CN109361073A - 背腔激励的双极化电磁偶极子阵列天线 - Google Patents

背腔激励的双极化电磁偶极子阵列天线 Download PDF

Info

Publication number
CN109361073A
CN109361073A CN201811452320.5A CN201811452320A CN109361073A CN 109361073 A CN109361073 A CN 109361073A CN 201811452320 A CN201811452320 A CN 201811452320A CN 109361073 A CN109361073 A CN 109361073A
Authority
CN
China
Prior art keywords
layer
copper sheet
coupling slot
dual
via hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811452320.5A
Other languages
English (en)
Other versions
CN109361073B (zh
Inventor
乔斌
冯波涛
涂雅婷
彭发辉
郑翠兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jinhong Wireless Technology Co Ltd
Shenzhen University
Original Assignee
Shenzhen Jinhong Wireless Technology Co Ltd
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jinhong Wireless Technology Co Ltd, Shenzhen University filed Critical Shenzhen Jinhong Wireless Technology Co Ltd
Priority to CN201811452320.5A priority Critical patent/CN109361073B/zh
Publication of CN109361073A publication Critical patent/CN109361073A/zh
Application granted granted Critical
Publication of CN109361073B publication Critical patent/CN109361073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/045Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
    • H01Q9/0457Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种背腔激励的双极化电磁偶极子阵列天线,属于天线领域,具体包括由上至下设置的辐射层、功率分配层和反馈层;反馈层的信号经过功率分配层传递至辐射层;辐射贴片通过顶层金属化过孔与顶层介质基板的下表面的铜片耦接形成双极化电磁偶极子;功率分配层,采用十字形耦合缝为一组子阵列馈电,且中层金属化过孔与中层铜片、中层传导铜片形成高阶模基板集成腔;将这种高阶模板集成腔作为激励结构去给这个2*2的子阵列馈电,以相同的相位和幅度激励所有的辐射单元,既简单又高效率,可以减少金属化过孔的数量,更利于天线集成;反馈层的第一输出端和第二输出端成90度,实现天线双极化;整个天线具备宽的阻抗匹配带宽,高增益的特性。

Description

背腔激励的双极化电磁偶极子阵列天线
技术领域
本发明涉及天线领域,具体涉及一种背腔激励的双极化电磁偶极子阵列天线。
背景技术
近年来随着第五代移动通信快速发展,毫米波天线大量地吸引了研究人员的注意力;移动通信在毫米波频段有很宽的频谱资源,能够实现高速率传输数据,速率高达每秒几个Gbits,有望在未来无线传输无压缩高清影像和超快文件传输;做为通信系统的重要组成部分,有低成本,宽带宽和高增益的毫米波天线或者阵列需求越来越大;迄今,研究人员提出了很多不同类型有优良性能的毫米波天线,比如背腔天线,缝隙天线,贴片天线等等;众所周知,由于双极化天线有着极化分集和改善信道容量的优点,工作在低频段的双极化天线阵列被广泛应用于无线通信系统中。
因此,毫米波频段双极化阵列也会在新一代的无线通信系统中有很大应用空间;通过应用由电偶极子和磁偶极子组成的互补天线的概念,电磁偶极子天线具有宽带宽,优越的辐射性能和结构简单的优点,也被广泛应用于天线设计中;除了馈电网络和辐射效率,制造公差对天线性能的影响不宜被忽略,因为毫米波天线的波长很短;因此,需要高度精确的制造技术;否则,天线性能包括匹配、增益和效率会下降;为了减轻制造公差在天线性能上的影响,研究人员提出了基片集成腔激励代替其他复杂的馈电网络来减少在腔内的金属化过孔数量。
发明内容
针对上述技术中存在的不足之处,本发明提供一种背腔激励的双极化电磁偶极子阵列天线,具有宽带宽,高增益,辐射模式对称,两个输入端口之间的高隔离度,其增益和辐射模式在工作频段上稳定的特点。
为实现上述目的,本发明提供一种背腔激励的双极化电磁偶极子阵列天线,包括由上至下设置的辐射层、功率分配层和反馈层;所述反馈层的信号经过功率分配层传递至辐射层;
所述辐射层包括顶层介质基板、设置在顶层介质基板上表面的多块辐射贴片和设置在所述介质基板下表面的顶层传导铜片;所述顶层介质基板设有顶层金属化过孔,所述辐射贴片通过所述顶层金属化过孔与所述顶层传导铜片耦接;
所述功率分配层包括中层介质基板、覆盖在所述中层介质基板上表面的中层铜片和覆盖在所述中层介质基板下表面的中层传导铜片;所述中间铜片设有中层十字形耦合缝,与所述顶层传导铜片耦接;所述中层介质基板设有中层金属化过孔与所述中层铜片、中层传导铜片形成高阶模基板集成腔;
所述反馈层,包括相互垂直的第二信号输入端和第一信号输入端。
其中,所述反馈层还包括下层介质基板和底层介质基板;所述下层介质基板上表面覆盖有下层铜片,所述底层介质基板上表面覆盖有底层铜片;所述第二信号输入端口设置在所述下层铜片,所述第一信号输入端口设置在所述底层铜片。
其中,4块所述辐射贴片以2*2的方式阵列在所述顶层介质基板上表面,且4块所述辐射贴片相邻内角之间通过交叉带连接,形成子阵列;4块所述子阵列相互分离,并以2*2的方式阵列在所述顶层介质基板上表面,形成的天线辐射臂。
其中,所述中层十字形耦合缝数量与所述子阵列的数量相等,且所述中层十字形的耦合缝的几何中心与所述子阵列的几何中心位置相对应。
其中,所述下层铜片设有下层十字形耦合缝;且所述下层十字形耦合缝的几何中心点与所述天线辐射臂的几何中心位置相对应;所述底层铜片设有条形耦合缝,所述条形耦合缝与所述下层十字形耦合缝数量相等,且所述条形耦合缝隙的几何中心点与所述下层十字形耦合缝的几何中心点位置相对应。
其中,所述下层介质基板设有下层金属化过孔,所述下层金属化过孔与所述第二信号输入端口围合成下层凸字形SIW结构,所述底层介质基板设有底层金属化过孔,所述底层金属化过孔与所述第一信号输入端口围合成底层凸字形SIW结构;且所述下层凸字形SIW结构与底层凸字形SIW结构夹角成90度。
其中,4块所述辐射贴片以2*2的方式阵列在所述顶层介质基板上表面,且4块所述辐射贴片相邻内角之间通过交叉带连接,形成第一子阵列;4块所述子阵列相互分离,并以2*2的方式阵列在所述顶层介质基板上表面,形成第二子阵列;4块所述第二子阵列相互分离,并以所述以2*2的方式阵列在所述顶层介质基板上表面形成天线辐射臂。
其中,所述中间铜片设有中层十字形耦合缝,所述中层十字形耦合缝数量与所述第一子阵列的数量相等,且所述中层十字形的耦合缝与所述第一子阵列的几何中心位置相对应。
其中,所述下层铜片设有下层十字形耦合缝;所述十字形耦合缝与所述第二阵列的数量相等,且所述下层十字形耦合缝的几何中心点与所述第二子阵列的几何中心位置相对应;所述底层介质基板上表面覆盖有底层铜片,所述底层铜片设有条形耦合缝,所述条形耦合缝与所述下层十字形耦合缝数量相等,且所述条形耦合缝隙的几何中心点位置与所述下层十字形耦合缝的几何中心点相对应。
其中,所述下层介质基板设有下层金属化过孔,所述下层金属化过孔围合成下层凸字形SIW结构,所述第二信号输入端设置在所述下层凸字形SIW结构前端;所述底层介质基板设有底层金属化过孔,所述底层金属化过孔围合成底层凸字形SIW结构,所述第一信号输入端设置在所述底层凸字形前端。
本发明的有益效果是:与现有技术相比,本发明包括由上至下设置的辐射层、功率分配层和反馈层;反馈层的信号经过功率分配层传递至辐射层;辐射贴片通过金属化过孔与顶层介质基板的下表面的铜片耦接形成双极化电磁偶极子;功率分配层,采用十字形耦合缝为一组子阵列馈电,且中层金属化过孔与中层铜片、中层传导铜片形成高阶模基板集成腔;可以减少金属化过孔的数量,更利于天线集成;反馈层的第一输出端和第二输出端成90度,实现天线双极化;整个天线具备宽的阻抗匹配带宽,高增益的特性。
附图说明
图1为本发明的天线臂子阵列以2*2排列的结构爆炸图;
图2为本发明的天线臂子阵列以2*2排列的结构尺寸图;
图3为本发明的天线臂子阵列以2*2排列的模拟仿真的S参数和隔离度结果;图;
图4为本发明的天线臂子阵列以2*2排列的模拟仿真的模拟仿真的增益图;
图5为本发明的天线臂子阵列以4*4排列的结构尺寸图;
图6为本发明的天线臂子阵列以4*4排列的模拟仿真的S参数和隔离度结果图;
图7为本发明的天线臂子阵列以4*4排列的模拟仿真的模拟仿真的增益图;
图8为本发明的天线臂子阵列以4*4排列的SIW的转接结构尺寸图;
图9为本发明的天线臂子阵列以4*4排列的S参数图。
主要元件符号说明如下:
1、顶层介质基板;2、中层介质基板;3、下层介质基板;4、底层介质基板;11、辐射贴片;12、子阵列;13交叉带;15、顶层金属化过孔;16、顶层侧壁金属化孔;21、中层铜片;22、中层十字形耦合缝;23、中层金属化过孔;31、下层铜片;32、下层十字形耦合缝;33、第一信号输入端口;34、下层金属化过孔;41、底层铜片;42、条形耦合缝;43、第二信号输入端口;44、底层金属化过孔;121、第一子阵列;122、第二子阵列。
具体实施方式
为了更清楚地表述本发明,下面结合附图对本发明作进一步地描述。
请参阅图1,一种背腔激励的双极化电磁偶极子阵列天线,包括由上至下设置的辐射层、功率分配层和反馈层;反馈层的信号经过功率分配层传递至辐射层;辐射层包括顶层介质基板1、设置在顶层介质基板1上表面的多块辐射贴片11和设置在介质基板下表面的顶层传导铜片;顶层介质基板1设有顶层金属化过孔15,辐射贴片11通过顶层金属化过孔15与顶层传导铜片耦接;功率分配层包括中层介质基板2、覆盖在中层介质基板2上表面的中层铜片21和覆盖在中层介质基板2下表面的中层传导铜片;中间铜片设有中层十字形耦合缝22,与顶层传导铜片耦接;中层介质基板2设有中层金属化过孔23与中层铜片21、中层传导铜片形成高阶模基板集成腔;反馈层,包括相互垂直的第二信号输入端和第一信号输入端。
在本实施例中,反馈层还包括下层介质基板3和底层介质基板4;下层介质基板3上表面覆盖有下层铜片31,底层介质基板4上表面覆盖有底层铜片41;第二信号输入端口43设置在下层铜片31,第一信号输入端口33设置在底层铜片41;第一信号输入端的信号传递至第二信号输入端,第二信号输入端将信号传递至中层十字形耦合缝22,中层十字形耦合缝22将信号传递至天线臂,最终发送出去;在本实施例中,四块介质基板,均采用种罗杰斯5880PCB板,厚度为0.508mm,介电常数为2.2;辐射贴片11通过顶层金属化过孔15与顶层介质基板1的下表面的铜片耦接形成双极化电磁偶极子,功率分配层,采用十字形耦合缝为一组子阵列12馈电,且中层金属化过孔23与中层铜片21、中层传导铜片形成高阶模基板集成腔;可以减少金属化过孔的数量,更利于天线集成;反馈层的第一输出端和第二输出端成90度,实现天线双极化;整个天线具备宽的阻抗匹配带宽,高增益的特性;现有技术中,SIW技术被广泛应用于毫米波频段天线的设计中,然而,当设计大型天线阵时,我们需要与常规微带馈电网络一样用到了大量基于SIW的功分器和长的SIW线,这时我们就不能忽视SIW馈电网络的总损耗了;利用高阶模腔激励优势,我们提出的阵列可以扩展到更大的规模,同时简化馈电网络,保持其损耗小特性;除此之外,因为波长很小,而且金属化通孔数量很大,天线性能的制造公差不容忽视。与常规馈电网络相比,我们所提出的设计使用更少的金属通孔;因此,该设计更加具有成本效益。
请参阅图2,4块辐射贴片11以2*2的方式阵列在顶层介质基板1上表面,且4块辐射贴片11相邻内角之间通过交叉带13连接,形成子阵列12;4块子阵列12相互分离,并以2*2的方式阵列在顶层介质基板1上表面,形成的天线辐射臂;中层十字形耦合缝22数量与子阵列12的数量相等,且中层十字形的耦合缝的几何中心与子阵列12的几何中心位置相对应;下层铜片31设有下层十字形耦合缝32;且下层十字形耦合缝32的几何中心点与天线辐射臂的几何中心位置相对应;底层铜片41设有条形耦合缝42,条形耦合缝42与下层十字形耦合缝32数量相等,且条形耦合缝42隙的几何中心点与下层十字形耦合缝32的几何中心点位置相对应;下层介质基板3设有下层金属化过孔34,下层金属化过孔34与第二信号输入端口43围合成下层凸字形SIW结构,底层介质基板4设有底层金属化过孔44,底层金属化过孔44与第一信号输入端口33围合成底层凸字形SIW结构;且下层凸字形SIW结构与底层凸字形SIW结构夹角成90度。
在本实施例中,在辐射贴片11中心加入交叉条带,将四个辐射贴片11的内角连接在一起,这是为了获得更好的阻抗匹配;中层十字形耦合缝22数量为4,下层十字形耦合缝32和条形耦合缝42的数量均为1;顶层介质基板1的四周还有顶层侧壁金属化孔16,围合天线臂;可以约束增益方向,提高增益效果;在本实施例中天线的尺寸参数如表1,
表1.天线阵列的几何参数
参数 C<sub>1</sub> C<sub>2</sub> D<sub>0</sub> D<sub>v</sub> S<sub>v</sub> P<sub>w1</sub> P<sub>W2</sub> L<sub>1</sub> L<sub>2</sub> L<sub>3</sub>
单位/mm 14 12.6 0.6 0.4 0.7 2.22 2.31 4.6 2.69 2.85
参数 L<sub>4</sub> L<sub>c1</sub> L<sub>c2</sub> W<sub>0</sub> W<sub>1</sub> W<sub>2</sub> W<sub>gap</sub> F<sub>a1</sub> F<sub>a2</sub> F<sub>b1</sub>
单位/mm 2.29 5.6 5.73 0.2 0.3 11.3 10.7 6.3 2.26 5.9
参数 F<sub>b2</sub> S<sub>w</sub> h
单位/mm 2.25 16 0.508
请参阅图3,其中,S11为第一信号输入端的回波损耗强度,S22为第二信号输入端的回波损耗强度;S21为第一信号输入端与第二信号输入端之间的额隔离度;其中回波损耗强度是指由辐射臂回传至输入端的信号强度;可以很容易地观察到第二信号输入端口43和第一信号输入端口33的模拟阻抗带宽分别为16.7%和15.2%(S11≤-10dB);第二信号输入端口43和第一信号输入端口33的工作频率范围略有不同;这可能是由两条馈电带尺寸和位置的微小差异造成的;两个端口共同的频带宽度为15.2%(SWR≤2),覆盖范围为36.6到42.6GHz;在工作频段内两个端口的隔离度优于36dB,满足商业基站天线的设计要求;如图4所示,第二信号输入端口43和第一信号输入端口33仿真模拟的增益范围分别为11.5到14.1dBi和11.4到14.1dBi;请参阅表2,天线子阵列12辐射方向图的角度表:
表2,天线子阵列12辐射方向图的角度
请参阅图5,4块辐射贴片11以2*2的方式阵列在顶层介质基板1上表面,且4块辐射贴片11相邻内角之间通过交叉带13连接,形成第一子阵列121;4块子阵列12相互分离,并以2*2的方式阵列在顶层介质基板1上表面,形成第二子阵列122;4块第二子阵列122相互分离,并以以2*2的方式阵列在顶层介质基板1上表面形成天线辐射臂。中间铜片设有中层十字形耦合缝22,中层十字形耦合缝22数量与第一子阵列121的数量相等,且中层十字形的耦合缝与第一子阵列121的几何中心位置相对应;下层铜片31设有下层十字形耦合缝32;十字形耦合缝与第二阵列的数量相等,且下层十字形耦合缝32的几何中心点与第二子阵列122的几何中心位置相对应;底层介质基板4上表面覆盖有底层铜片41,底层铜片41设有条形耦合缝42,条形耦合缝42与下层十字形耦合缝32数量相等,且条形耦合缝42隙的几何中心点位置与下层十字形耦合缝32的几何中心点相对应;下层介质基板3设有下层金属化过孔34,下层金属化过孔34围合成下层凸字形SIW结构,第二信号输入端设置在下层凸字形SIW结构前端;底层介质基板4设有底层金属化过孔44,底层金属化过孔44围合成底层凸字形SIW结构,第一信号输入端设置在底层凸字形前端。
在本实施例中,第二子阵列122相当于上一实施中的天线辐射臂,且尺寸完全相同;在辐射贴片11中心加入交叉条带,将四个辐射贴片11的内角连接在一起,这是为了获得更好的阻抗匹配;中层十字形耦合缝22数量为16,下层十字形耦合缝32和条形耦合缝42的数量均为4;其中,中层十字耦合缝、下层十字形耦合缝32和条形耦合缝42的尺寸也均与上一实施例的尺寸完全相同;顶层介质基板1的四周和第二子阵列122之间,还有顶层侧壁金属化孔16,排列成“田”字形,田字形每个部分围合一个第二子阵列122,可以约束增益方向,提高增益效果;下层凸字形SIW结构,具体的为H形与I字形的组合结构,I字形位于H形中部,其中,l为凸字形的前端突出部,第二信号输入端位于l字形前端;H形左侧竖直部分为中间低两端外凸的三段式结构,H形右侧竖直部分与左侧竖直部分对称;且两端外凸部分偏差量为δ,在本实施例中δ=2.8mm;采用这种设计是为了给出一个两端外凸部形成的相邻SIW腔之间的额外180度相位延迟,这样可以做到当第一信号输入端口33沿y方向或者第二信号输入端口43沿x方向馈电时,能给天线提供同相电场激励;底层凸字形SIW结构与下层凸字形SIW结构结构完全相同,但是两者之间夹角为90度;在本实施例中天线的尺寸参数如表3,
表3.天线阵列馈电网络与转接结构的几何参数
参数 dv sv m1 lr1 lr2 wr1 wr2 wr3 SS fd1
单位/mm 0.4 0.7 0.2 1.52 0.13 3.37 2.9 6.3 14 1.66
参数 fd2 fd3 fd4 fl δ
单位/mm 1.76 1.66 1.76 4.2 2.8
请阅图6,其中,S11为第一信号输入端的回波损耗强度,S22为第二信号输入端的回波损耗强度;S21为第一信号输入端与第二信号输入端之间的额隔离度;其中回波损耗强度是指由辐射臂回传至输入端的信号强度;可以很容易地观察到4×4单元的双极化阵列的第一信号输入端和第二信号输入端的模拟阻抗带宽分别为16.7%和15.2%(S参数低于-10dB);第一信号输入端和第二信号输入端的工作频率范围略有不同;两个端口共同的频带宽度为15.2%(S参数低于-10dB),覆盖范围为36.6-42.6GHz;在工作频段内两个端口的隔离度优于-40dB,满足商业基站天线的设计要求;如图7所示,第一输入端峰值增益为20.2dBi,第二信号输入端的峰值增益为19.8dBi;图8给出了天线阵列馈电网络的矩形波导转接SIW的转接尺寸图,即为第一或第二信号输入端的尺寸图;图9给出转接结构的S参数,S11为第一信号传输端口的回波损耗,S12第一信号传输端口的插入损耗,为在37GHz-42.5GHz毫米波频段中,其S参数低于-10dB;因此,就基站天线而言,这是在未来第五代通信系统下有着良好发展前景的一种天线;请参阅表4,天线阵列辐射方向图的角度表:
表4,天线子阵列辐射方向图的角度
本发明的优势在于:
1、本发明包括由上至下设置的辐射层、功率分配层和反馈层;反馈层的信号经过功率分配层传递至辐射层;辐射贴片通过顶层金属化过孔与顶层介质基板的下表面的铜片耦接形成双极化电磁偶极子;
2、功率分配层,采用十字形耦合缝为一组子阵列馈电,且中层金属化过孔与中层铜片、中层传导铜片形成高阶模基板集成腔;将这种高阶模板集成腔作为激励结构去给这个2*2的子阵列馈电,以相同的相位和幅度激励所有的辐射单元,既简单又高效率,可以减少金属化过孔的数量,更利于天线集成;
3、反馈层的第一输出端和第二输出端成90度,实现天线双极化;整个天线具备宽的阻抗匹配带宽,高增益的特性。
以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

1.一种背腔激励的双极化电磁偶极子阵列天线,其特征在于,包括由上至下设置的辐射层、功率分配层和反馈层;所述反馈层的信号经过功率分配层传递至辐射层;
所述辐射层包括顶层介质基板、设置在顶层介质基板上表面的多块辐射贴片和设置在所述介质基板下表面的顶层传导铜片;所述顶层介质基板设有顶层金属化过孔,所述辐射贴片通过所述顶层金属化过孔与所述顶层传导铜片耦接;
所述功率分配层包括中层介质基板、覆盖在所述中层介质基板上表面的中层铜片和覆盖在所述中层介质基板下表面的中层传导铜片;所述中间铜片设有中层十字形耦合缝,与所述顶层传导铜片耦接;所述中层介质基板设有中层金属化过孔与所述中层铜片、中层传导铜片形成高阶模基板集成腔;
所述反馈层,包括相互垂直的第二信号输入端和第一信号输入端。
2.根据权利要求1所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述反馈层还包括下层介质基板和底层介质基板;所述下层介质基板上表面覆盖有下层铜片,所述底层介质基板上表面覆盖有底层铜片;所述第二信号输入端口设置在所述下层铜片,所述第一信号输入端口设置在所述底层铜片。
3.根据权利要求2所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,4块所述辐射贴片以2*2的方式阵列在所述顶层介质基板上表面,且4块所述辐射贴片相邻内角之间通过交叉带连接,形成子阵列;4块所述子阵列相互分离,并以2*2的方式阵列在所述顶层介质基板上表面,形成天线辐射臂。
4.根据权利要求3所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述中层十字形耦合缝数量与所述子阵列的数量相等,且所述中层十字形的耦合缝的几何中心与所述子阵列的几何中心位置相对应。
5.根据权利要求3所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述下层铜片设有下层十字形耦合缝;且所述下层十字形耦合缝的几何中心点与所述天线辐射臂的几何中心位置相对应;所述底层铜片设有条形耦合缝,所述条形耦合缝与所述下层十字形耦合缝数量相等,且所述条形耦合缝隙的几何中心点与所述下层十字形耦合缝的几何中心点位置相对应。
6.根据权利要求3所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述下层介质基板设有下层金属化过孔,所述下层金属化过孔与所述第二信号输入端口围合成下层凸字形SIW结构,所述底层介质基板设有底层金属化过孔,所述底层金属化过孔与所述第一信号输入端口围合成底层凸字形SIW结构;且所述下层凸字形SIW结构与底层凸字形SIW结构夹角成90度。
7.根据权利要求2所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,4块所述辐射贴片以2*2的方式阵列在所述顶层介质基板上表面,且4块所述辐射贴片相邻内角之间通过交叉带连接,形成第一子阵列;4块所述子阵列相互分离,并以2*2的方式阵列在所述顶层介质基板上表面,形成第二子阵列;4块所述第二子阵列相互分离,并以所述以2*2的方式阵列在所述顶层介质基板上表面形成天线辐射臂。
8.根据权利要求7所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述中间铜片设有中层十字形耦合缝,所述中层十字形耦合缝数量与所述第一子阵列的数量相等,且所述中层十字形的耦合缝与所述第一子阵列的几何中心位置相对应。
9.根据权利要求7所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述下层铜片设有下层十字形耦合缝;所述十字形耦合缝与所述第二阵列的数量相等,且所述下层十字形耦合缝的几何中心点与所述第二子阵列的几何中心位置相对应;所述底层介质基板上表面覆盖有底层铜片,所述底层铜片设有条形耦合缝,所述条形耦合缝与所述下层十字形耦合缝数量相等,且所述条形耦合缝隙的几何中心点位置与所述下层十字形耦合缝的几何中心点相对应。
10.根据权利要求7所述的背腔激励的双极化电磁偶极子阵列天线,其特征在于,所述下层介质基板设有下层金属化过孔,所述下层金属化过孔围合成下层凸字形SIW结构,所述第二信号输入端设置在所述下层凸字形SIW结构前端;所述底层介质基板设有底层金属化过孔,所述底层金属化过孔围合成底层凸字形SIW结构,所述第一信号输入端设置在所述底层凸字形前端。
CN201811452320.5A 2018-11-30 2018-11-30 背腔激励的双极化电磁偶极子阵列天线 Active CN109361073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811452320.5A CN109361073B (zh) 2018-11-30 2018-11-30 背腔激励的双极化电磁偶极子阵列天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811452320.5A CN109361073B (zh) 2018-11-30 2018-11-30 背腔激励的双极化电磁偶极子阵列天线

Publications (2)

Publication Number Publication Date
CN109361073A true CN109361073A (zh) 2019-02-19
CN109361073B CN109361073B (zh) 2024-03-15

Family

ID=65330215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811452320.5A Active CN109361073B (zh) 2018-11-30 2018-11-30 背腔激励的双极化电磁偶极子阵列天线

Country Status (1)

Country Link
CN (1) CN109361073B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888486A (zh) * 2019-03-05 2019-06-14 深圳市信维通信股份有限公司 一种双极化毫米波天线单体及阵列天线
CN110190408A (zh) * 2019-05-10 2019-08-30 深圳大学 一种圆极化电磁偶极子阵列天线
CN110504539A (zh) * 2019-07-25 2019-11-26 中国电子科技集团公司第二十九研究所 一种毫米波双极化平面天线
CN110518351A (zh) * 2019-09-17 2019-11-29 深圳大学 一种双极化毫米波天线单元及天线阵列
CN111864408A (zh) * 2019-04-29 2020-10-30 上海保隆汽车科技股份有限公司 一种车载毫米波雷达阵列天线
CN112751180A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备
CN112768889A (zh) * 2020-12-25 2021-05-07 深圳市南斗星科技有限公司 滤波天线、天线阵列以及无线设备
CN113540775A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种多极化天线
CN113594688A (zh) * 2021-06-15 2021-11-02 北京邮电大学 一种圆极化天线单元以及天线阵列
CN113690634A (zh) * 2021-08-31 2021-11-23 西南交通大学 一种基于siw馈电的紧凑5g双频带毫米波线阵天线
CN116315643A (zh) * 2023-04-20 2023-06-23 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质
CN117154407A (zh) * 2023-10-30 2023-12-01 成都雷电微力科技股份有限公司 一种Ku/Ka双频双极化共口径天线单元及阵列

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084399A (ko) * 2001-04-30 2002-11-07 미션 텔레콤 인코포레이티드 광대역 이중 편파 마이크로스트립 배열 안테나
CN102142617A (zh) * 2011-01-21 2011-08-03 杭州电子科技大学 基于高阶腔体谐振模式的高增益集成天线
US20120032847A1 (en) * 2010-08-05 2012-02-09 Utah State University Integrated reconfigurable solar panel antenna
DE102011107128A1 (de) * 2011-07-12 2013-01-17 Eads Deutschland Gmbh Anordnung für einen nichtstrahlenden dielektrischen Rechteckwellenleiter zur unabhängigen Nutzung zweier oder mehrerer Moden zur Signal-Übertragung
US20150116173A1 (en) * 2012-06-29 2015-04-30 Huawei Technologies Co., Ltd. Electromagnetic dipole antenna
WO2016131496A1 (en) * 2015-02-20 2016-08-25 Huawei Technologies Co., Ltd. Multiport antenna element
CN106505316A (zh) * 2016-12-30 2017-03-15 广东盛路通信科技股份有限公司 一种多层平面天线阵列
CN106887722A (zh) * 2017-03-30 2017-06-23 北京邮电大学 一种毫米波双极化缝隙天线阵列
CN106953153A (zh) * 2017-04-13 2017-07-14 南京邮电大学 基片集成非辐射介质波导人字型功分器
CN107221760A (zh) * 2017-07-17 2017-09-29 中国电子科技集团公司第五十四研究所 一种双频圆极化阵列天线
CN107565225A (zh) * 2017-07-18 2018-01-09 东南大学 一种阵列天线结构及多层过孔结构
CN108550981A (zh) * 2018-04-03 2018-09-18 北京理工大学 工作于tm210谐振模式的w波段双极化缝隙天线及馈电网络
CN209232965U (zh) * 2018-11-30 2019-08-09 深圳市锦鸿无线科技有限公司 背腔激励的双极化电磁偶极子阵列天线

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020084399A (ko) * 2001-04-30 2002-11-07 미션 텔레콤 인코포레이티드 광대역 이중 편파 마이크로스트립 배열 안테나
US20120032847A1 (en) * 2010-08-05 2012-02-09 Utah State University Integrated reconfigurable solar panel antenna
CN102142617A (zh) * 2011-01-21 2011-08-03 杭州电子科技大学 基于高阶腔体谐振模式的高增益集成天线
DE102011107128A1 (de) * 2011-07-12 2013-01-17 Eads Deutschland Gmbh Anordnung für einen nichtstrahlenden dielektrischen Rechteckwellenleiter zur unabhängigen Nutzung zweier oder mehrerer Moden zur Signal-Übertragung
US20150116173A1 (en) * 2012-06-29 2015-04-30 Huawei Technologies Co., Ltd. Electromagnetic dipole antenna
WO2016131496A1 (en) * 2015-02-20 2016-08-25 Huawei Technologies Co., Ltd. Multiport antenna element
CN106505316A (zh) * 2016-12-30 2017-03-15 广东盛路通信科技股份有限公司 一种多层平面天线阵列
CN106887722A (zh) * 2017-03-30 2017-06-23 北京邮电大学 一种毫米波双极化缝隙天线阵列
CN106953153A (zh) * 2017-04-13 2017-07-14 南京邮电大学 基片集成非辐射介质波导人字型功分器
CN107221760A (zh) * 2017-07-17 2017-09-29 中国电子科技集团公司第五十四研究所 一种双频圆极化阵列天线
CN107565225A (zh) * 2017-07-18 2018-01-09 东南大学 一种阵列天线结构及多层过孔结构
CN108550981A (zh) * 2018-04-03 2018-09-18 北京理工大学 工作于tm210谐振模式的w波段双极化缝隙天线及馈电网络
CN209232965U (zh) * 2018-11-30 2019-08-09 深圳市锦鸿无线科技有限公司 背腔激励的双极化电磁偶极子阵列天线

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIANFENG ZHU: "mm-Wave High Gain Cavity-Backed Aperture-Coupled Patch Antenna Array", 《IEEE ACCESS》, pages 1 - 6 *
YUJIAN LI: "60-GHz Dual-Polarized Two-Dimensional Switch-Beam Wideband Antenna Array of Aperture-Coupled Magneto-Electric Dipoles", 《IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION》, pages 1 - 3 *
刘玲玲: "C频段双线极化高隔离度微带天线设计", 《遥测遥控》, 7 March 2014 (2014-03-07) *
周子成: "四点馈电的双极化单层微带背腔天线", 《火控雷达技术》, 25 March 2016 (2016-03-25) *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888486A (zh) * 2019-03-05 2019-06-14 深圳市信维通信股份有限公司 一种双极化毫米波天线单体及阵列天线
CN109888486B (zh) * 2019-03-05 2024-04-16 深圳市信维通信股份有限公司 一种双极化毫米波天线单体及阵列天线
CN111864408A (zh) * 2019-04-29 2020-10-30 上海保隆汽车科技股份有限公司 一种车载毫米波雷达阵列天线
CN110190408A (zh) * 2019-05-10 2019-08-30 深圳大学 一种圆极化电磁偶极子阵列天线
CN110504539A (zh) * 2019-07-25 2019-11-26 中国电子科技集团公司第二十九研究所 一种毫米波双极化平面天线
CN110504539B (zh) * 2019-07-25 2021-03-16 中国电子科技集团公司第二十九研究所 一种毫米波双极化平面天线
CN110518351A (zh) * 2019-09-17 2019-11-29 深圳大学 一种双极化毫米波天线单元及天线阵列
CN112751180A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备
CN112751180B (zh) * 2019-10-31 2022-03-22 Oppo广东移动通信有限公司 天线模组及电子设备
US11962092B2 (en) 2019-10-31 2024-04-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Antenna module and electronic device
CN112768889A (zh) * 2020-12-25 2021-05-07 深圳市南斗星科技有限公司 滤波天线、天线阵列以及无线设备
CN112768889B (zh) * 2020-12-25 2023-08-25 深圳市南斗星科技有限公司 滤波天线、天线阵列以及无线设备
CN113540775A (zh) * 2021-06-07 2021-10-22 北京邮电大学 一种多极化天线
CN113540775B (zh) * 2021-06-07 2022-08-05 北京邮电大学 一种多极化天线
CN113594688A (zh) * 2021-06-15 2021-11-02 北京邮电大学 一种圆极化天线单元以及天线阵列
CN113690634A (zh) * 2021-08-31 2021-11-23 西南交通大学 一种基于siw馈电的紧凑5g双频带毫米波线阵天线
CN116315643B (zh) * 2023-04-20 2023-12-29 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质
CN116315643A (zh) * 2023-04-20 2023-06-23 深圳市锦鸿无线科技有限公司 多波束天线阵列及其运行控制方法、装置以及存储介质
CN117154407B (zh) * 2023-10-30 2024-01-23 成都雷电微力科技股份有限公司 一种Ku/Ka双频双极化共口径天线单元及阵列
CN117154407A (zh) * 2023-10-30 2023-12-01 成都雷电微力科技股份有限公司 一种Ku/Ka双频双极化共口径天线单元及阵列

Also Published As

Publication number Publication date
CN109361073B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
CN109361073A (zh) 背腔激励的双极化电磁偶极子阵列天线
CN209232965U (zh) 背腔激励的双极化电磁偶极子阵列天线
EP2908380B1 (en) Wideband dual-polarized patch antenna array and methods useful in conjunction therewith
CN108987911A (zh) 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN107230840B (zh) 高增益宽带微带贴片天线
CN106299727B (zh) 低互耦4单元超宽带mimo天线
KR20150080932A (ko) 다중대역 다중편파 무선 통신 안테나
CN112688070B (zh) 一种分布式多点馈电宽带垂直极化全向天线
CN103367893A (zh) 高隔离宽频带两天线系统
CN107196047A (zh) 宽波束高增益天线
CN114639956A (zh) 一种结合mimo技术的微波与毫米波大频比共口径天线
CN110828973B (zh) 一种与边框分立且低剖面的宽带5g移动终端天线
CN111129711A (zh) 5g双极化天线模组及终端设备
CN111355029A (zh) 用于第五代通信系统的高性能双极化微带天线
Floc’h et al. On the design of planar printed dipole array antennas
CN113258307B (zh) E面宽窄波束切换可重构天线
CN114784495A (zh) 一种毫米波宽带宽波束贴片天线
CN114824774A (zh) 一种宽带高隔离度双极化超表面天线
CN210430099U (zh) 高增益宽带圆极化天线及无线通信设备
Ahmad et al. Latest Performance Improvement Strategies and Techniques Used in 5G Antenna Designing Technology a Comprehensive Study. Micromachines 2022 13 717
CN109659673B (zh) 宽波束高增益双极化定向天线
CN113708046A (zh) 一种小型化宽带圆极化三维打印混合介质谐振器天线
Fegade et al. Design a microstrip patch 5G antenna with modified defective ground structure
CN111029742A (zh) 一种宽带高增益微带磁偶极子天线
CN217114776U (zh) 一种小口径窄波束的基站天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant