CN109352656A - A multi-joint manipulator control method with time-varying output constraints - Google Patents

A multi-joint manipulator control method with time-varying output constraints Download PDF

Info

Publication number
CN109352656A
CN109352656A CN201811441894.2A CN201811441894A CN109352656A CN 109352656 A CN109352656 A CN 109352656A CN 201811441894 A CN201811441894 A CN 201811441894A CN 109352656 A CN109352656 A CN 109352656A
Authority
CN
China
Prior art keywords
time
manipulator
varying output
joint
constraints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811441894.2A
Other languages
Chinese (zh)
Other versions
CN109352656B (en
Inventor
吴玉香
黄睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811441894.2A priority Critical patent/CN109352656B/en
Publication of CN109352656A publication Critical patent/CN109352656A/en
Application granted granted Critical
Publication of CN109352656B publication Critical patent/CN109352656B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/1605Simulation of manipulator lay-out, design, modelling of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种具有时变输出约束的多关节机械臂控制方法,具体步骤包括:(1)建立时变输出约束下的多关节机械臂动力学模型和期望的跟踪轨迹;(2)建立将具有时变输出约束的系统转换为没有约束的新系统的转换函数;(3)根据步骤(2)得到的转换函数,将原机械臂系统转换为新的机械臂系统;(4)定义转换后机械臂系统的跟踪误差信号;(5)针对转换后的机械臂系统设计稳定的自适应神经网络控制器。本发明能够在系统参数完全未知且具有时变输出约束的情况下实现机械臂的准确轨迹跟踪,并确保时变输出约束的满足。

The invention discloses a multi-joint mechanical arm control method with time-varying output constraints. The specific steps include: (1) establishing a multi-joint mechanical arm dynamics model and a desired tracking trajectory under the time-varying output constraints; (2) establishing Convert the system with time-varying output constraints to the transfer function of the new system without constraints; (3) Convert the original manipulator system to the new manipulator system according to the transfer function obtained in step (2); (4) Define the conversion The tracking error signal of the rear manipulator system; (5) Design a stable adaptive neural network controller for the converted manipulator system. The present invention can realize the accurate trajectory tracking of the manipulator under the condition that the system parameters are completely unknown and have time-varying output constraints, and ensure the satisfaction of the time-varying output constraints.

Description

一种具有时变输出约束的多关节机械臂控制方法A multi-joint manipulator control method with time-varying output constraints

技术领域technical field

本发明涉及自动化领域,尤其涉及一种具有时变输出约束的多关节机械臂控制方法。The invention relates to the field of automation, in particular to a multi-joint mechanical arm control method with time-varying output constraints.

背景技术Background technique

科技的快速发展为机械臂的进一步应用推广提供了助力,多关节机械臂是应用最广泛的自动化机械装备,在工业制造、军事、医疗、娱乐甚至太空探索等领域有着广泛应用。在实际应用中,机械臂控制系统存在着各种约束条件,例如输入饱和、任务空间受限、速度受限等。一旦这些约束条件被违反,就可能导致机械臂系统性能的下降,甚至导致系统的损坏以及威胁到机械臂系统相关工作人员的安全。随着科技进一步发展,人机交互的概念被提出,未来将有越来越多机器人工作在人类身边,因此针对带有指定约束的机械臂系统设计控制器具有重要的理论意义和实际应用价值。然而在目前的大多数研究中,主要针对机器人系统的稳定性以及控制精度进行研究,在考虑输出约束的控制器设计方面显得不足。采用现有的递推设计方法,大多数的研究结果都只能解决具有常数输出约束的机械臂控制问题,且通常对受限输出的上下界设置得比较宽松,这在增大了算法的保守性的同时,也使得算法的实用性受到了限制。The rapid development of science and technology has provided assistance for the further application and promotion of robotic arms. Multi-joint robotic arms are the most widely used automated mechanical equipment, and are widely used in industrial manufacturing, military, medical, entertainment and even space exploration. In practical applications, various constraints exist in the robotic arm control system, such as input saturation, limited task space, and limited speed. Once these constraints are violated, the performance of the robotic arm system may be degraded, or even lead to damage to the system and threaten the safety of the staff related to the robotic arm system. With the further development of science and technology, the concept of human-computer interaction is proposed, and more and more robots will work around humans in the future. Therefore, designing controllers for robotic arm systems with specified constraints has important theoretical significance and practical application value. However, most of the current researches mainly focus on the stability and control accuracy of the robot system, which are insufficient in the controller design considering the output constraints. With the existing recursive design methods, most of the research results can only solve the manipulator control problem with constant output constraints, and usually set the upper and lower bounds of the restricted output relatively loosely, which increases the conservativeness of the algorithm. At the same time, it also limits the practicability of the algorithm.

多关节机械臂作为一个时变的,耦合的多输入多输出的复杂非线性系统,其运动控制及其复杂,且在实际的控制设计过程中,机械臂的参数往往是未知的,或者参数测量存在较大的误差,因此需要有针对未知参数模型的控制器设计工具。人工神经网络利用了神经网络的逼近性,通过采用神经网络来逼近机械臂系统的未知动力学模型,从而达到在系统存在未知参数的情况下依旧能精确控制的目的。对神经网络拓扑结构的选择以及神经网络权值的调整都已经有严格的理论分析方法,因此神经网络在机械臂控制中得到了广泛的应用。As a time-varying, coupled multi-input and multi-output complex nonlinear system, the motion control of the multi-joint manipulator is extremely complex, and in the actual control design process, the parameters of the manipulator are often unknown, or the parameters are measured. There is a large error, so there is a need for a controller design tool for the unknown parameter model. The artificial neural network uses the approximation of the neural network to approximate the unknown dynamic model of the manipulator system by using the neural network, so as to achieve the purpose of precise control even when the system has unknown parameters. There have been strict theoretical analysis methods for the selection of neural network topology and the adjustment of neural network weights, so neural networks have been widely used in manipulator control.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术的不足,提供一种具有时变输出约束的多关节机械臂控制方法。本发明能够在参数完全未知的情况下实现对具有时变输出约束的多关节机械臂进行高精度的跟踪控制。本发明通过建立系统转换方法,将具有时变输出约束的系统转换为没有约束的新系统,通过采用神经网络解决机械臂参数未知的问题,并结合反步法针对转化后的非线性系统建立自适应神经网络控制器来实现轨迹跟踪控制。本发明在保证了机械臂的时变输出约束的同时,实现了快速稳定的跟踪控制。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a multi-joint mechanical arm control method with time-varying output constraints. The invention can realize the high-precision tracking control of the multi-joint mechanical arm with time-varying output constraints under the condition that the parameters are completely unknown. The invention converts a system with time-varying output constraints into a new system without constraints by establishing a system conversion method, solves the problem of unknown parameters of the manipulator by using a neural network, and combines the backstepping method to establish an automatic system for the converted nonlinear system. A neural network controller is adapted to realize trajectory tracking control. The invention realizes fast and stable tracking control while ensuring the time-varying output constraint of the mechanical arm.

本发明的目的能够通过以下技术方案实现:The object of the present invention can be realized through the following technical solutions:

一种具有时变输出约束的多关节机械臂控制方法,具体步骤包括:A multi-joint manipulator control method with time-varying output constraints, the specific steps include:

(1)建立时变输出约束下的多关节机械臂动力学模型和期望的跟踪轨迹;(1) Establish the dynamic model of the multi-joint manipulator under the time-varying output constraint and the desired tracking trajectory;

(2)建立将具有时变输出约束的系统转换为没有约束的新系统的转换函数;(2) Establish a transfer function that converts a system with time-varying output constraints into a new system without constraints;

(3)根据步骤(2)得到的转换函数,将原机械臂系统转换为新的机械臂系统;(3) According to the conversion function obtained in step (2), the original manipulator system is converted into a new manipulator system;

(4)定义转换后机械臂系统的跟踪误差信号;(4) Define the tracking error signal of the robotic arm system after conversion;

(5)针对转换后的机械臂系统设计稳定的自适应神经网络控制器。(5) Design a stable adaptive neural network controller for the converted manipulator system.

具体地,在步骤(1)中,所述时变输出约束下多关节机械臂动力学模型为具有强非线性耦合的机械臂动态模型,表示为:Specifically, in step (1), the dynamic model of the multi-joint manipulator under the time-varying output constraint is a dynamic model of the manipulator with strong nonlinear coupling, which is expressed as:

其中,X1=q,τ表示控制力矩,M(X1)表示惯性矩阵,Cm(X1,X2)表示向心力矩阵,G(X1)表示万有引力矢量,JT(X1)表示机械臂的雅可比矩阵,F(X2)表示摩擦力矢量,f(t)表示来自人和外界的扰动项;M(X1),Cm(X1,X2),G(X1),F(X2),JT(X1),f(t)均未知;机械臂的时变输出约束表示为: where X 1 =q, τ represents the control torque, M(X 1 ) represents the inertia matrix, C m (X 1 , X 2 ) represents the centripetal force matrix, G(X 1 ) represents the universal gravitational vector, and J T (X 1 ) represents the Jacobian matrix of the manipulator, F(X 2 ) represents the friction vector, f(t) represents the disturbance term from people and the outside world; M(X 1 ), C m (X 1 , X 2 ), G(X 1 ), F(X 2 ) , J T (X 1 ), f(t) are unknown; the time-varying output constraint of the manipulator is expressed as:

进一步地,所建立的机械臂动态模型以机械臂关节角位移和关节角位移作为状态变量,表示为:Further, the established dynamic model of the manipulator takes the joint angular displacement and the joint angular displacement of the manipulator as state variables, which are expressed as:

其中,q=[q1 q2 ... qn]T表示角位移,qd=[qd1 qd2 ... qdn]T表示给定的输出跟踪轨迹,e=[e1 e2 ... en]T表示输出跟踪误差,q=[q 1 q 2 ... q n]分别表示机械臂的时变输出约束的上界和下界,n表示具有时变输出约束的刚性机械臂的关节数,和ηi(t)均为中间变量。Among them, q=[q 1 q 2 ... q n ] T represents the angular displacement, q d =[q d1 q d2 ... q dn ] T represents the given output tracking trajectory, e=[e 1 e 2 ... e n ] T represents the output tracking error, and q = [ q 1 q 2 ... q n ] represent the upper and lower bounds of the time-varying output constraints of the manipulator, respectively, n represents the number of joints of the rigid manipulator with time-varying output constraints, and η i (t) are intermediate variables.

具体地,在所述步骤(2)中,先将时变输出的约束转换为对机械臂输出角度的跟踪误差的约束,再设计转换函数将原本带约束的机械臂系统转换为不带约束的新机械臂系统。Specifically, in the step (2), the constraint of the time-varying output is first converted into a constraint on the tracking error of the output angle of the manipulator, and then a conversion function is designed to convert the originally constrained manipulator system into an unconstrained manipulator system. New robotic arm system.

设计一个新的状态变量si以及一个关于si与ηi的严格单调递增光滑函数Qi(sii),表示为:Design a new state variable s i and a strictly monotonically increasing smooth function Q i (s ii ) about s i and η i , expressed as:

只需要si有界,即可使得输出满足时变输出约束。It only needs to be bounded to make the output satisfy the time-varying output constraint.

进一步地,严格单调递增光滑函数与转换状态变量具体表示为:Further, the strictly monotonically increasing smooth function and transition state variables are specifically expressed as:

其中,表示转换变量si对时间的导数。in, represents the derivative of the transformation variable si with respect to time.

具体地,在所述步骤(3)中,根据具体转换函数得到的转换后的新系统表示为:Specifically, in the step (3), the converted new system obtained according to the specific conversion function is expressed as:

其中,表示转换中间变量的导数,H与R表示为:in, Represents the derivative of the transformed intermediate variable, H and R are expressed as:

具体地,在所述步骤(4)中,转换后机械臂系统的跟踪误差表示为:Specifically, in the step (4), the tracking error of the robotic arm system after conversion is expressed as:

z1=[z11,z12,...,z1n]T=[s1,s2,...,sn]T z 1 =[z 11 ,z 12 ,...,z 1n ] T =[s 1 ,s 2 ,...,s n ] T

z2=[z21,z22,...,z2n]T=X2z 2 =[z 21 ,z 22 ,...,z 2n ] T =X 2

其中,z1,z2表示新系统中用于反步法设计过程的误差变量。α为虚拟控制量,表示为:Among them, z 1 , z 2 represent the error variables used in the backstepping design process in the new system. α is a virtual control variable, which is expressed as:

其中,k1=diag{k11,k12,...,k1n}表示一个需要设置的参数矩阵。Wherein, k 1 =diag{k 11 ,k 12 ,...,k 1n } represents a parameter matrix that needs to be set.

具体地,在所述步骤(5)中,设计的具有时变输出约束的多关节机械臂自适应神经网络控制器表示为:Specifically, in the step (5), the designed multi-joint manipulator adaptive neural network controller with time-varying output constraints is expressed as:

其中,k2=diag{k21,k22,...,k2n}表示一个设置的参数矩阵,表示局部RBF神经网络,用于逼近闭环系统中的未知动态,表示高斯基函数,N为神经网络中节点的数量,ξj,j=1,...N表示空间中的不同节点,称为高斯函数的中心点,ηj,j=1,...N表示中心宽度,表示神经网络的输入,表示所用RBF神经网络权值的估计向量。Among them, k 2 =diag{k 21 ,k 22 ,...,k 2n } represents a set parameter matrix, represents a local RBF neural network for approximating unknown dynamics in closed-loop systems, Represents the Gaussian base function, N is the number of nodes in the neural network, ξ j , j=1,...N represents different nodes in the space, called the center point of the Gaussian function, η j ,j=1,... N represents the center width, represents the input of the neural network, An estimated vector representing the weights of the RBF neural network used.

进一步地,所述神经网络的权值更新率为:Further, the weight update rate of the neural network is:

其中,表示能够人为设置的表示学习速率的常数,σi>0表示可人为设置的小常数。in, It represents a constant representing the learning rate that can be set artificially, and σ i > 0 represents a small constant that can be set artificially.

本发明相较于现有技术,具有以下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:

1、本发明所提供的控制方法不需要机械臂系统参数,并且能在系统具有外界未知扰动的情况下,对机械臂进行高性能的跟踪控制,而不破坏时变输出约束。1. The control method provided by the present invention does not require system parameters of the manipulator, and can perform high-performance tracking control on the manipulator when the system has unknown external disturbances without destroying the time-varying output constraints.

2、本发明通过建立系统转换方法,将具有时变输出约束的多关节机械臂转化为没有约束的新系统,降低了控制方案设计的保守型。2. The present invention converts the multi-joint mechanical arm with time-varying output constraints into a new system without constraints by establishing a system conversion method, thereby reducing the conservative design of the control scheme.

3、本发明中的控制器能够在任意给定已知的时变输出约束下,保证机械臂满足时变输出约束条件,解决已有常规自适应神经网络控制器面对时变输出约束时可能存在的越界问题。3. The controller in the present invention can ensure that the manipulator satisfies the time-varying output constraint under any given known time-varying output constraint, and solves the possibility of existing conventional adaptive neural network controllers facing the time-varying output constraint. Existing out-of-bounds issues.

附图说明Description of drawings

图1为本发明实施例中连杆平面机械臂示意图。FIG. 1 is a schematic diagram of a connecting rod plane manipulator in an embodiment of the present invention.

图2为本发明实施例提供的一种具有时变输出约束的多关节机械臂控制方法。FIG. 2 is a control method of a multi-joint robotic arm with time-varying output constraints provided by an embodiment of the present invention.

图3为本发明实施例中机械臂关节角位移跟踪情况的仿真图。FIG. 3 is a simulation diagram of the tracking situation of the angular displacement of the joint of the manipulator in the embodiment of the present invention.

图4为本发明实施例中机械臂关节角位移跟踪情况的仿真图。FIG. 4 is a simulation diagram of the tracking situation of the angular displacement of the joint of the manipulator in the embodiment of the present invention.

图5为本发明实施例中关节角位移与给定跟踪角位移轨迹之间的误差图。FIG. 5 is an error diagram between a joint angular displacement and a given tracking angular displacement trajectory in an embodiment of the present invention.

图6为本发明实施例中转换变量的变化曲线图。FIG. 6 is a change curve diagram of a conversion variable in an embodiment of the present invention.

图7为本发明实施例中机械臂控制输入的仿真图。FIG. 7 is a simulation diagram of a control input of a robotic arm in an embodiment of the present invention.

图8为本发明实施例中机械臂控制输入的仿真图。FIG. 8 is a simulation diagram of the control input of the manipulator in the embodiment of the present invention.

具体实施方式Detailed ways

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to the embodiments and the accompanying drawings, but the embodiments of the present invention are not limited thereto.

实施例Example

在本实施例中,机械臂为二连杆平面机械臂,具体结构如图1所示。In this embodiment, the manipulator is a two-link plane manipulator, and the specific structure is shown in FIG. 1 .

如图2所示为一种具有时变输出约束的多关节机械臂控制方法的具体流程图,具体步骤包括:Figure 2 shows a specific flow chart of a multi-joint manipulator control method with time-varying output constraints. The specific steps include:

(1)建立时变输出约束下的多关节机械臂动力学模型和期望的跟踪轨迹;(1) Establish the dynamic model of the multi-joint manipulator under the time-varying output constraint and the desired tracking trajectory;

所述二连杆机械臂由2个连杆组成,在连杆的各个关节点装有角位移传感器和速度传感器来测量关节角位置、角速度。二连杆平面机械臂的动力学模型表示为:The two-link mechanical arm is composed of two connecting rods, and angular displacement sensors and speed sensors are installed at each joint point of the connecting rods to measure the joint angular position and angular velocity. The dynamic model of the two-link planar manipulator is expressed as:

其中,X1=q,关节角位移向量为q=[q1,q2]T,关节角速度向量为表示摩擦项,τ表示控制力矩,M(q)表示惯性矩阵,表示向心力矩阵,G(q)表示万有引力矢量;J(q)表示机械臂雅可比矩阵,f(t)表示未知的扰动,M(q),G(q),J(q),均未知。where X 1 =q, The joint angular displacement vector is q=[q 1 ,q 2 ] T , and the joint angular velocity vector is represents the friction term, τ represents the control torque, M(q) represents the inertia matrix, represents the centripetal force matrix, G(q) represents the universal gravitational vector; J(q) represents the Jacobian matrix of the manipulator, f(t) represents the unknown disturbance, M(q), G(q), J(q), are unknown.

本实施例中,给定参考轨迹表示为:In this embodiment, the given reference trajectory is expressed as:

Xd1=[sin(t),cos(t)]T X d1 = [sin(t), cos(t)] T

进一步设置时变输出约束,表示为:Further set the time-varying output constraint, which is expressed as:

q(t)=[-0.1×2-0.8-0.04+sin(t) -0.495×2-1.2t-0.03+cos(t)]T q (t)=[-0.1× 2-0.8-0.04 +sin(t)-0.495× 2-1.2t- 0.03+cos(t)] T

本实施例中,需要在保证时变输出约束下,实现二连杆平面机械臂的轨迹跟踪控制。In this embodiment, it is necessary to ensure the time-varying output constraint Next, the trajectory tracking control of the two-link planar manipulator is realized.

M(q),G(q),J(q),表示方式为:M(q), G(q), J(q), It is represented as:

其中,q1,q2分别表示关节1和关节2的角位移;m1,m2分别表示连杆1和连杆2的质量;l1,l2分别表示连杆1和连杆2的长度;I1,I2分别表示连杆1和连杆2的惯性;g表示重力加速度;Among them, q 1 , q 2 represent the angular displacement of joint 1 and joint 2 respectively; m 1 , m 2 represent the mass of link 1 and link 2 respectively; l 1 , l 2 represent the mass of link 1 and link 2 respectively length; I 1 , I 2 represent the inertia of connecting rod 1 and connecting rod 2 respectively; g represents the acceleration of gravity;

在本实施例中,系统的相关参数具体为:In this embodiment, the relevant parameters of the system are specifically:

l1=0.36m,l2=0.32m,m1=2.2Kg,m2=0.86Kg,g=9.8m/s2 l 1 =0.36m,l 2 =0.32m,m 1 =2.2Kg,m 2 =0.86Kg,g=9.8m/s 2

I1=64.25×10-3kgm2,I2=22.42×10-3kgm2 I 1 =64.25×10 -3 kgm 2 , I 2 =22.42×10 -3 kgm 2

摩擦项表示为:The friction term is expressed as:

来自环境的扰动项表示为:The disturbance term from the environment is expressed as:

f(t)=[sin(t)+1 cos(t)+0.5]T f(t)=[sin(t)+1 cos(t)+0.5] T

(2)建立将具有时变输出约束的系统转换为没有约束的新系统的转换函数;(2) Establish a transfer function that converts a system with time-varying output constraints into a new system without constraints;

设计一个新的状态变量si以及一个关于si与ηi的严格单调递增光滑函数Qi(sii),严格单调递增光滑函数与转换状态变量具体表示为:Design a new state variable s i and a strictly monotonically increasing smooth function Q i (s ii ) about s i and η i . The strictly monotonically increasing smooth function and transition state variables are specifically expressed as:

其中,表示转换变量si对时间的导数,eii,具体表达式为:in, represents the derivative of the transformation variable s i with respect to time, e i , η i , The specific expression is:

(3)根据步骤(2)得到的转换函数,将原机械臂系统转换为新的机械臂系统;根据具体转换函数得到的转换后的新系统表示为:(3) According to the conversion function obtained in step (2), the original manipulator system is converted into a new manipulator system; the converted new system obtained according to the specific conversion function is expressed as:

其中,表示转换中间变量的导数,H与R表示为:in, Represents the derivative of the transformed intermediate variable, H and R are expressed as:

(4)定义转换后机械臂系统的跟踪误差信号;(4) Define the tracking error signal of the robotic arm system after conversion;

本实施例中,由于机械臂的动力学模型完全未知,采用神经网络逼近闭环系统的未知动态。In this embodiment, since the dynamic model of the robotic arm is completely unknown, a neural network is used. Approximate the unknown dynamics of a closed-loop system.

神经网络的输入且有:input to the neural network and have:

其中,k1=diag{k11,k12}表示设计的反馈增益参数。Wherein, k 1 =diag{k 11 ,k 12 } represents the designed feedback gain parameter.

(5)针对转换后的机械臂系统设计稳定的自适应神经网络控制器。(5) Design a stable adaptive neural network controller for the converted manipulator system.

设计的具有时变输出约束的多关节机械臂自适应神经网络控制器表示为:The designed multi-joint manipulator adaptive neural network controller with time-varying output constraints is expressed as:

其中,k2=diag{k21,k22}表示控制增益矩阵, 表示局部RBF神经网络,用于逼近闭环系统中的未知动态,Si(Z)=[si1(||Z-ξ1||),…,siN(||Z-ξN||)]T表示高斯基函数,N表示神经网络中高斯基函数的个数,ξj,j=1,...N表示空间中的不同节点,称为高斯函数的中心点,ηj,j=1,...N表示中心宽度,表示神经网络的输入,表示所用RBF神经网络权值的估计向量,N表示神经网络的节点个数。where k 2 =diag{k 21 ,k 22 } represents the control gain matrix, represents a local RBF neural network for approximating unknown dynamics in a closed-loop system, S i (Z)=[s i1 (||Z-ξ 1 ||),…,s iN (||Z-ξ N ||) ] T , represents the Gaussian base function, N represents the number of Gaussian base functions in the neural network, ξ j , j=1,...N represents different nodes in the space, called the center point of the Gaussian function, η j , j=1, ...N is the center width, represents the input of the neural network, represents the estimated vector of the weights of the RBF neural network used, and N represents the number of nodes in the neural network.

进一步地,所述神经网络的权值更新率为:Further, the weight update rate of the neural network is:

其中,表示能够人为设置的表示学习速率的常数,σi>0表示可人为设置的小常数。in, It represents a constant representing the learning rate that can be set artificially, and σ i > 0 represents a small constant that can be set artificially.

在本实施例中,系统初始条件为:In this embodiment, the initial conditions of the system are:

X(0)=[0,1;0,0]X(0)=[0,1;0,0]

控制器参数:神经网络权值初始值神经网络节点数N=4096,Γ=diag{70},η=0.7,δ=0.01,k1=diag{80 40},k2=diag{88 86}。Controller parameters: initial value of neural network weights The number of neural network nodes is N=4096, Γ=diag{70}, η=0.7, δ=0.01, k 1 =diag{80 40}, k 2 =diag{88 86}.

图3为机械臂关节角位移q1的跟踪情况仿真图。图4为机械臂的关节角位移q2的跟踪情况仿真图。图5为关节角位移q1,q2与给定跟踪角位移轨迹qd1,qd2之间的误差图。通过图3、图4以及图5可以看出在所设计控制器下,机械臂能实现很好的输出轨迹跟踪效果,且其输出能满足给定的时变输出约束条件。图6为所设计关节角位移跟踪误差转换变量s1,s2的变化图,误差转换变量s1,s2的有界性也保证了时变输出约束的满足。图7为机械臂控制输入u1的仿真图。图8为机械臂控制输入u2的仿真图。Figure 3 is a simulation diagram of the tracking situation of the joint angular displacement q1 of the manipulator. FIG. 4 is a simulation diagram of the tracking situation of the joint angular displacement q 2 of the manipulator. Fig. 5 is an error diagram between the joint angular displacements q 1 , q 2 and the given tracking angular displacement trajectories q d1 , q d2 . It can be seen from Figure 3, Figure 4 and Figure 5 that under the designed controller, the manipulator can achieve a good output trajectory tracking effect, and its output can meet the given time-varying output constraints. Figure 6 is the change diagram of the designed joint angular displacement tracking error transformation variables s 1 , s 2 . The boundedness of the error transformation variables s 1 , s 2 also ensures that the time-varying output constraints are satisfied. Fig. 7 is the simulation diagram of the control input u1 of the manipulator. Fig. 8 is a simulation diagram of the control input u 2 of the manipulator.

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.

Claims (9)

1.一种具有时变输出约束的多关节机械臂控制方法,其特征在于,具体步骤包括:1. a multi-joint mechanical arm control method with time-varying output constraint, is characterized in that, concrete steps comprise: (1)建立时变输出约束下的多关节机械臂动力学模型和期望的跟踪轨迹;(1) Establish the dynamic model of the multi-joint manipulator under the time-varying output constraint and the desired tracking trajectory; (2)建立将具有时变输出约束的系统转换为没有约束的新系统的转换函数;(2) Establish a transfer function that converts a system with time-varying output constraints into a new system without constraints; (3)根据步骤(2)得到的转换函数,将原机械臂系统转换为新的机械臂系统;(3) According to the conversion function obtained in step (2), the original manipulator system is converted into a new manipulator system; (4)定义转换后机械臂系统的跟踪误差信号;(4) Define the tracking error signal of the robotic arm system after conversion; (5)针对转换后的机械臂系统设计稳定的自适应神经网络控制器。(5) Design a stable adaptive neural network controller for the converted manipulator system. 2.根据权利要求1所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,在步骤(1)中,所述时变输出约束下多关节机械臂动力学模型为具有强非线性耦合的机械臂动态模型,表示为:2. a kind of multi-joint manipulator control method with time-varying output constraint according to claim 1, is characterized in that, in step (1), the multi-joint manipulator dynamic model under described time-varying output constraint is: The dynamic model of the manipulator with strong nonlinear coupling is expressed as: 其中,X1=q,q=[q1 q2 ... qn]T表示角位移,τ表示控制力矩,M(X1)表示惯性矩阵,Cm(X1,X2)表示向心力矩阵,G(X1)表示万有引力矢量,JT(X1)表示机械臂的雅可比矩阵,F(X2)表示摩擦力矢量,f(t)表示来自人和外界的扰动项;M(X1),Cm(X1,X2),G(X1),F(X2),JT(X1),f(t)均未知;机械臂的时变输出约束表示为: where X 1 =q, q=[q 1 q 2 ... q n ] T represents the angular displacement, τ represents the control torque, M(X 1 ) represents the inertia matrix, C m (X 1 , X 2 ) represents the centripetal force matrix, G(X 1 ) represents the universal gravitational vector, J T (X 1 ) represents the Jacobian matrix of the manipulator, F(X 2 ) represents the friction force vector, and f(t) represents the disturbance term from people and the outside world; M(X 1 ), C m ( X 1 , X 2 ), G(X 1 ), F(X 2 ), J T (X 1 ), f(t) are all unknown; the time-varying output constraints of the manipulator are expressed as: 3.根据权利要求2所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,所建立的机械臂动态模型以机械臂关节角位移和关节角位移作为状态变量,表示为:3. a kind of multi-joint mechanical arm control method with time-varying output constraint according to claim 2 is characterized in that, the established dynamic model of the mechanical arm takes the joint angular displacement of the mechanical arm and the joint angular displacement as state variables, representing for: 其中,q=[q1 q2 ... qn]T表示角位移,qd=[qd1 qd2 ... qdn]T表示给定的输出跟踪轨迹,e=[e1 e2 ... en]T表示输出跟踪误差,q=[q 1 q 2 ... q n]分别表示机械臂的时变输出约束的上界和下界,n表示具有时变输出约束的刚性机械臂的关节数,和ηi(t)均为中间变量。Among them, q=[q 1 q 2 ... q n ] T represents the angular displacement, q d =[q d1 q d2 ... q dn ] T represents the given output tracking trajectory, e=[e 1 e 2 ... e n ] T represents the output tracking error, and q = [ q 1 q 2 ... q n ] represent the upper and lower bounds of the time-varying output constraints of the manipulator, respectively, n represents the number of joints of the rigid manipulator with time-varying output constraints, and η i (t) are intermediate variables. 4.根据权利要求1所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,在所述步骤(2)中,设计一个新的状态变量si以及一个关于si与ηi的严格单调递增光滑函数Qi(sii),表示为:4. a kind of multi-joint manipulator control method with time-varying output constraint according to claim 1, is characterized in that, in described step (2), design a new state variable si and one about si Strictly monotonically increasing smooth function Q i (s ii ) with η i , expressed as: 其中,e=[e1 e2 ... en]T表示输出跟踪误差,q=[q 1 q 2 ... q n]分别表示机械臂的时变输出约束的上界和下界,n表示具有时变输出约束的刚性机械臂的关节数,和ηi(t)均为中间变量;Among them, e=[e 1 e 2 ... e n ] T represents the output tracking error, and q = [ q 1 q 2 ... q n ] represent the upper and lower bounds of the time-varying output constraints of the manipulator, respectively, n represents the number of joints of the rigid manipulator with time-varying output constraints, and η i (t) are intermediate variables; 只需要si有界,即可使得输出满足时变输出约束。It only needs to be bounded to make the output satisfy the time-varying output constraint. 5.根据权利要求4所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,严格单调递增光滑函数与转换状态变量具体表示为:5. a kind of multi-joint manipulator control method with time-varying output constraint according to claim 4, is characterized in that, strictly monotonically increasing smooth function and transition state variable are specifically expressed as: 其中,表示转换变量si对时间的导数。in, represents the derivative of the transformation variable si with respect to time. 6.根据权利要求1所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,在所述步骤(3)中,根据具体转换函数得到的转换后的新系统表示为:6. A multi-joint manipulator control method with time-varying output constraints according to claim 1, wherein in the step (3), the converted new system obtained according to the specific conversion function is expressed as : 其中,表示转换中间变量的导数,H与R表示为:in, Represents the derivative of the transformed intermediate variable, H and R are expressed as: 其中,q=[q1 q2 ... qn]T表示角位移,M(q)表示惯性矩阵,表示向心力矩阵,G(q)表示万有引力矢量,JT(q)表示机械臂的雅可比矩阵,f(t)表示来自人和外界的扰动项,e=[e1 e2 ... en]T表示输出跟踪误差, 和ηi(t)均为中间变量。in, q=[q 1 q 2 ... q n ] T represents the angular displacement, M(q) represents the inertia matrix, represents the centripetal force matrix, G(q) represents the universal gravitational vector, J T (q) represents the Jacobian matrix of the manipulator, f(t) represents the disturbance term from people and the outside world, e=[e 1 e 2 ... e n ] T represents the output tracking error, and η i (t) are intermediate variables. 7.根据权利要求1所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,在所述步骤(4)中,转换后机械臂系统的跟踪误差表示为:7. a kind of multi-joint manipulator control method with time-varying output constraint according to claim 1, is characterized in that, in described step (4), the tracking error of manipulator system after conversion is expressed as: z1=[z11,z12,...,z1n]T=[s1,s2,...,sn]T z 1 =[z 11 ,z 12 ,...,z 1n ] T =[s 1 ,s 2 ,...,s n ] T z2=[z21,z22,...,z2n]T=X2z 2 =[z 21 ,z 22 ,...,z 2n ] T =X 2 其中,z1,z2表示新系统中用于反步法设计过程的误差变量,α为虚拟控制量,表示为:where z 1 , z 2 represent the error variables used in the backstepping design process in the new system, α is a virtual control variable, which is expressed as: 其中,k1=diag{k11,k12,...,k1n}表示一个需要设置的参数矩阵,qd=[qd1 qd2 ... qdn]T表示给定的输出跟踪轨迹。Among them, k 1 =diag{k 11 ,k 12 ,...,k 1n } represents a parameter matrix to be set, and q d =[q d1 q d2 ... q dn ] T represents a given output tracking trajectory . 8.根据权利要求1所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,在所述步骤(5)中,设计的具有时变输出约束的多关节机械臂自适应神经网络控制器表示为:8. The method for controlling a multi-joint manipulator with time-varying output constraints according to claim 1, wherein in the step (5), the designed multi-joint manipulator with time-varying output constraints automatically The adaptive neural network controller is expressed as: 其中,k2=diag{k21,k22,...,k2n}表示一个设置的参数矩阵,表示局部RBF神经网络,Si(Z)=[si1(||Z-ξ1||),…,siN(||Z-ξN||)]T,表示高斯基函数,N表示神经网络中高斯基函数的个数,ξj,j=1,...N表示空间中的不同节点,称为高斯函数的中心点,ηj,j=1,...N表示中心宽度,表示神经网络的输入,表示所用RBF神经网络权值的估计向量,z1,z2表示新系统中的误差变量,α为虚拟控制量。Among them, k 2 =diag{k 21 ,k 22 ,...,k 2n } represents a set parameter matrix, represents a local RBF neural network, S i (Z)=[s i1 (||Z-ξ 1 ||),…,s iN (||Z-ξ N ||)] T , represents the Gaussian base function, N represents the number of Gaussian base functions in the neural network, ξ j , j=1,...N represents different nodes in the space, called the center point of the Gaussian function, η j , j=1, ...N is the center width, represents the input of the neural network, Represents the estimated vector of the weights of the RBF neural network used, z 1 , z 2 represent the error variables in the new system, and α is the virtual control quantity. 9.根据权利要求8所述的一种具有时变输出约束的多关节机械臂控制方法,其特征在于,所述神经网络的权值更新率为:9. A multi-joint robotic arm control method with time-varying output constraints according to claim 8, wherein the weight update rate of the neural network is: 其中,表示能够人为设置的表示学习速率的常数,σi>0表示可人为设置的小常数。in, It represents a constant representing the learning rate that can be set artificially, and σ i > 0 represents a small constant that can be set artificially.
CN201811441894.2A 2018-11-29 2018-11-29 Multi-joint mechanical arm control method with time-varying output constraint Expired - Fee Related CN109352656B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811441894.2A CN109352656B (en) 2018-11-29 2018-11-29 Multi-joint mechanical arm control method with time-varying output constraint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811441894.2A CN109352656B (en) 2018-11-29 2018-11-29 Multi-joint mechanical arm control method with time-varying output constraint

Publications (2)

Publication Number Publication Date
CN109352656A true CN109352656A (en) 2019-02-19
CN109352656B CN109352656B (en) 2021-01-19

Family

ID=65343254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811441894.2A Expired - Fee Related CN109352656B (en) 2018-11-29 2018-11-29 Multi-joint mechanical arm control method with time-varying output constraint

Country Status (1)

Country Link
CN (1) CN109352656B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187637A (en) * 2019-06-03 2019-08-30 重庆大学 Control Method of Robotic System Under Uncertainty of Control Direction and Desired Trajectory
CN110450155A (en) * 2019-07-30 2019-11-15 洛阳润信机械制造有限公司 A kind of optimum design method of the controller of multi-freedom Mechanism
CN113433825A (en) * 2021-06-22 2021-09-24 广州大学 Self-adaptive fault-tolerant control method and system of single-link mechanical arm and storage medium
CN113927592A (en) * 2021-08-24 2022-01-14 盐城工学院 Mechanical arm force and position hybrid control method based on self-adaptive reduced-order sliding mode algorithm
CN115139301A (en) * 2022-07-07 2022-10-04 华南理工大学 Mechanical arm motion planning method based on topological structure adaptive neural network
CN116690561A (en) * 2023-05-30 2023-09-05 渤海大学 A self-adaptive optimal backstepping control method and system for a single-link manipulator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289204A (en) * 2011-06-03 2011-12-21 华南理工大学 Mechanical arm general control method based on determined learning theory
CN106078741A (en) * 2016-06-21 2016-11-09 华南理工大学 Based on a determination that the limited performance flexible mechanical arm control method of theory of learning
CN106078742A (en) * 2016-06-29 2016-11-09 北京科技大学 A kind of vibration control method for the flexible mechanical arm with output constraint
CN107160398A (en) * 2017-06-16 2017-09-15 华南理工大学 The safe and reliable control method of Rigid Robot Manipulator is limited based on the total state for determining study

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102289204A (en) * 2011-06-03 2011-12-21 华南理工大学 Mechanical arm general control method based on determined learning theory
CN106078741A (en) * 2016-06-21 2016-11-09 华南理工大学 Based on a determination that the limited performance flexible mechanical arm control method of theory of learning
CN106078742A (en) * 2016-06-29 2016-11-09 北京科技大学 A kind of vibration control method for the flexible mechanical arm with output constraint
CN107160398A (en) * 2017-06-16 2017-09-15 华南理工大学 The safe and reliable control method of Rigid Robot Manipulator is limited based on the total state for determining study

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110187637A (en) * 2019-06-03 2019-08-30 重庆大学 Control Method of Robotic System Under Uncertainty of Control Direction and Desired Trajectory
CN110450155A (en) * 2019-07-30 2019-11-15 洛阳润信机械制造有限公司 A kind of optimum design method of the controller of multi-freedom Mechanism
CN110450155B (en) * 2019-07-30 2021-01-22 洛阳润信机械制造有限公司 Optimal design method for controller of multi-degree-of-freedom mechanical arm system
CN113433825A (en) * 2021-06-22 2021-09-24 广州大学 Self-adaptive fault-tolerant control method and system of single-link mechanical arm and storage medium
CN113433825B (en) * 2021-06-22 2022-05-31 广州大学 Self-adaptive fault-tolerant control method and system of single-link mechanical arm and storage medium
CN113927592A (en) * 2021-08-24 2022-01-14 盐城工学院 Mechanical arm force and position hybrid control method based on self-adaptive reduced-order sliding mode algorithm
CN115139301A (en) * 2022-07-07 2022-10-04 华南理工大学 Mechanical arm motion planning method based on topological structure adaptive neural network
CN116690561A (en) * 2023-05-30 2023-09-05 渤海大学 A self-adaptive optimal backstepping control method and system for a single-link manipulator
CN116690561B (en) * 2023-05-30 2024-01-23 渤海大学 An adaptive optimal back-stepping control method and system for single-link manipulators

Also Published As

Publication number Publication date
CN109352656B (en) 2021-01-19

Similar Documents

Publication Publication Date Title
CN109352656B (en) Multi-joint mechanical arm control method with time-varying output constraint
CN111496792B (en) Method and system for tracking and controlling input saturation fixed time trajectory of mechanical arm
CN106393116B (en) Mechanical arm fractional order iterative learning control method with Initial state learning and system
CN106527152B (en) Design method and system of closed-loop fractional PDɑ type iterative learning robot controller
CN110154028A (en) A Model-Free Adaptive Integral Terminal Sliding Mode Control Method for Manipulators
CN110275436A (en) A RBF neural network adaptive control method for multi-single-arm manipulators
CN107160398B (en) A Safe and Reliable Control Method for All-State Limited Rigid Manipulator Based on Deterministic Learning
CN110340898B (en) An adaptive fault-tolerant control method for a free-floating space manipulator
CN106078741B (en) Limited performance flexible mechanical arm control method based on the definite theories of learning
CN107263481B (en) A kind of class brain learning control method of multi-freedom robot
CN112904728A (en) Mechanical arm sliding mode control trajectory tracking method based on improved approach law
CN109782601A (en) A Design Method of Synchronous Robust Controller for Coordinated Manipulator Adaptive Neural Network
CN115256386B (en) Neural Adaptive Control Method for Uncertain Manipulators Considering Tracking Error Constraints
CN106773684B (en) Composite control method of flexible manipulator based on intelligent learning evaluation
CN113814983A (en) Multi-single-arm manipulator system control method and system
CN117681186A (en) A robust control method for high-precision collaborative manipulator based on inequality constraints
CN111965976A (en) Robot joint synovial membrane control method and system based on neural network observer
CN112192573A (en) Adaptive Neural Network Control Method for Uncertain Robot Based on Inversion Method
CN108132602B (en) Neural network sliding mode self-adaptive control method for solid-state brewing yeast turning manipulator
CN113977572A (en) Mechanical arm impedance learning control method based on width radial basis function neural network
CN109634118A (en) A kind of robust adaptive nerve method for handover control of mechanical arm
CN116175585A (en) UDE control method for multi-joint mechanical arm with input saturation and output constraint
Tran et al. Finite-time output control for uncertain robotic manipulators with time-varying output constraints
Okuma et al. A neural network compensator for uncertainties of robotic manipulators
CN109176529B (en) Self-adaptive fuzzy control method for coordinated movement of space robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210119

CF01 Termination of patent right due to non-payment of annual fee