CN109361725A - 基于多目标遗传算法的车联网云系统资源分配方法 - Google Patents
基于多目标遗传算法的车联网云系统资源分配方法 Download PDFInfo
- Publication number
- CN109361725A CN109361725A CN201810920221.9A CN201810920221A CN109361725A CN 109361725 A CN109361725 A CN 109361725A CN 201810920221 A CN201810920221 A CN 201810920221A CN 109361725 A CN109361725 A CN 109361725A
- Authority
- CN
- China
- Prior art keywords
- vehicle
- cloud
- chromosome
- generation
- constraint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013468 resource allocation Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 19
- 230000006855 networking Effects 0.000 title claims abstract description 16
- 230000002068 genetic effect Effects 0.000 title claims abstract description 12
- 230000000903 blocking effect Effects 0.000 claims abstract description 19
- 238000005457 optimization Methods 0.000 claims abstract description 18
- 210000000349 chromosome Anatomy 0.000 claims description 96
- 108090000623 proteins and genes Proteins 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 20
- 230000004044 response Effects 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 7
- 230000008859 change Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 3
- 238000011161 development Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 101150030229 nth gene Proteins 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/60—Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
- H04L41/14—Network analysis or design
- H04L41/145—Network analysis or design involving simulating, designing, planning or modelling of a network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/12—Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提出了一种基于多目标遗传算法的车联网云系统资源分配方法,用于解决现有车联网云系统资源分配中存在的应用请求阻塞率较大的技术问题,实现步骤为:(1)建立多目标优化模型;(2)设定迭代次数和最大迭代次数;(3)获取第t代父代种群Pt;(4)获取第t代子代种群Qt;(5)对第t代父代种群Pt和第t代子代种群Qt进行合并;(6)获取第t+1代父代种群Pt+1;(7)获取应用请求的资源分配结果。本发明以最小化阻塞率和最小化成本为目标函数,采用遗传算法求解得到一组最优资源分配结果,在满足成本的要求下,降低了应用请求的阻塞率,增加了车联网云系统的资源利用率。
Description
技术领域
本发明属于云计算技术领域,涉及一种车联网云系统资源分配方法,特别是涉及一种基于多目标遗传算法的车联网云系统资源分配方法。
背景技术
智能交通系统是未来交通运输体系的重要发展方向之一,车联网作为物联网技术应用于智能交通领域的具体形式,对于我国交通系统建设和国家经济发展有着重要意义。随着全球汽车产业的高速发展,出现了许多新兴车载应用,例如车载多媒体娱乐、车载社交网络以及基于位置的服务等,这些应用需要复杂的计算能力、充足的带宽资源以及大量的存储空间。然而,由于小型化、低成本的硬件系统,单个车辆的资源有限。云计算能够为用户提供所需的资源,使用户能够按需动态获取计算能力、存储空间和信息服务。车联网与云计算的融合形成车联网云系统,包括车辆云、路边云和中心云,车辆云由一组车辆组成,车辆之间能够进行资源共享,路边云具有少量资源,通常作为资源管理者,中心云由服务器集群组成,具有大量资源。车联网云系统能够提高资源利用率,降低基础设施成本,提高驾驶安全性等。
当单个车辆的资源无法满足应用请求时,车联网云系统需要为应用请求分配资源。当应用请求到来时,资源管理者需要根据应用请求的资源需求、响应时间和车辆云中的资源等,决定将车辆云、路边云或中心云的资源分配给应用请求。一个理想的车联网云系统资源分配方法应该能够满足应用请求的资源、响应时间要求和能耗要求,具有快速收敛、低阻塞率、低成本的特点。由于阻塞率受到应用请求资源、车辆资源、车辆之间连接的稳定性和响应时间等因素的影响,而现有的车联网云系统资源分配方法通常只考虑了应用请求的资源和响应时间,因此具有相对较高的阻塞率。
L.Hou等人在文献“A Continuous-Time Markov decision process-basedresource allocation scheme in vehicular cloud for mobile video services”(Computer Communications,2018,vol.118,pp.140-147)中,公开了一种基于连续时间马尔可夫模型的车联网云系统资源分配方法,该方法首先建立了连续时间马尔可夫模型,然后采用迭代算法求解提出的连续时间马尔可夫模型,经过多次迭代后,能够得到最终的资源分配结果。该方法在建立连续时间马尔可夫模型时,考虑了车辆资源和社交关系对资源分配结果的影响,在一定程度上降低了应用请求的阻塞率,但是其存在的不足之处是:在建立连续时间马尔可夫模型时,忽略了由车辆移动性导致的车辆之间连接频繁中断对应用请求阻塞率的影响,使得阻塞率仍然较高。
多目标遗传算法是一种基于种群搜索方式的全局优化算法,可以处理各种类型的多目标优化模型,能够有效地处理传统优化算法难以解决的复杂问题,具有较高的鲁棒性、全局优化、并行搜索和快速收敛的特点。在求解多目标优化模型时,首先对种群进行初始化,然后对初始种群进行交叉和变异,通过迭代寻找问题的最优解。
利用多目标遗传算法的全局优化、快速收敛的特点,通过建立合适的多目标优化模型,能够有效地解决车联网云系统资源分配中阻塞率较高的问题。
发明内容
本发明的目的在于克服上述现有技术的不足,提出一种基于多目标遗传算法的车联网云系统资源分配方法,在满足成本要求的情况下,降低应用请求的阻塞率。
为实现上述目的,本发明采取的技术方案,包括如下步骤:
(1)建立多目标优化模型:
建立包括目标函数和约束条件的多目标优化模型,其中目标函数包括最小化阻塞率f1和最小化成本f2,约束条件包括应用请求资源约束g1、每辆车的资源约束g2、车辆云总资源约束g3、车辆之间传输时间约束g4、车辆云处理的响应时间约束g5、中心云处理的响应时间约束g6和资源大小约束g7;
(2)设定迭代次数和最大迭代次数:
设迭代次数为t,并初始化t=0,设最大迭代次数为tmax;
(3)获取第t代父代种群Pt:
(3a)设车辆数量为M,M≥2,计算每辆车的匹配因子MF1,…,MFj,…,MFM,MFj表示车辆j的匹配因子:
MFj=γ1ψj+γ2Cj+γ3Dj
其中,γi为权重系数,ψj为车辆j的相对平均速率,Cj为车辆j的资源能力,Dj为车辆j的相邻节点度;
(3b)设应用请求数量为N,N≥2,应用请求的一种车联网云系统资源分配结果用一个染色体表示,第t代父代种群Pt中包含的染色体数量为Npop,Npop∈[40,100]且为偶数,每个染色体有N个基因位e1,…,ei,…,eN,ei∈{0,1,…,p,…M},p=0表示将中心云的资源分配给应用请求i,p=1,…,M表示将车辆p的资源分配给应用请求i,通过MFj计算p的概率Pp,根据Pp确定每个染色体的每个基因位的值,Npop个染色体组成第t代父代种群Pt,其中,Pp的计算公式为:
其中,为MF1,…,MFj,…,MFM的平均值,MFp为车辆p的匹配因子;
(4)获取第t代子代种群Qt:
(4a)对第t代父代种群Pt的染色体两两组合,得到对染色体,并对每对染色体中的两个染色体相同位置上的基因位片段进行交叉,得到交叉后的父代种群;
(4b)对交叉后的父代种群中每个染色体的每个基因位进行变异,得到第t代子代种群Qt;
(5)对第t代父代种群Pt和第t代子代种群Qt进行合并,得到第t代合并后的种群Rt,Rt=Pt+Qt;
(6)获取第t+1代父代种群Pt+1:
根据多目标优化模型的约束条件,计算Rt中每个染色体的目标函数值,并采用精英策略,通过Rt中每个染色体的目标函数值获取第t+1代父代种群Pt+1;
(7)获取应用请求的资源分配结果:
判断迭代次数t是否等于最大进化代数tmax,若是,将第t+1代父代种群Pt+1中的染色体作为应用请求的资源分配结果,否则,令t=t+1,执行步骤(4)。
本发明与现有技术相比,具有以下优点:
第一,本发明在建立多目标模型的约束条件时,根据车辆的位置信息及速率,预测应用请求发出的车辆与其他车辆之间连接的持续时间,考虑了车辆之间传输时间约束,避免选择持续时间短的车辆作为资源提供者,与现有技术忽略由车辆移动性导致的车辆之间连接频繁中断相比,能够有效地降低应用请求的阻塞率。
第二,本发明在建立多目标模型的目标函数时,将最小化阻塞率和最小化成本作为目标函数,与现有技术考虑单目标相比,在降低阻塞率的同时能够满足成本要求。
第三,本发明在获取应用请求的资源分配结果时,通过计算每辆车的匹配因子获取第0代父代种群P0,即初始父代种群,根据每辆车的匹配因子计算每辆车被选择作为资源提供者的概率,根据计算出的概率获取初始父代种群,与现有技术随机生成初始父代种群相比,能够进一步降低应用请求的阻塞率。
附图说明
图1为本发明的实现总流程图;
图2为本发明采用的染色体的编码示意图。
具体实施方式
以下结合附图和具体实施例,对本发明作进一步详细描述:
参照图1,本发明的实现步骤如下:
步骤1)建立多目标优化模型:
建立包括目标函数和约束条件的多目标优化模型,其中目标函数包括最小化阻塞率f1和最小化成本f2,约束条件包括应用请求资源约束g1、每辆车的资源约束g2、车辆云总资源约束g3、车辆之间传输时间约束g4、车辆云处理的响应时间约束g5、中心云处理的响应时间约束g6和资源大小约束g7,定义分别为:
其中,N为应用请求数量,为中心云成功处理的应用请求的数量,为车辆云成功处理的应用请求的数量,为在中心云处理的应用请求i的上传资源大小和回传资源大小,γcc为中心云的传输速率,为应用请求在中心云中处理的成本,为在车辆云处理的请求i的上传资源大小和回传资源大小,γvc为车辆云的传输速率,为应用请求在车辆云中处理的成本;
应用请求资源约束g1的定义为:
每辆车的资源约束g2的定义为:
车辆云总资源约束g3的定义为:
车辆之间传输时间约束g4的定义为:
车辆云处理的响应时间约束g5的定义为:
中心云处理的响应时间约束g6的定义为:
资源大小约束g7的定义为:
其中,为应用请求i所占用车辆j的资源大小,为车辆j的可利用资源大小,为在车辆云中处理的应用请求i所需要的资源大小,M为车辆数量,为车辆云中给应用请求分配1个单位资源时的服务率,τvc为将应用请求分配到车辆云时路边单元的处理时间,di为应用请求i的响应时间,为在中心云中处理的应用请求i所需要的计算资源大小,为中心云中给应用请求分配1个单位资源时的服务率,τcc为将应用请求分配到中心云时路边单元的处理时间,tj为车辆j与发出应用请求的车辆之间连接的持续时间,按如下公式计算:
其中,为车辆i与车辆j当前时刻的距离,为车辆i在当前时刻的位置信息,为车辆j在当前时刻的位置信息,vj为车辆j当前时刻的速率,vi为车辆i当前时刻的速率,α为速率变化系数,Δvj为车辆j的速率变化量,Δvi为车辆i的速率变化量,s为tj时间后两车之间的距离,s=300米。
步骤2)设定迭代次数和最大迭代次数:
设迭代次数为t,并初始化t=0,设最大迭代次数为tmax。
步骤3)获取第t代父代种群Pt:
参照图2,本步骤的具体实现如下:
(3a)设车辆数量为M,M≥2,计算每辆车的匹配因子MF1,…,MFj,…M,FM,MFj表示车辆j的匹配因子:
MFj=γ1ψj+γ2Cj+γ3Dj
其中,γi为权重系数,ψj为车辆j的相对平均速率,Cj为车辆j的资源能力,Dj为车辆j的相邻节点度,定义分别为:
其中,ψj为车辆j的相对平均速率,nsam为车辆速率的样本数量,为车辆j的第i个样本速率值,μneigh为车辆j所有相邻车辆的平均速率,为车辆j的相邻节点的数量,按如下公式计算:
其中,Δv表示速率门限值,num{·}表示满足条件的车辆的数量。
(3b)设应用请求数量为N,N≥2,应用请求的一种车联网云系统资源分配结果用一个染色体表示,第t代父代种群Pt中包含的染色体数量为Npop,Npop∈[40,100]且为偶数,每个染色体有N个基因位e1,…,ei,…,eN,ei∈{0,1,…,p,…M},p=0表示将中心云的资源分配给应用请求i,p=1,…,M表示将车辆p的资源分配给应用请求i,通过MFj计算p的概率Pp,根据Pp确定每个染色体的每个基因位的值,得到基因位的值确定的染色体,Npop个染色体组成第t代父代种群Pt,其中,Pp的计算公式为:
其中,为MF1,…,MFj,…,MFM的平均值,MFp为车辆p的匹配因子;
对染色体进行编码,其结构如图2所示,染色体有N个基因位e1,…,ei,…,eN,其中第一个基因位e1的基因值为2,表示将第2辆车的资源分配给第1个应用请求,第二个基因位e2的基因值为0,表示将中心云的资源分配给第2个应用请求,第i个基因位ei的基因值为4,表示将第4辆车的资源分配给第i个应用请求,第N个基因位eN的基因值为3,表示将第3辆车的资源分配给第N个应用请求。
步骤4)获取第t代子代种群Qt:
(4a)对第t代父代种群Pt的染色体两两组合,得到对染色体,并对每对染色体中的两个染色体相同位置上的基因位片段进行交叉,得到交叉后的父代种群;
(4a1)根据多目标优化模型的约束条件,计算Pt中每个染色体的目标函数值,根据每个染色体的目标函数值,计算每个染色体的适应度,其中,染色体i的适应度fitness(i)按如下公式计算:
其中,fitnessk(i)为染色体i的第k个适应度,按如下公式计算:
其中,fk(i)为染色体i的第k个目标函数值。
(4a2)根据每个染色体的适应度,计算每个染色体被选择的概率,其中,染色体i被选择的概率Pi按如下公式计算:
(4a3)将Pt中所有染色体编号,根据每个染色体被选择的概率,每次从Pt中选择两个染色体组成一对,记录对应的编号,采用有放回抽样的方式,选择次,得到对染色体编号,将得到对染色体编号对应的染色体从Pt中取出,得到对染色体;
(4a4)产生一个(0,1)之间的随机数,若该随机数小于设定的交叉概率Pc,随机选择一个基因位ei,将每对染色体中的两个染色体的基因位片段ei,…,eN进行交叉,得到交叉后的染色体,否则两个染色体保持不变,交叉后的染色体和保持不变的染色体组成交叉后的父代种群,其中,交叉概率Pc按如下公式计算:
其中,a1为0~1的常数,a2为0~1的常数,为第k个适应度的最大值,为第k个适应度的平均值,βk为权重系数,
(4b)对交叉后的父代种群中每个染色体的每个基因位进行变异,得到第t代子代种群Qt:
(4b1)计算Pt中所有染色体目标函数值之间的差异程度Dg,计算公式为:
其中,为所有染色体的第k个目标函数值的平均值,为所有染色体的第k个目标函数值的最大值,αk为权重系数,当目标函数值之间的差异程度满足Dg<Dthr,Dthr为门限值,Dthr∈(0,1),即差异程度较小时,取Pm∈[0.01,0.1];当目标函数值之间的差异程度满足Dg≥Dthr,即差异程度较大时,取Pm∈[0.001,0.01]。
(4b2)对交叉后的父代种群中每条染色体的每个基因位,产生一个(0,1)之间的随机数,若该随机数小于变异概率Pm,将该基因位的值变为其他可选值,每个可选值被选择的概率相等,否则基因位的值不变,得到变异后的染色体,组成第t代子代种群Qt。
步骤5)对第t代父代种群Pt和第t代子代种群Qt进行合并,得到第t代合并后的种群Rt,Rt=Pt+Qt;
步骤6)获取第t+1代父代种群Pt+1:
(6a)对Rt中的所有染色体进行非支配排序,得到q个非支配前沿面F1,…,Fl,…,Fq,Fl为第l个非支配前沿面,然后计算非支配前沿面F1,…,Fl,…,Fq中的染色体数量n1,…,nl,…,nq:
(6a1)根据多目标优化模型的约束条件,计算Rt中每个染色体的目标函数值;
(6a2)根据Rt中每个染色体的目标函数值,计算每个染色体被支配的染色体的数量,选择被支配的染色体的数量为0的染色体组成非支配前沿面F1,将F1中的所有染色体从Rt中除去;
(6a3)令l=2;
(6a4)根据Rt中剩下的染色体的目标函数值,对Rt中剩下的染色体计算每个染色体被支配的染色体的数量,选择被支配的染色体的数量为0的染色体组成非支配前沿面Fl,将Fl中的所有染色体从Rt中除去;
(6a5)令l=l+1,执行步骤(6a4),直到Rt中的染色体数量为0,得到q个非支配前沿面F1,…,Fl,…,Fq;
(6a6)计算非支配前沿面F1,…,Fl,…,Fq中的染色体数量n1,…,nl,…,nq;
(6b)令l=1;
(6c)判断nl+…+n1=Npop是否成立,若是,将Fl中的染色体作为第t+1代父代种群Pt+1的染色体,组成第t+1代父代种群Pt+1,否则,执行步骤(6d);
(6d)判断nl+…+n1<Npop,且nl+1+nl+…+n1>Npop是否满足,若是,计算Fl+1中每个染色体的拥挤距离 为第i个染色体的拥挤距离,并按照从大到小的顺序对计算出的拥挤距离进行排序,选取前Npop-(nl+…+n1)个拥挤距离对应的染色体和F1,…,Fl中的所有染色体作为第t+1代父代种群Pt+1的染色体,组成第t+1代父代种群Pt+1,否则,令l=l+1,并执行步骤(6c),其中,按如下公式计算:
其中,m为目标函数的数量,fk(i)为第i个染色体的第k个目标函数值,fk(i+1)为第i+1个染色体的第k个目标函数值,fk(i-1)为第i-1个染色体的第k个目标函数值,为第k个目标函数的最大值,为第k个目标函数的最小值。
步骤7)获取应用请求的资源分配结果:
判断迭代次数t是否等于最大进化代数tmax,若是,将第t+1代父代种群Pt+1中的染色体作为应用请求的资源分配结果,否则,令t=t+1,执行步骤(4)。
Claims (4)
1.一种基于多目标遗传算法的车联网云系统资源分配方法,其特征在于,包括如下步骤:
(1)建立多目标优化模型:
建立包括目标函数和约束条件的多目标优化模型,其中目标函数包括最小化阻塞率f1和最小化成本f2,约束条件包括应用请求资源约束g1、每辆车的资源约束g2、车辆云总资源约束g3、车辆之间传输时间约束g4、车辆云处理的响应时间约束g5、中心云处理的响应时间约束g6和资源大小约束g7;
(2)设定迭代次数和最大迭代次数:
设迭代次数为t,并初始化t=0,设最大迭代次数为tmax;
(3)获取第t代父代种群Pt:
(3a)设车辆数量为M,M≥2,计算每辆车的匹配因子MF1,…,MFj,…,MFM,MFj表示车辆j的匹配因子:
MFj=γ1ψj+γ2Cj+γ3Dj
其中,γi为权重系数,ψj为车辆j的相对平均速率,Cj为车辆j的资源能力,Dj为车辆j的相邻节点度;
(3b)设应用请求数量为N,N≥2,应用请求的一种车联网云系统资源分配结果用一个染色体表示,第t代父代种群Pt中包含的染色体数量为Npop,Npop∈[40,100]且为偶数,每个染色体有N个基因位e1,…,ei,…,eN,ei∈{0,1,…,p,…M},p=0表示将中心云的资源分配给应用请求i,p=1,…,M表示将车辆p的资源分配给应用请求i,通过MFj计算p的概率Pp,根据Pp确定每个染色体的每个基因位的值,Npop个染色体组成第t代父代种群Pt,其中,Pp的计算公式为:
其中,为MF1,…,MFj,…,MFM的平均值,MFp为车辆p的匹配因子;
(4)获取第t代子代种群Qt:
(4a)对第t代父代种群Pt的染色体两两组合,得到对染色体,并对每对染色体中的两个染色体相同位置上的基因位片段进行交叉,得到交叉后的父代种群;
(4b)对交叉后的父代种群中每个染色体的每个基因位进行变异,得到第t代子代种群Qt;
(5)对第t代父代种群Pt和第t代子代种群Qt进行合并,得到第t代合并后的种群Rt,Rt=Pt+Qt;
(6)获取第t+1代父代种群Pt+1:
根据多目标优化模型的约束条件,计算Rt中每个染色体的目标函数值,并采用精英策略,通过Rt中每个染色体的目标函数值获取第t+1代父代种群Pt+1;
(7)获取应用请求的资源分配结果:
判断迭代次数t是否等于最大进化代数tmax,若是,将第t+1代父代种群Pt+1中的染色体作为应用请求的资源分配结果,否则,令t=t+1,执行步骤(4)。
2.根据权利要求1所述的基于多目标遗传算法的车联网云系统资源分配方法,其特征在于,步骤(1)中所述的目标函数,其中的最小化阻塞率f1和最小化成本f2,所述的约束条件,其中的应用请求资源约束g1、每辆车的资源约束g2、车辆云总资源约束g3、车辆之间传输时间约束g4、车辆云处理的响应时间约束g5、中心云处理的响应时间约束g6和资源大小约束g7的表达式分别为:
其中,N为应用请求数量,为中心云成功处理的应用请求的数量,为车辆云成功处理的应用请求的数量,为在中心云处理的应用请求i的上传资源大小和回传资源大小,γcc为中心云的传输速率,为应用请求在中心云中处理的成本,为在车辆云处理的请求i的上传资源大小和回传资源大小,γvc为车辆云的传输速率,为应用请求在车辆云中处理的成本;
应用请求资源约束g1的定义为:
每辆车的资源约束g2的定义为:
车辆云总资源约束g3的定义为:
车辆之间传输时间约束g4的定义为:
车辆云处理的响应时间约束g5的定义为:
中心云处理的响应时间约束g6的定义为:
资源大小约束g7的定义为:
其中,为应用请求i所占用车辆j的资源大小,为车辆j的可利用资源大小,为在车辆云中处理的应用请求i所需要的资源大小,M为车辆数量,为车辆云中给应用请求分配1个单位资源时的服务率,τvc为将应用请求分配到车辆云时路边单元的处理时间,di为应用请求i的响应时间,为在中心云中处理的应用请求i所需要的计算资源大小,为中心云中给应用请求分配1个单位资源时的服务率,τcc为将应用请求分配到中心云时路边单元的处理时间,tj为车辆j与发出应用请求的车辆之间连接的持续时间,按如下公式计算:
其中,为车辆i与车辆j当前时刻的距离,为车辆i在当前时刻的位置信息,为车辆j在当前时刻的位置信息,vj为车辆j当前时刻的速率,vi为车辆i当前时刻的速率,α为速率变化系数,Δvj为车辆j的速率变化量,Δvi为车辆i的速率变化量,s为tj时间后两车之间的距离,s=300米。
3.根据权利要求1所述的基于多目标遗传算法的车联网云系统资源分配方法,其特征在于,步骤(3a)中所述的第j辆车的匹配因子MFj,其中的ψj、Cj和Dj的定义分别为:
其中,ψj为车辆j的相对平均速率,nsam为车辆速率的样本数量,为车辆j的第i个样本速率值,μneigh为车辆j所有相邻车辆的平均速率,为车辆j的相邻节点的数量,按如下公式计算:
其中,Δv表示速率门限值,num{·}表示满足条件的车辆的数量。
4.根据权利要求1所述的基于多目标遗传算法的车联网云系统资源分配方法,其特征在于,步骤(6)中所述的获取第t+1代父代种群Pt+1,实现步骤为:
(6a)对Rt中的所有染色体进行非支配排序,得到q个非支配前沿面F1,…,Fl,…,Fq,Fl为第l个非支配前沿面,然后计算非支配前沿面F1,…,Fl,…,Fq中的染色体数量n1,…,nl,…,nq;
(6b)令l=1;
(6c)判断nl+…+n1=Npop是否成立,若是,将Fl中的染色体作为第t+1代父代种群Pt+1的染色体,组成第t+1代父代种群Pt+1,否则,执行步骤(6d);
(6d)判断nl+…+n1<Npop,且nl+1+nl+…+n1>Npop是否满足,若是,计算Fl+1中每个染色体的拥挤距离为第i个染色体的拥挤距离,并按照从大到小的顺序对计算出的拥挤距离进行排序,选取前Npop-(nl+…+n1)个拥挤距离对应的染色体和F1,…,Fl中的所有染色体作为第t+1代父代种群Pt+1的染色体,组成第t+1代父代种群Pt+1,否则,令l=l+1,并执行步骤(6c),其中,按如下公式计算:
其中,fk(i)为第i个染色体的第k个目标函数值,fk(i+1)为第i+1个染色体的第k个目标函数值,fk(i-1)为第i-1个染色体的第k个目标函数值,为第k个目标函数的最大值,为第k个目标函数的最小值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810920221.9A CN109361725B (zh) | 2018-08-14 | 2018-08-14 | 基于多目标遗传算法的车联网云系统资源分配方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810920221.9A CN109361725B (zh) | 2018-08-14 | 2018-08-14 | 基于多目标遗传算法的车联网云系统资源分配方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109361725A true CN109361725A (zh) | 2019-02-19 |
CN109361725B CN109361725B (zh) | 2020-12-08 |
Family
ID=65350004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810920221.9A Active CN109361725B (zh) | 2018-08-14 | 2018-08-14 | 基于多目标遗传算法的车联网云系统资源分配方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109361725B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110781587A (zh) * | 2019-10-16 | 2020-02-11 | 北京科技大学 | 利用低品质固废抗离析的废石充填料浆多目标优化方法 |
CN111324429A (zh) * | 2019-10-09 | 2020-06-23 | 中国人民解放军国防科技大学 | 一种基于多代血统参考距离的微服务组合调度方法 |
CN111542078A (zh) * | 2020-05-04 | 2020-08-14 | 南通大学 | 一种nfv环境下核心网控制面弹性资源分配方法 |
CN112134614A (zh) * | 2020-10-26 | 2020-12-25 | 中国人民解放军32039部队 | 一种多波束通信卫星的下行载波资源分配方法及系统 |
CN113395664A (zh) * | 2021-08-16 | 2021-09-14 | 智道网联科技(北京)有限公司 | 用于高精地图绘制的车辆位置信息确定方法、装置及设备 |
CN114065995A (zh) * | 2020-08-10 | 2022-02-18 | 兰州理工大学 | 一种基于协同演化算法的流水车间节能调度求解方法 |
CN114611410A (zh) * | 2022-03-19 | 2022-06-10 | 西安电子科技大学 | 基于遗传算法的无人机信息物理系统参数异常测试方法 |
CN115730432A (zh) * | 2022-11-09 | 2023-03-03 | 国网湖南省电力有限公司 | 物联网数据处理任务的调度方法及系统、设备、存储介质 |
CN116911711A (zh) * | 2023-07-25 | 2023-10-20 | 重庆工程职业技术学院 | 一种物流运输规划方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070174221A1 (en) * | 2006-01-24 | 2007-07-26 | Honda Research Institute Europe Gmbh | Combining Model-Based and Genetics-Based Offspring Generation for Multi-Objective Optimization Using a Convergence Criterion |
CN104281894A (zh) * | 2014-10-30 | 2015-01-14 | 大连海事大学 | 基于航道与泊位资源的船舶调度优化方法 |
CN105844370A (zh) * | 2016-05-16 | 2016-08-10 | 西安电子科技大学 | 基于粒子群算法的城市道路车辆连通度优化方法 |
CN105978713A (zh) * | 2016-05-06 | 2016-09-28 | 西安电子科技大学 | 虚拟网络映射中基于弹性光网络的资源分配方法 |
CN106845642A (zh) * | 2017-01-22 | 2017-06-13 | 北京科技大学 | 一种带约束云工作流调度的自适应多目标进化方法 |
CN108256671A (zh) * | 2017-12-26 | 2018-07-06 | 佛山科学技术学院 | 一种基于学习型遗传算法的多任务多资源滚动分配方法 |
CN108259573A (zh) * | 2017-12-26 | 2018-07-06 | 西安电子科技大学 | 一种混合sdn和雾计算的车辆自组织网络系统 |
-
2018
- 2018-08-14 CN CN201810920221.9A patent/CN109361725B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070174221A1 (en) * | 2006-01-24 | 2007-07-26 | Honda Research Institute Europe Gmbh | Combining Model-Based and Genetics-Based Offspring Generation for Multi-Objective Optimization Using a Convergence Criterion |
CN104281894A (zh) * | 2014-10-30 | 2015-01-14 | 大连海事大学 | 基于航道与泊位资源的船舶调度优化方法 |
CN105978713A (zh) * | 2016-05-06 | 2016-09-28 | 西安电子科技大学 | 虚拟网络映射中基于弹性光网络的资源分配方法 |
CN105844370A (zh) * | 2016-05-16 | 2016-08-10 | 西安电子科技大学 | 基于粒子群算法的城市道路车辆连通度优化方法 |
CN106845642A (zh) * | 2017-01-22 | 2017-06-13 | 北京科技大学 | 一种带约束云工作流调度的自适应多目标进化方法 |
CN108256671A (zh) * | 2017-12-26 | 2018-07-06 | 佛山科学技术学院 | 一种基于学习型遗传算法的多任务多资源滚动分配方法 |
CN108259573A (zh) * | 2017-12-26 | 2018-07-06 | 西安电子科技大学 | 一种混合sdn和雾计算的车辆自组织网络系统 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111324429B (zh) * | 2019-10-09 | 2023-03-24 | 中国人民解放军国防科技大学 | 一种基于多代血统参考距离的微服务组合调度方法 |
CN111324429A (zh) * | 2019-10-09 | 2020-06-23 | 中国人民解放军国防科技大学 | 一种基于多代血统参考距离的微服务组合调度方法 |
CN110781587A (zh) * | 2019-10-16 | 2020-02-11 | 北京科技大学 | 利用低品质固废抗离析的废石充填料浆多目标优化方法 |
CN111542078A (zh) * | 2020-05-04 | 2020-08-14 | 南通大学 | 一种nfv环境下核心网控制面弹性资源分配方法 |
CN111542078B (zh) * | 2020-05-04 | 2022-09-16 | 南通大学 | 一种nfv环境下核心网控制面弹性资源分配方法 |
CN114065995A (zh) * | 2020-08-10 | 2022-02-18 | 兰州理工大学 | 一种基于协同演化算法的流水车间节能调度求解方法 |
CN114065995B (zh) * | 2020-08-10 | 2024-04-19 | 兰州理工大学 | 一种基于协同演化算法的流水车间节能调度求解方法 |
CN112134614A (zh) * | 2020-10-26 | 2020-12-25 | 中国人民解放军32039部队 | 一种多波束通信卫星的下行载波资源分配方法及系统 |
CN112134614B (zh) * | 2020-10-26 | 2021-02-26 | 中国人民解放军32039部队 | 一种多波束通信卫星的下行载波资源分配方法及系统 |
CN113395664A (zh) * | 2021-08-16 | 2021-09-14 | 智道网联科技(北京)有限公司 | 用于高精地图绘制的车辆位置信息确定方法、装置及设备 |
CN113395664B (zh) * | 2021-08-16 | 2021-11-05 | 智道网联科技(北京)有限公司 | 用于高精地图绘制的车辆位置信息确定方法、装置及设备 |
CN114611410A (zh) * | 2022-03-19 | 2022-06-10 | 西安电子科技大学 | 基于遗传算法的无人机信息物理系统参数异常测试方法 |
CN114611410B (zh) * | 2022-03-19 | 2024-04-16 | 西安电子科技大学 | 基于遗传算法的无人机信息物理系统参数异常测试方法 |
CN115730432A (zh) * | 2022-11-09 | 2023-03-03 | 国网湖南省电力有限公司 | 物联网数据处理任务的调度方法及系统、设备、存储介质 |
CN115730432B (zh) * | 2022-11-09 | 2024-05-28 | 国网湖南省电力有限公司 | 物联网数据处理任务的调度方法及系统、设备、存储介质 |
CN116911711A (zh) * | 2023-07-25 | 2023-10-20 | 重庆工程职业技术学院 | 一种物流运输规划方法 |
CN116911711B (zh) * | 2023-07-25 | 2024-04-05 | 重庆工程职业技术学院 | 一种物流运输规划方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109361725B (zh) | 2020-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109361725B (zh) | 基于多目标遗传算法的车联网云系统资源分配方法 | |
Xu et al. | Tripres: Traffic flow prediction driven resource reservation for multimedia iov with edge computing | |
CN111182048B (zh) | 一种基于区块链使能的群智感知的智能交通管理方法 | |
CN114827198B (zh) | 一种应用于车联网的多层中心异步联邦学习方法 | |
CN115209426B (zh) | 一种边缘车联网内数字孪生服务器动态部署方法 | |
CN112188627B (zh) | 一种基于状态预测的动态资源分配策略 | |
CN113905354B (zh) | 一种基于区域内容流行度的车载网络内容传递方法及系统 | |
CN113891477A (zh) | 一种车联网中基于mec计算任务卸载的资源分配方法 | |
CN113709249B (zh) | 辅助驾驶业务安全均衡卸载方法及系统 | |
CN113992560B (zh) | 一种活跃度感知的社交车辆分簇方法、装置及计算机设备 | |
CN115374853A (zh) | 基于T-Step聚合算法的异步联邦学习方法及系统 | |
CN115629873A (zh) | 车路云协同任务卸载与任务队列稳定性控制系统和方法 | |
CN115297171A (zh) | 一种蜂窝车联网分级决策的边缘计算卸载方法及系统 | |
CN117459112A (zh) | 基于图卷积网络的leo卫星网络中的移动边缘缓存方法及设备 | |
Qi et al. | Social prediction-based handover in collaborative-edge-computing-enabled vehicular networks | |
CN117749795A (zh) | 基于强化学习算法的车辆边缘服务器部署方法 | |
CN115988462B (zh) | 一种基于车路协同的边缘计算模块的调试方法 | |
CN115631629B (zh) | 一种基于轨迹预测的城市动态车辆云构建方法及系统 | |
CN108833486B (zh) | 面向复杂车载雾计算系统环境的混合动态任务调度方法 | |
Tan et al. | Overall computing offloading strategy based on deep reinforcement learning in vehicle fog computing | |
CN114116233A (zh) | 基于ap聚类算法和多目标优化算法的边缘服务器配置方法及系统 | |
CN113932824A (zh) | 一种基于边缘计算的电动汽车充电导航系统及方法 | |
CN113795012A (zh) | 基于区块链的网联车辆边缘计算与视频分析资源分配方法 | |
CN114827946A (zh) | 一种车联网场景下基于任务相似度的边缘计算方法及系统 | |
CN116502286B (zh) | 一种基于边缘计算的标准信息的服务方法及其系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |