n-3PUFA),主要是EPA和DHA,具有抗血小板凝聚、降血脂、延缓血栓形成等生理活性功能,是开发高级保健食品的优质原料。然而,粗制甲鱼油中含有大量杂质,包括游离脂肪酸(FFA)、磷脂、类固醇、脂溶色素、蛋白质等,尤其是甲鱼油中PUFA氧化降解和非脂肪成分的酸败产生的腥臭味物质,具有一定毒害作用,且油脂中不良气味成分的存在易降低其生理活性功能及感官特性从而严重影响品质。因此,在甲鱼油生产加工时,运用一种高效检测方法分析其挥发性成分变化具有重要意义。
挥发性成分分析技术主要包括成分收集与分析。目前,水产加工制品中挥发性成分收集方法有动态顶空萃取法(DHE)、超临界流体萃取法(SFE)、同时蒸馏萃取法(SDE)等。但这些方法普遍费时、费力,且不适合处理大批量样品。相比之下,顶空固相微萃取法(HS-SPME)具有操作简便、无溶剂、选择性好、适用性强等特点,应用更为广泛。然而,HS-SPME仍存在一些问题,如萃取时间、萃取温度的控制、萃取头使用寿命等。
发明内容
本发明的目的在于,提供一种甲鱼油挥发性成分的检测方法。本发明是一种高效、简便、低成本、精确、全面的甲鱼油挥发性成分检测方法。
本发明的技术方案:一种甲鱼油挥发性成分的检测方法,其特点是,包括以下步骤:
①激光照射吸附:利用二极管激光器对甲鱼油样品进行照射,激光照射甲鱼油的同时,在甲鱼油上方设置老化好的萃取头,利用萃取头对挥发出来的物质进行吸附;激光照射前,可将样品预热至40℃,照射激光时可同时在样本底部辅助以每半秒5℃的加温速度进行辅助提取,使样本液态化,并能有一定的对流,可以大幅提高挥发性物质向外溢出。
②解吸:将萃取头并插入气相色谱-质谱联用仪的GC进样口,250℃解吸3min;
③GC-MS检测:利用气相色谱-质谱联用仪进行检测;
④化合物分析:通过NIST 2.0谱库做自动检索确认分析,且仅当正反匹配度(SI/RSI)均大于800(最大值为1000)的鉴定结果才予以保留,采用峰面积归一化法求得各挥发性成分在样品中的相对百分含量。
上述的甲鱼油挥发性成分的检测方法中,所述步骤①中甲鱼油样品的取样量为3g,激光的工作波长为400-450nm,激光功率为10W,激光照射时间为5min。
前述的甲鱼油挥发性成分的检测方法中,所述步骤③中,GC条件为:
色谱柱为TR-35MS(30m×0.25mm,0.25μm);载气:高纯氦气;进样口温度250℃,不分流进样;升温程序:初始温度40℃,保持3min,以5℃/min升至90℃,再以10℃/min升至230℃,保持7min。
前述的甲鱼油挥发性成分的检测方法中,所述步骤③中,MS条件为:
离子源温度200℃;电子离子源;电子能量70eV;传输线温度250℃;检测器温度280℃;质量扫描范围m/z 30~500。
与现有技术相比,本发明利用激光照射的方式对甲鱼油样品进行处理,可以大大缩短挥发性物质的萃取时间。使用传统的加热辅助萃取的方式一般需要30min左右的萃取时间,而本发明的方法的萃取时间可以从30min缩短至5min以下,且检测到的挥发性成分种类与含量更多。再配本发明人经过反复研究试验总结得到的合样品量、激光波长、照射功率和照射时间等多参数的有机结合,可以在使得样品中挥发性成分能够完全、且更快速的挥发出来的同时,又避免甲鱼油表面温度过高使部分油脂被氧化发生异构化而降低检测精度,进而可以使样品检测具有最高的灵敏度、精密度和回收率。
附图说明
图1是实验例和对比例中甲鱼油挥发性成分总离子流对比图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例。一种甲鱼油挥发性成分的检测方法,包括以下步骤:
①激光照射吸附:利用二极管激光器对甲鱼油样品进行照射,激光照射甲鱼油的同时,在甲鱼油上方设置老化好的萃取头,利用萃取头对挥发出来的物质进行吸附;
②解吸:将萃取头并插入气相色谱-质谱联用仪的GC进样口,250℃解吸3min;
③GC-MS检测:利用气相色谱-质谱联用仪进行检测;
④化合物分析:通过NIST 2.0谱库做自动检索确认分析,且仅当正反匹配度(SI/RSI)均大于800(最大值为1000)的鉴定结果才予以保留,采用峰面积归一化法求得各挥发性成分在样品中的相对百分含量。
所述步骤①中甲鱼油样品的取样量为3g,激光的工作波长为400-450nm,激光功率为10W,激光照射时间为5min。
所述步骤③中,GC条件为:
色谱柱为TR-35MS(30m×0.25mm,0.25μm);载气:高纯氦气;进样口温度250℃,不分流进样;升温程序:初始温度40℃,保持3min,以5℃/min升至90℃,再以10℃/min升至230℃,保持7min。
所述步骤③中,MS条件为:
离子源温度200℃;电子离子源;电子能量70eV;传输线温度250℃;检测器温度280℃;质量扫描范围m/z 30~500。
实验例。
以热辅助吸附的方式代替激光照射来作为对比例,对比例的方法称为热辅助解吸结合顶空固相微萃取(HAD-HS-SPME)的方法,具体操作方法如下:称取3g样品置于15ml顶空进样瓶中,并将老化好萃取头插入进样瓶顶空部分,80℃下吸附30min。该参数是目前同类方法中的最优值。
以本发明的最优参数作为实验例,即激光功率10w、照射时间5min、样品添加量3g,测定甲鱼油中挥发性成分。
测定结果如表1所示。本实验例甲鱼油中共鉴定出53种挥发性物质,包括醛类11种、醇类10种、酮类11种、烃类16种及其他类5种。而对比例仅检测到50种。
表1不同提取方法制备甲鱼油样品中挥发性成分变化
注:ND为未检测到该物质
为了评价实验例(LID)的萃取性能,与对比例(HAD)进行对比,经由LID和HAD作用后甲鱼油中挥发性成分的总离子流图如图1所示,将各个色谱峰所对应的质谱在NIST图库进行检索并结合参考文献,确定甲鱼油中挥发性成分的种类,再采用面积归一化法计算出每一种成分在样品中的相对含量,结果如表1所示。
由图1可知,经LID处理后峰个数多于HAD,且峰强度更大。从表1可知,在LID作用下,甲鱼油中共检测到53种挥发性化合物;而经由HAD处理后,则检测到50种化合物。2,6,7-三甲基癸烷、十四烷、肉豆蔻酸异丙酯未检出,从总离子流图中可以看出,该三种物质的出峰时间主要集中在36.71-39.65min。此外,甲鱼油中重要的挥发性成分,包括壬醛、己醛、庚醛、1-戊烯-3-醇、己醇、2-壬酮、2-癸酮、2-辛酮等在两种方法作用下均有检测到,但经LID处理后的样品中各物质的相对含量均高于被HAD处理的样品。
对比结果表明,由两种方法处理后,甲鱼油中的挥发性成分均能被有效地检测到。但是LID的萃取效果明显优于HAD,原因在于该方法作用下,甲鱼油中检出的挥发性物质种类更多、相对含量更高,且操作时间更短,仅需5min,而HAD则需30min。这说明具有高能量、高密集度、低发散性等优点的激光能有效地在短时间内加速甲鱼油中挥发性物质的挥发。
本发明的激光对甲鱼油照射过程中,甲鱼油表面吸收大量激光能量。由于激光的瞬时热效应,使甲鱼油中所含的挥发性成分受热向外膨胀,相当于给挥发性成分粒子一个向上的牵引力,当牵引力足够大时,挥发性成分粒子就逸出油面,聚集在顶空瓶上端,再通过萃取头吸附。
本发明的方法可行性验证
为验证本发明方法的可行性,主要从灵敏度、精密度、回收率等方面进行评价。灵敏度评价包括检出限和定量限的测定,检测限是指在规定的实验条件下,分析方法所能检出样品中被测组分的最低浓度;定量限是指分析方法可定量测定样品中待测组分的最低浓度。精密度测定就是在相同检测条件下做重复试验,并用相对标准偏差表示,相对标准偏差(RSD,%)=标准偏差/被测组分含量的算术平均值*100%,一般测定日内精密度和日间精密度。回收率可用于判断该方法的准确度。
本文采用己醛、壬醛、1-戊烯-3-醇、庚醛、己醛、2-十一酮、戊醛、2-辛酮这八种甲鱼油中特征风味化合物作为该分析方法可行性验证指标,结果如表2所示。由表2可知,该分析方法的检出限和定量限分别为0.13-0.71ng·g–1、0.41-1.86ng·g–1,这说明该方法有良好的灵敏度。测定日内与日间精密度时,设置三个浓度水平,每个水平检测6次。甲鱼油中所有特征化合物的日内精密度的RSD均低于14.11%,而日间精密度的RSD在6.97-13.64%。一般分析方法精密度的RSD<20%,则表明该方法精密度良好。此外,各挥发性物质的回收率在95.6-104.0%。该结果验证了LID-HS-SPME-GC/MS方法是灵敏、精密和高效的,且在甲鱼油中挥发性成分快速分析方面具有良好的性能。
表2从检出限、定量限、精密度及回收率评价本申请方法的可行性

Claims (4)

1.一种甲鱼油挥发性成分的检测方法,其特征在于,包括以下步骤:
①激光照射吸附:利用二极管激光器对甲鱼油样品进行照射,激光照射甲鱼油的同时,在甲鱼油上方设置老化好的萃取头,利用萃取头对挥发出来的物质进行吸附;
②解吸:将萃取头并插入气相色谱-质谱联用仪的GC进样口,250℃解吸3min;
③GC-MS检测:利用气相色谱-质谱联用仪进行检测;
④化合物分析:通过NIST 2.0谱库做自动检索确认分析,且仅当正反匹配度均大于800的鉴定结果才予以保留,采用峰面积归一化法求得各挥发性成分在样品中的相对百分含量。
2.根据权利要求1所述的甲鱼油挥发性成分的检测方法,其特征在于:所述步骤①中甲鱼油样品的取样量为3g,激光的工作波长为400-450nm,激光功率为10W,激光照射时间为5min。
3.根据权利要求1所述的甲鱼油挥发性成分的检测方法,其特征在于,所述步骤③中,GC条件为:
色谱柱为TR-35MS;载气:高纯氦气;进样口温度250℃,不分流进样;升温程序:初始温度40℃,保持3min,以5℃/min升至90℃,再以10℃/min升至230℃,保持7min。
4.根据权利要求1所述的甲鱼油挥发性成分的检测方法,其特征在于,所述步骤③中,MS条件为:
离子源温度200℃;电子离子源;电子能量70eV;传输线温度250℃;检测器温度280℃;质量扫描范围m/z 30~500。
CN201811358616.0A 2018-11-15 2018-11-15 一种甲鱼油挥发性成分的检测方法 Pending CN109374770A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811358616.0A CN109374770A (zh) 2018-11-15 2018-11-15 一种甲鱼油挥发性成分的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811358616.0A CN109374770A (zh) 2018-11-15 2018-11-15 一种甲鱼油挥发性成分的检测方法

Publications (1)

Publication Number Publication Date
CN109374770A true CN109374770A (zh) 2019-02-22

Family

ID=65389041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811358616.0A Pending CN109374770A (zh) 2018-11-15 2018-11-15 一种甲鱼油挥发性成分的检测方法

Country Status (1)

Country Link
CN (1) CN109374770A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820423A (zh) * 2021-09-26 2021-12-21 浙江工商大学 乌鳢不同部位挥发性成分提取、检测方法及检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198453A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd ガス中の有機ハロゲン化物のオンライン簡易計測装置及び方法
US20100162791A1 (en) * 2006-08-11 2010-07-01 Breviere Jerome Device for quantifying the contents of at least one gaseous constituent contained in a gaseous sample from a fluid, related assembly and process
CN103675167A (zh) * 2013-12-25 2014-03-26 天津陆海石油设备系统工程有限责任公司 转盘式顶空自动进样器
CN103698412A (zh) * 2012-09-28 2014-04-02 中国石油天然气股份有限公司 一种在激光照射下丁二烯自聚的检测方法
CN105572286A (zh) * 2016-01-22 2016-05-11 浙江大学 一种甲鱼腥味物质的测定方法
CN106442813A (zh) * 2016-11-03 2017-02-22 广东电网有限责任公司电力科学研究院 一种全密封测量变压器油中溶解成分的顶空进样工艺
CN107356777A (zh) * 2017-06-23 2017-11-17 展义胜 一种进样装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100162791A1 (en) * 2006-08-11 2010-07-01 Breviere Jerome Device for quantifying the contents of at least one gaseous constituent contained in a gaseous sample from a fluid, related assembly and process
JP2009198453A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd ガス中の有機ハロゲン化物のオンライン簡易計測装置及び方法
CN103698412A (zh) * 2012-09-28 2014-04-02 中国石油天然气股份有限公司 一种在激光照射下丁二烯自聚的检测方法
CN103675167A (zh) * 2013-12-25 2014-03-26 天津陆海石油设备系统工程有限责任公司 转盘式顶空自动进样器
CN105572286A (zh) * 2016-01-22 2016-05-11 浙江大学 一种甲鱼腥味物质的测定方法
CN106442813A (zh) * 2016-11-03 2017-02-22 广东电网有限责任公司电力科学研究院 一种全密封测量变压器油中溶解成分的顶空进样工艺
CN107356777A (zh) * 2017-06-23 2017-11-17 展义胜 一种进样装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DR. DIMITRIOS BOSKOU: "《Olive Oil - Constituents, Quality, Health Properties and Bioconversions》", 1 February 2012 *
SASCHA LIEDTKE等: "Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation", 《FOOD CHEMISTRY》 *
翁丽萍等: "SPME-GC-MS法分析温室甲鱼中的挥发性风味物质", 《食品工业》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113820423A (zh) * 2021-09-26 2021-12-21 浙江工商大学 乌鳢不同部位挥发性成分提取、检测方法及检测装置

Similar Documents

Publication Publication Date Title
Virot et al. New microwave-integrated Soxhlet extraction: an advantageous tool for the extraction of lipids from food products
Virot et al. Microwave-integrated extraction of total fats and oils
Guarrasi et al. Quantification of underivatized fatty acids from vegetable oils by HPLC with UV detection
Papakosta et al. Extraction and derivatization of absorbed lipid residues from very small and very old samples of ceramic potsherds for molecular analysis by gas chromatography–mass spectrometry (GC–MS) and single compound stable carbon isotope analysis by gas chromatography–combustion–isotope ratio mass spectrometry (GC–C–IRMS)
Dugo et al. Elucidation of the volatile composition of Marsala wines by using comprehensive two-dimensional gas chromatography
Shantha Thin-layer chromatography-flame ionization detection Iatroscan system
Van Durme et al. Non-thermal plasma as preparative technique to evaluate olive oil adulteration
Gromadzka et al. Trends in edible vegetable oils analysis. Part B. Application of different analytical techniques.
Sobrado et al. Comparison of gas chromatography-combustion-mass spectrometry and gas chromatography-flame ionization detector for the determination of fatty acid methyl esters in biodiesel without specific standards
Ha et al. Determination of hexanal as an oxidative marker in vegetable oils using an automated dynamic headspace sampler coupled to a gas chromatograph/mass spectrometer
Sghaier et al. Analysis of target volatile compounds related to fishy off‐flavor in heated rapeseed oil: A comparative study of different headspace techniques
Sghaier et al. Comprehensive two-dimensional gas chromatography for analysis of the volatile compounds and fishy odor off-flavors from heated rapeseed oil
Özel et al. Determination of Teucrium chamaedrys volatiles by using direct thermal desorption–comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry
Krisilova et al. Determination of the volatile compounds of vegetable oils using an ion-mobility spectrometer
Mascrez et al. Enhancement of volatile profiling using multiple-cumulative trapping solid-phase microextraction. Consideration on sample volume
Chen et al. On-line monitoring of Soxhlet extraction by chromatography and mass spectrometry to reveal temporal extract profiles
La Nasa et al. SIFT-ing archaeological artifacts: Selected ion flow tube-mass spectrometry as a new tool in archaeometry
Pizarro et al. Thawing as a critical pre-analytical step in the lipidomic profiling of plasma samples: new standardized protocol
Boggia et al. Direct GC–(EI) MS determination of fatty acid alkyl esters in olive oils
CN104931613A (zh) 一种烟叶中挥发性成分的检测方法
CN109374770A (zh) 一种甲鱼油挥发性成分的检测方法
CN106093267B (zh) 一种红外辅助水合反应在线顶空‑气相色谱质谱法测定烟草水提物的方法
Tian et al. Development of a fatty acid fingerprint of white apricot almond oil by gas chromatography and gas chromatography–mass spectrometry
Arrebola et al. Determination of polycyclic aromatic hydrocarbons in olive oil by a completely automated headspace technique coupled to gas chromatography‐mass spectrometry
Drabińska et al. Optimisation of headspace solid-phase microextraction with comprehensive two-dimensional gas chromatography–time of flight mass spectrometry (HS-SPME–GC× GC–ToFMS) for quantitative analysis of volatile compounds in vegetable oils using statistical experimental design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination