CN109374618B - 一种亚硝酸根的检测方法 - Google Patents

一种亚硝酸根的检测方法 Download PDF

Info

Publication number
CN109374618B
CN109374618B CN201811638472.4A CN201811638472A CN109374618B CN 109374618 B CN109374618 B CN 109374618B CN 201811638472 A CN201811638472 A CN 201811638472A CN 109374618 B CN109374618 B CN 109374618B
Authority
CN
China
Prior art keywords
ruthenium complex
nitrite
binuclear ruthenium
binuclear
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811638472.4A
Other languages
English (en)
Other versions
CN109374618A (zh
Inventor
区升举
葛春
文杨明
程如梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Femtosecond Testing Technology Co ltd
Original Assignee
Hangzhou Zheda Feimiao Test Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Zheda Feimiao Test Technology Co ltd filed Critical Hangzhou Zheda Feimiao Test Technology Co ltd
Priority to CN201811638472.4A priority Critical patent/CN109374618B/zh
Publication of CN109374618A publication Critical patent/CN109374618A/zh
Application granted granted Critical
Publication of CN109374618B publication Critical patent/CN109374618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • C07F15/0053Ruthenium compounds without a metal-carbon linkage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/775Indicator and selective membrane

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明涉及一种亚硝酸根的检测方法,用双核钌配合物作为检测亚硝酸根的可见光或近红外光显色剂,所述双核钌配合物的阳离子具有如式Ⅰ所示的结构。本发明的亚硝酸根的检测方法方便易行,灵敏度高,抗干扰性强,可以快速检测亚硝酸根。

Description

一种亚硝酸根的检测方法
技术领域
本发明涉及一种利用可见光-近红外光显色检测亚硝酸根的方法,属于检测技术领域。
背景技术
亚硝酸盐是一种常用的防腐剂,广泛使用在各种腌制食品中,提升了食品的色泽度和保存时间。水体中的含氮化合物如氨基酸等在细菌作用下也极易产生亚硝酸盐。在污染严重的空气中,也发现了明显的亚硝酸根存在。所以,亚硝酸盐存在于人们生活中的各种环境中。科学家已经发现亚硝酸盐引起食物中毒的几率较高,它能氧化血液中的低铁血红蛋白,导致其失去携氧能力而引起细胞、组织、器官缺氧,引起头晕、头疼、乏力、心跳加速、嗜睡或烦躁、呼吸困难、恶心、呕吐、腹痛、腹泻等症状。因此,科学家极为注重监控环境中的亚硝酸根。
Li先生课题组利用CdSe量子点通过电化学发光法实现了对亚硝酸根的检测(Luminescence ,2013 ,28:551–556)。Andreas Nussler等人采用2,3-二氨基萘与亚硝酸根反应通过荧光变化和增强实现了对亚硝酸根的检测(Nature Protocols ,2006 ,1 ,2223–2226)。而Shin-ichi Wakida则使用毛细管电泳法检测了浓度低至2.6μM的亚硝酸根。(Journal of Chromatography A ,2004 ,1051:185-191)。这些报道,却极少涉及对其他各种共存离子干扰的研究和报道。此外,还有GB5009.33—2016 中使用的离子色谱法等。在这些众多方法中,离子色谱法、毛细管电泳法处理复杂且仪器昂贵,需专业人员操作,不利于监管人员和品控人员现场的大量筛查检测工作。近年来有大量依靠观察颜色变化判读结果的亚硝酸盐快速检测的试剂盒快速检测试纸,依然存在检测试纸灵敏度相对较低,试纸吸附不均匀导致显色不均匀,检测重复性差,不利于结果判读等缺点。因此,发展检测亚硝酸根的方法成为食品安全管理、环境监测、医疗检测中必不可少的手段。
中国专利文献CN108872226A(申请号:201811000105.1)公开了一种利用N-苯甲酰替苯胺、2 ',5 '-二乙氧基苯酰替苯胺、3-氨基-4-甲氧乙氧基乙酰替苯胺、4 ,4 '-二氨基苯酰替苯胺或N-乙酰苯胺和浓的高氯酸、氢碘酸、盐酸或硫酸结合后,检测水中亚硝酸根的方法。中国专利文献CN108303414 A(申请号:201810016076.1)公开了一种通过复配的:氯化钠、对氨基苯磺酸、N-1-萘基乙二胺盐酸盐、苯甲酸钠、维生素C、茶多酚混合体系检测亚硝酸根。但是,上述这些配方体系复杂,要求比例掌控比较精确。许多方法还不能满足对亚硝酸根检测中的灵敏度和快速检测的要求,发展新的亚硝酸根的可见光检测方法还是十分必要的。
发明内容
本发明要解决的技术问题是提供一种方便易行,灵敏度高,抗干扰性强,可以快速检测亚硝酸根的检测方法。
本发明为解决上述技术问题提出的一种技术方案是:一种亚硝酸根的检测方法,用双核钌配合物作为检测亚硝酸根的可见光或近红外光显色剂,所述双核钌配合物的阳离子具有如式Ⅰ所示的结构,
Figure DEST_PATH_IMAGE001
上述双核钌配合物的阴离子是高氯酸根、硫酸根、氟离子、溴离子、磷酸根或乙酸根。
上述亚硝酸根的检测方法具体步骤是:将所述双核钌配合物配制成浓度为1×10- 9mol/L~1×10-4mol/L的溶液,将待测物加入双核钌配合物的溶液中,采用分光光度法测定波长为436nm或705nm位置处的吸光度,吸光度与亚硝酸根含量成正比,根据吸光度判断待测物中的亚硝酸根含量。
上述亚硝酸根的检测方法,先用双核钌配合物的溶液检测不同浓度的亚硝酸钠标准品,绘制标准品的含量曲线,再用双核钌配合物的溶液检测待测物,采用标准曲线法计算待测物的亚硝酸根含量。
本发明为解决上述技术问题提出的一种技术方案是:一种双核钌配合物,其阳离子具有如式Ⅰ所示的结构,
Figure 311744DEST_PATH_IMAGE002
上述双核钌配合物的阴离子是高氯酸根、硫酸根、氟离子、溴离子、磷酸根或乙酸根。
本发明为解决上述技术问题提出的一种技术方案是:将溶解于有机溶剂中的2,2-联吡啶钌配合物和1,1-双(吡啶-2-甲亚氨基)苯乙醇混合,然后加入硝酸银,加热至回流,然后加入盐溶液,结晶生成双核钌配合物,所述盐溶液的阴离子是高氯酸根、硫酸根、氟离子、溴离子、磷酸根或乙酸根,所述盐溶液的阳离子是钠离子、钾离子或铵离子。本发明采用一锅法生成双核钌配合物。
上述有机溶剂是无水乙醇,所述2,2-联吡啶钌配合物与1,1-双(吡啶-2-甲亚氨基)苯乙醇的摩尔比为1:1至2:1,所述回流反应时间为15分钟~2小时,所述反应温度为78℃(乙醇沸点,加热回流的温度),所述硝酸银的与2,2-联吡啶钌配合物摩尔比为2:1。
本发明具有积极的效果:
(1)本发明的亚硝酸根的检测方法采用具有特殊结构的双核钌配合物作为亚硝酸根的显色剂,与亚硝酸根相互作用时会发生吸光强度变化的显色现象,具体原理是亚硝酸根结合到Ru(II)离子上,引起配合物中金属d轨道到配体以及配体到金属的LMCT电荷转移跃迁吸收带变化。同时,导致双核钌的长程电子作用,形成混合价态[RuII-RuIII](可以由极谱法图2看到)。混合价态[RuII-RuIII]的形成不能由氯离子、硝酸根、高氯酸根、乙酸根、磷酸根、硫酸根、四苯硼酸根等阴离子引发的。从而达到检测亚硝酸根的目的,并能与其他各种阴离子区别开实现选择性检测。与亚硝酸根形成复合物,检测的吸光度位置是波长为436nm和705nm。该方法方便易行,灵敏度高,抗干扰性强,可以快速检测亚硝酸根,尤其适用于快各种阴离子共存的复杂水体的亚硝酸根含量测定。
(2)本发明的亚硝酸根的检测方法只需要按照一定浓度将双核钌配合物配制成水或醇性溶液,水溶液更加实用且使用方便,浓度优选1×10-7mol/L~1×10-6mol/L,可以采用分光光度法进行吸光度测定,采用标准曲线法用标准品绘制含量,从而进行具体含量的计算。
附图说明
图1为实施例1的双核钌配合物的电喷雾质谱图。
图2为采用实施例1的双核钌配合物作为显色剂检测不同浓度的亚硝酸钠溶液的可见光-近红外光光谱图。
图3为采用实施例1的双核钌配合物作为显色剂检测亚硝酸钠溶液的极谱图。
具体实施方式
实施例1
本实施例的双核钌配合物的制备方法是0.10 g(0.6 mmol)的AgNO3与0.17 g(0.3mmol)的二水二氯2,2-联吡啶钌和0.06 g (0.15 mmol)的1,1-双(吡啶-2-甲亚氨基)苯乙醇在100mL的无水乙醇中混合回流30 分钟后,滤去白色的AgCl沉淀,旋转蒸发出去大部分溶剂后加入饱和NaClO4的100mL的乙醇溶液,自然蒸发得到黄色结晶,用乙醇多次洗涤后,真空干燥,得产物0.19 g,产率76%。
本实施例的双核钌配合物的阳离子具有如式Ⅰ所示的结构,阴离子是高氯酸根。
Figure 825902DEST_PATH_IMAGE002
从图1的质谱图可以发现,m/z为1054.05处为结构[(I)ClO4(OH)2]+形成的分子离子峰,同时在m/z为1107.07处为结构[(I)ClO4(OH)2]+•3H2O的水合离子峰,这两处质谱充分说明了配合物的形成。
二水二氯2,2-联吡啶钌具有如式Ⅱ所示的结构。
Figure 565319DEST_PATH_IMAGE003
1,1-双(吡啶-2-甲亚氨基)苯乙醇具有如式Ⅲ所示的结构。
Figure DEST_PATH_IMAGE004
实施例2
本实施例的双核钌配合物的制备方法是0.20 g(0.12 mmol)的AgNO3与0.35 g(0.6 mmol)的二水二氯2,2-联吡啶钌和0.12 g (0.3 mmol)的1,1-双(吡啶-2-甲亚氨基)苯乙醇在100mL的无水乙醇中混合回流30 分钟后,滤去白色的AgCl沉淀,旋转蒸发出去大部分溶剂后加入饱和乙酸钠的100mL的的乙醇水溶液(乙醇含量90%),自然蒸发得到黄色结晶,用乙醇多次洗涤后,真空干燥,得产物0.40 g,产率80%。
实施例3
本实施例的双核钌配合物的制备方法是0.10 g(0.6 mmol)的AgNO3与0.17 g(0.3mmol)的二水二氯2,2-联吡啶钌和0.06 g (0.15 mmol)的1,1-双(吡啶-2-甲亚氨基)苯乙醇在100mL的无水乙醇中混合回流45分钟后,滤去白色的AgCl沉淀,旋转蒸发出去大部分溶剂后加入饱和硫酸铵的100mL的乙醇溶液,自然蒸发得到黄色结晶,用乙醇多次洗涤后,真空干燥,得产物0.15g,产率71%。应用例
本应用例的亚硝酸根的检测方法是,采用实施例1制得的双核钌配合物,配制成水/乙醇(体积比70:30)溶液,溶液中双核钌配合物的浓度为1×10-6mol/L。加入待测物,采用分光光度计测定,获得吸光度为纵坐标的光谱图。
本应用例的亚硝酸根的检测方法对浓度分别为1×10–7mol/L、4×10–7 mol/L、8×10–7mol/L、2×10–6 mol/L的亚硝酸钠溶液进行吸光度检测,亚硝酸钠溶液的,获得的可见光-近红外光光谱图如图1所示。由此可知,波长为436nm和705nm位置处的吸光度均与亚硝酸钠含量呈正比。极谱法显示如图2所示,双核钌配合物的半波电位为0.98 和 1.35 V (vsSCE),分别归属于RuIIIRuII/RuIIRuII2(5+/4+) 和RuIIIRuIII/RuIIIRuII2(6+/5+)氧化-还原电对,对应的两个峰电位的电势差为 ∆E = 0.37 V,当加入亚硝酸钠后,由于亚硝酸根与钌离子的结合,引起双核金属离子的长程电子的运动,导致双核钌的核间作用加强,∆E 减小至0.34 V。
选择性实验
采用本应用例的亚硝酸根的检测方法对含有亚硝酸钠、乙酸钠、柠檬酸钠、乳酸钠、磷酸钾、高氯酸钾、硫酸钾、硝酸钠、氯化铵、氟化铵和溴化钠的混合溶液在可见光-近红外光光谱区域进行吸光度检测。其中,乙酸钠、柠檬酸钠、乳酸钠、磷酸钾、高氯酸钾、硫酸钾、硝酸钠、氯化铵、氟化铵和溴化钠在溶液中的浓度均是1×10–5mol/L,亚硝酸钠在溶液中的浓度为1×10–6mol/L。实验结果证明,这些共存离子也不干扰对亚硝酸根的吸光度。
本发明中所用试剂如无特殊说明浓度均为化学纯。
显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而这些属于本发明的精神所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (10)

1.一种亚硝酸根的检测方法,其特征在于:用双核钌配合物作为检测亚硝酸根的可见光或近红外光显色剂,所述双核钌配合物的阳离子具有如式Ⅰ所示的结构,
Figure DEST_PATH_IMAGE002
2.根据权利要求1所述的一种亚硝酸根的检测方法,其特征在于:所述双核钌配合物的阴离子是高氯酸根、硫酸根、氟离子、溴离子、磷酸根或乙酸根。
3.根据权利要求2所述的一种亚硝酸根的检测方法,其特征在于,具体步骤是:将所述双核钌配合物配制成浓度为1×10-9mol/L~1×10-4mol/L的溶液,将待测物加入双核钌配合物的溶液中,采用分光光度法测定波长为436nm或705nm位置处的吸光度,吸光度与亚硝酸根含量呈正比,根据吸光度判断待测物中的亚硝酸根含量。
4.根据权利要求3所述的一种亚硝酸根的检测方法,其特征在于:先用双核钌配合物的溶液检测不同浓度的亚硝酸根标准品,绘制标准品的含量曲线,再用双核钌配合物的溶液检测待测物,采用标准曲线法计算待测物的亚硝酸根含量。
5.根据权利要求3所述的一种亚硝酸根的检测方法,其特征在于:所述双核钌配合物的溶液中双核钌配合物的浓度为1×10-8mol/L~1×10-6mol/L。
6.根据权利要求5所述的一种亚硝酸根的检测方法,其特征在于:所述双核钌配合物的溶液中双核钌配合物的浓度为1×10-7mol/L~1×10-6mol/L。
7.一种双核钌配合物,其特征在于:其阳离子具有如式Ⅰ所示的结构,
Figure DEST_PATH_IMAGE003
8.根据权利要求7所述的双核钌配合物,其特征在于:双核钌配合物的阴离子是高氯酸根、硫酸根、氟离子、溴离子、磷酸根或乙酸根。
9.一种如权利要求7所述的双核钌配合物的制备方法,其特征在于:将溶解于有机溶剂中的2,2-联吡啶钌配合物和1,1-双(吡啶-2-甲亚氨基)苯乙醇混合,然后加入硝酸银,加热至回流,然后加入盐溶液,结晶生成双核钌配合物,所述盐溶液的阴离子是高氯酸根、硫酸根、氟离子、溴离子、磷酸根或乙酸根,所述盐溶液的阳离子是钠离子、钾离子或铵离子。
10.根据权利要求9所述的双核钌配合物的制备方法,其特征在于:所述有机溶剂是无水乙醇,所述2,2-联吡啶钌配合物与1,1-双(吡啶-2-甲亚氨基)苯乙醇的摩尔比为1:1至2:1,所述加热至回流的反应时间为15分钟~2小时,所述加热至回流的反应温度为78℃,所述硝酸银与2,2-联吡啶钌配合物摩尔比为2:1。
CN201811638472.4A 2018-12-29 2018-12-29 一种亚硝酸根的检测方法 Active CN109374618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811638472.4A CN109374618B (zh) 2018-12-29 2018-12-29 一种亚硝酸根的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811638472.4A CN109374618B (zh) 2018-12-29 2018-12-29 一种亚硝酸根的检测方法

Publications (2)

Publication Number Publication Date
CN109374618A CN109374618A (zh) 2019-02-22
CN109374618B true CN109374618B (zh) 2021-01-29

Family

ID=65372306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811638472.4A Active CN109374618B (zh) 2018-12-29 2018-12-29 一种亚硝酸根的检测方法

Country Status (1)

Country Link
CN (1) CN109374618B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007604A (ja) * 2011-06-23 2013-01-10 Miura Co Ltd 亜硝酸イオンの定量方法
CN104792842A (zh) * 2015-04-24 2015-07-22 北京师范大学 双核钌配合物薄膜的制备方法和应用
CN104892678A (zh) * 2014-12-18 2015-09-09 北京工商大学 双核钌配合物与稀土杂多配合物杂化薄膜及其传感性质
WO2017189893A1 (en) * 2016-04-27 2017-11-02 University Of Puerto Rico 1,5-disubstituted 1,2,3-triazoles are inhibitors of rac/cdc42 gtpases
CN108593618A (zh) * 2018-05-04 2018-09-28 南京工业大学 一种基于聚合物碳点荧光比色检测亚硝酸根离子的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007604A (ja) * 2011-06-23 2013-01-10 Miura Co Ltd 亜硝酸イオンの定量方法
CN104892678A (zh) * 2014-12-18 2015-09-09 北京工商大学 双核钌配合物与稀土杂多配合物杂化薄膜及其传感性质
CN104792842A (zh) * 2015-04-24 2015-07-22 北京师范大学 双核钌配合物薄膜的制备方法和应用
WO2017189893A1 (en) * 2016-04-27 2017-11-02 University Of Puerto Rico 1,5-disubstituted 1,2,3-triazoles are inhibitors of rac/cdc42 gtpases
CN108593618A (zh) * 2018-05-04 2018-09-28 南京工业大学 一种基于聚合物碳点荧光比色检测亚硝酸根离子的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
双核三联吡啶钌(Ⅱ)配合物的合成及其光谱和电化学性质;陈学刚等;《应用化学》;20060531(第05期);465-470 *

Also Published As

Publication number Publication date
CN109374618A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
Cruywagen et al. Molybdenum (VI) complex formation—8. Equilibria and thermodynamic quantities for the reactions with citrate
Fujiwara et al. Chemiluminescence determination of iodide and/or iodine using a luminol–hexadecyltrimethylammonium chloride reversed micelle system following on-line oxidation and extraction
CN111690150B (zh) 一种网状结构稀土铕(iii)配位聚合物及其制备方法和应用
Li et al. Salicylate-selective electrode based on lipophilic tin (IV) phthalocyanine
Rath et al. A simple spectrophotometric procedure for the determination of antimony (III) and (V) in antileishmanial drugs
CN104990918A (zh) 一种基于纳米金的试纸膜及其用于检测铅离子的方法
Ma et al. Flow-injection chemiluminescence determination of penicillin antibiotics in drugs and human urine using luminol-Ag (III) complex system
CN109374618B (zh) 一种亚硝酸根的检测方法
Peng et al. Ratiometric fluorescent sensor based on metal–organic framework for selective and sensitive detection of CO32–
KR20200068181A (ko) 망간 농도 검출 방법
Pinto et al. Electrolytically generated manganese (III) sulfate for the oxidation of L-histidine in aqueous sulfuric acid: A kinetic study.
CN109053709B (zh) 一种用于检测Al3+的荧光探针及试剂盒
US11499094B1 (en) Ratiometric fluorescent probe, preparation method thereof, and application in detection of hydrogen peroxide
CN105642912A (zh) 一种金纳米粒子的制备方法和应用
Mohamed et al. Catalytic spectrophotometric determination of vanadium in seawaters based on the bromate oxidative coupling reaction of metol and 2, 3, 4-trihydroxybenzoic acid
KR102189040B1 (ko) 망간 농도 검출 시약 및 검출 키트
Khan et al. Determination of trace amounts of copper (II) by using catalytic redox reaction between methylene blue and ascorbic acid
Volnyanska et al. Amperometric and spectrophotometric determination of food additive thiabendazole (E-233) in Bananas
Fernandez-de Cordova et al. Determination of Trace Amounts of Cobalt at sub-μg 1− 1Level by Solid Phase Spectrophotometry
Hulanicki et al. Nitron as a titrant in potentiometric determination of nitrate
Xu et al. Highly Selective Iodide Electrode Based on the Copper (II)-N, N′-bis (salicylidene)-1, 2-bis (p-aminophenoxy) ethane Tetradentate Complex
Pourreza et al. Catalytic spectrophotometric determination of trace amounts of copper (II) based on the oxidation of 2, 4-dinitrophenylhydrazone-1, 2-naphtoquinone-4-sulfonic acid by hydrogen peroxide
Waseem et al. Flow‐injection method for the determination of iodide/iodine using Ru (bpy) 33+–NADH chemiluminescence detection
Hayden et al. The synthesis of the W2Br93-ion
Stoyanova Spectrophotometric determination of trace iron by using its catalytic effect on the N-phenylanthranilic acid-potassium periodate reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: Room 209, building B, 525 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province

Patentee after: Hangzhou Femtosecond Testing Technology Co.,Ltd.

Address before: Room 209, building B, 525 Xixi Road, Xihu District, Hangzhou City, Zhejiang Province

Patentee before: HANGZHOU ZHEDA FEIMIAO TEST TECHNOLOGY CO.,LTD.