CN109360853B - 提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法 - Google Patents

提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法 Download PDF

Info

Publication number
CN109360853B
CN109360853B CN201810928184.6A CN201810928184A CN109360853B CN 109360853 B CN109360853 B CN 109360853B CN 201810928184 A CN201810928184 A CN 201810928184A CN 109360853 B CN109360853 B CN 109360853B
Authority
CN
China
Prior art keywords
scattering region
spin
section
sawtooth
electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810928184.6A
Other languages
English (en)
Other versions
CN109360853A (zh
Inventor
阮良浩
王晶
赵文生
张海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201810928184.6A priority Critical patent/CN109360853B/zh
Publication of CN109360853A publication Critical patent/CN109360853A/zh
Application granted granted Critical
Publication of CN109360853B publication Critical patent/CN109360853B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法。本发明异质结结构中的散射区由沿输入端至输出端方向排布的散射区一段、散射区二段和散射区三段组成;散射区一段和散射区三段为宽度和长度均相等的锯齿型条带;散射区三段与散射区一段的长度方向一致,散射区二段的长度方向与散射区一段的长度方向呈90°夹角;散射区二段为沿长度方向的扶手椅型条带;输入端和输出端均为锯齿型条带。本发明通过寻找只允许某一种自旋方向的电子能级存在的能量范围,使电子以该范围内的能量入射时,另一种自旋方向的电子被完全过滤,实现自旋的完全极化。

Description

提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法
技术领域
本发明属于电子技术领域,涉及一种提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法。
背景技术
随着物联网和人工智能的来临,人们对更高计算能力和更快计算速度计算机的需求不断增长,发展新型半导体器件是提高半导体技术的一种重要手段。当前,开发新型的半导体器件可以从器件结构和器件材料两方面开展研究:自旋电子器件利用电子自旋自由度来进行信息保存和逻辑处理,与传统半导体器件相比,自旋电子器件在信息存储容量和传递速度等方面优势更加明显;自石墨烯发现以来,二维材料由于原子级厚度、表面平整、电子迁移率高等特点被视为是取代硅制作新型半导体器件的理想材料。因此研究利用二维材料制作自旋电子器件符合当前Beyond-Moore时代半导体器件技术发展的时代背景。
二硫化钼(MoS2)为过渡金属硫化物,是继石墨烯之后发现的一种具有类蜂窝晶格结构的新型二维材料。研究发现,石墨烯内部自旋轨道耦合作用弱,一般忽虑不计,而MoS2内部自旋轨道耦合作用强度达到0.075eV,不可忽虑不计,因此MoS2在自旋电子学及其相关领域具有广泛的应用价值,可以被用来制作自旋电子器件。沿不同晶格方向切割MoS2,得到两种不同边缘结构的一维MoS2条带:扶手椅型条带和锯齿型条带。要实现利用MoS2条带制作自旋电子器件的目的,首先需要通过一个外加场的作用引起材料内电子的自旋分裂。自旋向上和自旋向下的电子能级在磁场作用下产生能级分裂,已有研究证明,如果只考虑外加磁场的作用,MoS2扶手椅型条带能够产生100%自旋极化和自旋过滤效应,而MoS2锯齿型条带的自旋极化率最大为66%,自旋极化率低。所以如何在MoS2锯齿型条带中产生100%的自旋极化现象是本发明专利拟解决的主要问题。
发明内容
本发明的目的在于提供一种提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法,以解决MoS2锯齿型条带电子自旋极化率低的问题。本发明采用不同边缘形状的MoS2条带构成异质结结构,通过调控异质处的结构来降低单个自旋态电子的透射系数,达到提高自旋极化率和实现自旋过滤的目的。
本发明提高二硫化钼锯齿形条带自旋极化率的异质结结构,由输入端、散射区、输出端和铁磁层组成;所述的铁磁层覆盖整个散射区;所述的散射区由沿输入端至输出端方向排布的散射区一段、散射区二段和散射区三段组成;散射区一段和散射区三段为宽度和长度均相等的锯齿型条带;散射区三段与散射区一段的长度方向一致,散射区二段的长度方向与散射区一段的长度方向呈90°夹角;所述的散射区二段为沿长度方向的扶手椅型条带;散射区沿散射区一段长度方向的尺寸为散射区一段长度、散射区二段宽度及散射区三段长度之和;所述的输入端和输出端均为锯齿型条带,与散射区一段和散射区三段均同宽。
采用该异质结结构来提高二硫化钼锯齿型条带自旋极化率的方法,具体如下:由输入端输入的无自旋分裂的电子进入散射区后,由于散射区内扶手椅型条带和锯齿型条带在外加磁场作用下自旋能级分裂的差异,自旋向上和自旋向下的电子在散射区内的输运行为不一致,经过散射区散射后到达输出端的概率不同。因此,通过对比散射区内扶手椅型条带和锯齿型条带的能带图,找出只有某一自旋方向电子能级存在的能量范围;使电子以该范围内的能量入射,则只有该自旋方向电子能够通过散射区到达输出端,另一种自旋方向的电子被完全过滤,实现自旋的完全极化。
本发明的有益效果是:
在只存在外在磁场作用的条件下,本发明提高了MoS2锯齿型条带的自旋极化率,实现了±100%的自旋极化和自旋过滤效应。
附图说明
图1是本发明的异质结结构原子结构图。
图2是本发明的异质结结构侧视图。
图3是二硫化钼锯齿型均匀条带的原子结构图。
图4是本发明的异质结结构以及二硫化钼锯齿型均匀条带在整个散射区域内作用一个垂直于MoS2条带平面的磁场时,自旋向上电子和自旋向下电子的电导与输入端入射电子的能量关系图。
图5是本发明的异质结结构及二硫化钼锯齿型条带的自旋极化率与输入端入射电子的能量关系图。
图6(a)和6(b)分别是二硫化钼锯齿型条带和扶手椅型条带在磁场作用下的能带图。
具体实施方式
下面结合附图对本发明作进一步说明。
如图1和2所示,提高二硫化钼(MoS2)锯齿形条带自旋极化率的异质结结构,由输入端1、散射区2、输出端3和铁磁层4组成;铁磁层覆盖整个散射区;散射区2由沿输入端1至输出端3方向排布的散射区一段2-1、散射区二段2-2和散射区三段2-3组成;散射区一段和散射区三段为宽度和长度均相等的锯齿型条带,宽度均为Wz,长度均为Lz;散射区三段与散射区一段的长度方向一致,散射区二段的长度方向与散射区一段2-1的长度方向呈90°夹角;散射区二段为沿长度方向(电子传输方向)的扶手椅型条带,散射区二段的宽度为Wa,长度为La;散射区2沿散射区一段长度方向的尺寸L为散射区一段长度、散射区二段宽度及散射区三段长度之和;输入端1和输出端3均为锯齿型条带,与散射区一段2-1和散射区三段2-3均同宽。本发明结构也可以看作是输入端(宽为Wz)、散射区(宽为La)、输出端(宽为Wz)为不均匀宽度的MoS2锯齿型条带;输入端和输出端通过金属电极与外电路相连,电子从输入端进入散射区,从输出端输出;铁磁层用于在散射区内产生一个垂直于MoS2条带平面的磁场,引起散射区内MoS2中电子的自旋分裂。本实施例中,器件各部分参数设置如下表所示:
参数 Lz Wa Wz La L
长度(nm) 1.58 1.74 2.19 6.57 4.9
本发明结构模型的建立和电子透射系数的计算均在KWANT程序包中完成,电子透射系数的计算过程中,MoS2条带的哈密顿量表达式采用紧束缚近似模型的哈密顿量表示形式。将输入端、散射区和输出端为同宽的均匀MoS2锯齿型条带结构作为对比结构,如图3所示,对比结构的电子透射系数计算也在KWANT程序包中完成。图4为本发明的异质结结构和对比结构在散射区内作用一个垂直于MoS2条带平面的磁场时,与输入端入射电子能量E对应的自旋向上电子和自旋向下电子的电导,能量E的单位是eV(电子伏特),自旋向上和自旋向下电子的电导分别记为G↑与G↓,单位为e2/h,e为一个电子所带的电荷量,h为普朗克常数,G↑与G↓统一表达为G;图5为两种结构的自旋极化率,定义自旋极化率Ps=100%*((G↑-G↓)/(G↑+G↓)),Ps=100%代表只有自旋向上的电子能够通过散射区,Ps=-100%代表只有自旋向下的电子能够通过散射区,因此,Ps=±100%均为自旋完全极化;-100%<Ps<100%代表自旋向上和自旋向下的电子均可以通过散射区。从图4和图5可以得出,对于均匀MoS2锯齿型条带结构,自旋向上和自旋向下电子的电导比较大,但是在整个能量区间都无法实现自旋极化,且电子以较小能量入射时,自旋极化率最大也只有33%;
本发明设计的结构,在-0.7—0.98eV的整个能量区间内基本能实现了|100%|的自旋极化率,与均匀条带相比,自旋向上和自旋向下的电导虽然都有所减小,但是在某些特殊能量范围和能量点,自旋向上或自旋向下的电导也能达到一个相对较大的值。例如,在-0.7eV到-0.33eV的能量范围内,自旋向下的电导始终为0,自旋向上的电导大部分大于0.6,在-0.39eV时,自旋向上的电导达到最大,为0.71;在-0.23eV到0.1eV的能量范围内,自旋向上的电导为0,自旋向下的电导约为0.5左右,在0.07eV时,自旋向上的电导最大为0.85。综上所述,本发明设计的结构改善了MoS2锯齿型条带在单独一个外加磁场作用下电子自旋极化率低的问题;在某些特殊能量下,本发明设计的异质结结构在实现完全自旋极化的同时保持了较大的电导,因此该结构可以被用来制作自旋过滤器。
本发明设计的异质结结构能够提高MoS2锯齿型条带自旋极化率的原因在于散射区内扶手椅型条带和锯齿型条带在外加磁场下能级分裂不同。图6(a)和6(b)分别为本发明结构中散射区间内扶手椅型条带和锯齿型条带在外加磁场下自旋能级分裂的能带图,Kx=π/a为沿X方向(散射区一段长度方向)的波矢,a为扶手椅型条带或锯齿型条带中相邻钼原子间的距离。从图5中可知,在-0.23eV到0.1eV和0.68eV到0.98eV这两个能量区间内电子自旋极化率为-100%,只有自旋向下的电子能够通过该结构,这是因为在这两个能量区间内,扶手椅型条带内只存在自旋向下的电子态能级(图6(b)中的虚线),只允许自旋向下的电子通过该结构,而从锯齿型条带传输过来的自旋向上的电子在经过扶手椅型条带时全部衰减掉。同理,在-0.7eV到-0.33eV和0.32eV到0.6eV这两个能量区间内,扶手椅型条带内只存在自旋向上的电子能级(图6(b)中的实线),所以只有自旋向上的电子能够通过散射区,自旋极化为100%。在以上几个能量区间之外,自旋向上和自旋向下能级在两种边缘结构条带中均同时存在,因此自旋向上和自旋向下的电子都有一定的概率通过散射区从输出端输出,导致器件的自旋极化率减小。如图1所示,在电子从输入端运动到输出端的过程中,经过散射区二段右边缘和散射区二段上边缘时发生散射,致使电子的透射几率减小,这是异质结结构与均匀条带结构相比电导减小、最大值不能达到1的一个重要原因。
采用该异质结结构来提高二硫化钼锯齿型条带自旋极化率的方法,具体如下:由输入端输入的无自旋分裂的电子进入散射区后,由于散射区内扶手椅型条带和锯齿型条带在外加磁场作用下自旋能级分裂的差异,自旋向上和自旋向下的电子在散射区内的输运行为不一致,经过散射区散射后到达输出端的概率不同。因此,通过对比散射区内扶手椅型条带和锯齿型条带的能带图,找出只有某一自旋方向电子能级存在的能量范围;使电子以该范围内的能量入射,则只有该自旋方向电子能够通过散射区到达输出端,另一种自旋方向的电子被完全过滤,实现自旋的完全极化。
上述实例仅仅只是例证本发明方法,并非是对于本发明的限制,本发明也并非仅限于上述实例,只要符合本发明方法的要求,均属于本发明方法的保护范围。

Claims (2)

1.提高二硫化钼锯齿形条带自旋极化率的异质结结构,由输入端、散射区、输出端和铁磁层组成,其特征在于:所述的铁磁层覆盖整个散射区;所述的散射区由沿输入端至输出端方向排布的散射区一段、散射区二段和散射区三段组成;散射区一段和散射区三段为宽度和长度均相等的锯齿型条带;散射区三段与散射区一段的长度方向一致,散射区二段的长度方向与散射区一段的长度方向呈90°夹角;所述的散射区二段为沿长度方向的扶手椅型条带;散射区沿散射区一段长度方向的尺寸为散射区一段长度、散射区二段宽度及散射区三段长度之和;所述的输入端和输出端均为锯齿型条带,与散射区一段和散射区三段均同宽。
2.采用如权利要求1所述的异质结结构来提高二硫化钼锯齿型条带自旋极化率的方法,其特征在于:该方法具体如下:由输入端输入的无自旋分裂的电子进入散射区后,由于散射区内扶手椅型条带和锯齿型条带在外加磁场作用下自旋能级分裂的差异,自旋向上和自旋向下的电子在散射区内的输运行为不一致,经过散射区散射后到达输出端的概率不同;因此,通过对比散射区内扶手椅型条带和锯齿型条带的能带图,找出只有某一自旋方向电子能级存在的能量范围;使电子以该范围内的能量入射,则只有该自旋方向电子能够通过散射区到达输出端,另一种自旋方向的电子被完全过滤,实现自旋的完全极化。
CN201810928184.6A 2018-08-15 2018-08-15 提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法 Expired - Fee Related CN109360853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810928184.6A CN109360853B (zh) 2018-08-15 2018-08-15 提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810928184.6A CN109360853B (zh) 2018-08-15 2018-08-15 提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法

Publications (2)

Publication Number Publication Date
CN109360853A CN109360853A (zh) 2019-02-19
CN109360853B true CN109360853B (zh) 2022-01-14

Family

ID=65349993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810928184.6A Expired - Fee Related CN109360853B (zh) 2018-08-15 2018-08-15 提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法

Country Status (1)

Country Link
CN (1) CN109360853B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613662B (zh) * 2020-05-27 2021-06-11 东北大学 偏压诱导共线反铁磁材料产生自旋极化电流的调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1458031A2 (en) * 2003-03-14 2004-09-15 Korea Institute of Science and Technology Hybrid ferromagnet/semiconductor spin device and fabrication method thereof
KR20090129298A (ko) * 2008-06-12 2009-12-16 포항공과대학교 산학협력단 그래핀 나노리본을 이용한 스핀밸브 소자
CN104953028A (zh) * 2015-06-12 2015-09-30 许昌学院 一种Co2VGa/PbS界面半金属性制备工艺
WO2016191606A1 (en) * 2015-05-26 2016-12-01 Geordge Mason University Mechanical and thermal electric generators
CN106229266A (zh) * 2016-08-27 2016-12-14 许昌学院 异质结自旋过滤和负微分电阻效应的制备工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160087129A1 (en) * 2014-03-05 2016-03-24 Ecole polytechnique fédérale de Lausanne (EPFL) Methods for engineering polar discontinuities in non-centrosymmetric honeycomb lattices and devices including a two-dimensional insulating material and a polar discontinuity of electric polarization
WO2016079741A1 (en) * 2014-11-19 2016-05-26 Yeda Research And Development Co. Ltd. Nanoscale electronic spin filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1458031A2 (en) * 2003-03-14 2004-09-15 Korea Institute of Science and Technology Hybrid ferromagnet/semiconductor spin device and fabrication method thereof
KR20090129298A (ko) * 2008-06-12 2009-12-16 포항공과대학교 산학협력단 그래핀 나노리본을 이용한 스핀밸브 소자
WO2016191606A1 (en) * 2015-05-26 2016-12-01 Geordge Mason University Mechanical and thermal electric generators
CN104953028A (zh) * 2015-06-12 2015-09-30 许昌学院 一种Co2VGa/PbS界面半金属性制备工艺
CN106229266A (zh) * 2016-08-27 2016-12-14 许昌学院 异质结自旋过滤和负微分电阻效应的制备工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Phase transition and spin-resolved transport in MoS2 nanoribbons;A. Heshmati-Moulai 等;《Physical Review B》;20161215;第94卷(第23期);235424-1至235424-8 *
Spin-filtering and rectification effects in a Z-shaped boron nitride nanoribbon junction;Haiqing Wan 等;《The Journal of Chemical Physics》;20130121;第138卷(第3期);034705-1至034705-5 *
Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions;Hua Zhang 等;《Physical E》;20170930;第93卷;143-147 *

Also Published As

Publication number Publication date
CN109360853A (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
Zhang et al. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons
Wilmart et al. A Klein-tunneling transistor with ballistic graphene
Bohuslavskyi et al. Pauli blockade in a few-hole PMOS double quantum dot limited by spin-orbit interaction
Hu et al. Simulation study of type-II Ge/Si quantum dot for solar cell applications
CN109360853B (zh) 提高二硫化钼锯齿形条带自旋极化率的异质结结构及方法
Singha et al. Performance analysis of nanostructured Peltier coolers
Zhang et al. 2D negative capacitance field-effect transistor with organic ferroelectrics
Sarswat et al. Phosphorus-doped SnTe-type needle-like crystals: Band structure modifications and electronic properties
Nguyen et al. Gate-controllable negative differential conductance in graphene tunneling transistors
Zhou et al. Dependence of tunneling mechanism on two-dimensional material parameters: A high-throughput study
Memisevic et al. Impact of source doping on the performance of vertical InAs/InGaAsSb/GaSb nanowire tunneling field-effect transistors
Boochani et al. The vanadium effect on electronic and optical response of MoS2 graphene-like: using DFT
Chen et al. A high performance trench gate tunneling field effect transistor based on quasi-broken gap energy band alignment heterojunction
Kuang et al. Effect of near surface inverse doping on graphene silicon heterojunction solar cell
Abdikian et al. Electrostatics Modes in Mono-Layered Graphene
Ancilotto Quantum tunnelling of electrons through a double barrier in a transverse magnetic field
Lindelöw et al. Gated Hall effect measurements on selectively grown InGaAs nanowires
Guen-Bouazza et al. Steady-state and transient electron transport within bulk InAs, InP and GaAs: An updated semiclassical three-valley monte carlo simulation analysis
Basu et al. Surface roughness exacerbated performance degradation in silicon nanowire transistors
Cisneros-de-la-Rosa et al. Effect of surface states on the electrical properties of MBE grown modulation doped AlGaAs/GaAs
Dakhlaoui Magnetic Field and Hydrostatic Pressure Effects on Electron Transport in Heterostructure Based on InAs/GaAs Triple Barriers with Dresselhaus Interaction
Sugahara et al. A novel spin transistor based on spin-filtering in ferromagnetic barriers: a spin-filter transistor
Qasem et al. Electronic states in GaAs/AlGaAs/GaAs core/shell cylindrical quantum wires
Chen et al. Electron energy and angle distribution of GaAs photocathodes
JPH02280338A (ja) ヘテロ接合バイポーラトランジスタ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220114

CF01 Termination of patent right due to non-payment of annual fee