CN113814983A - Multi-single-arm manipulator system control method and system - Google Patents
Multi-single-arm manipulator system control method and system Download PDFInfo
- Publication number
- CN113814983A CN113814983A CN202111211197.XA CN202111211197A CN113814983A CN 113814983 A CN113814983 A CN 113814983A CN 202111211197 A CN202111211197 A CN 202111211197A CN 113814983 A CN113814983 A CN 113814983A
- Authority
- CN
- China
- Prior art keywords
- arm manipulator
- model
- tracking error
- disturbance observer
- controller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 239000013598 vector Substances 0.000 claims description 10
- 230000009466 transformation Effects 0.000 claims description 8
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000000694 effects Effects 0.000 abstract description 5
- 238000001914 filtration Methods 0.000 abstract description 3
- 238000013461 design Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000004088 simulation Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1602—Programme controls characterised by the control system, structure, architecture
- B25J9/1605—Simulation of manipulator lay-out, design, modelling of manipulator
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明涉及一种多单臂机械手系统控制方法及系统,包括以下步骤:建立多单臂机械手的状态动力学模型;根据单臂机械手的一致跟踪误差模型和构建的预设有限时间性能函数获取误差变换后的跟踪误差;根据获得的状态动力学模型得到识别模型和扰动观测器;根据预设有限时间性能函数、变换后的跟踪误差和扰动观测器得到虚拟控制器;对虚拟控制器的控制信号进行滤波,得到新的状态变量;根据新的状态变量、识别模型和扰动观测器得到多单臂机械手系统的控制器,采用本发明的方法控制效果好。
The invention relates to a multi-single-arm manipulator system control method and system, comprising the following steps: establishing a state dynamics model of the multiple-single-arm manipulator; The transformed tracking error; the identification model and the disturbance observer are obtained according to the obtained state dynamics model; the virtual controller is obtained according to the preset finite-time performance function, the transformed tracking error and the disturbance observer; the control signal to the virtual controller Filtering is performed to obtain new state variables; the controller of the multi-single-arm manipulator system is obtained according to the new state variables, the identification model and the disturbance observer, and the method of the invention has a good control effect.
Description
技术领域technical field
本发明涉及工业过程控制技术领域,具体涉及一种多单臂机械手系统控制方法及系统。The invention relates to the technical field of industrial process control, in particular to a control method and system for a multi-single-arm manipulator system.
背景技术Background technique
随着现代科技的不断进步,机械手得到广泛应用,如机械制造、电子加工、冶金、航天等。机械手可以代替人在有害的环境下完成重复、繁重的体力劳动。但随着机械手的迅速发展,单臂机械手逐渐显现出灵活性差、工作效率低的局限,而多单臂机械手协同作业具有通信成本低、灵活性与鲁棒性高等特点,可以完成复杂多样的任务要求,所以,研究多单臂机械手输出一致控制器的设计具有重要意义。将多单臂机械手协同控制系统中的一个机械手作为“领导者”,将能接收到“领导者”或相邻机械手输出信号的部分机械手作为“跟随者”,其中所有“跟随者”可以跟踪领导者的输出信号,从而实现输出一致的控制目标。With the continuous progress of modern technology, manipulators are widely used, such as machinery manufacturing, electronic processing, metallurgy, aerospace and so on. Robotic hands can replace humans to complete repetitive and heavy manual labor in harmful environments. However, with the rapid development of manipulators, the single-arm manipulator gradually shows the limitations of poor flexibility and low work efficiency, while the collaborative operation of multiple single-arm manipulators has the characteristics of low communication cost, high flexibility and robustness, and can complete complex and diverse tasks. Therefore, it is of great significance to study the design of the output consistent controller of the multi-arm manipulator. One manipulator in the multi-single-arm manipulator collaborative control system is used as the "leader", and some manipulators that can receive the output signal of the "leader" or adjacent manipulators are used as "followers", in which all "followers" can track the leader. The output signal of the user, so as to achieve the control goal of consistent output.
在实际应用中,受外界条件限制多单臂机械手对系统性能有很高要求,需要机械手输出误差在有限时间内满足一定的约束条件。通过选择预设有限时间性能函数和误差变换,当机械手输出误差接近边界条件时,控制器增益变大,使输出误差无法达到其限制边界。发明人发现,现有的有限时间控制器设计方法,其有限时间受系统初值和设计参数的影响,确定起来较为复杂。In practical applications, the multi-single-arm manipulator has high requirements on system performance due to external conditions, and the output error of the manipulator needs to meet certain constraints within a limited time. By selecting the preset finite-time performance function and error transformation, when the manipulator output error approaches the boundary conditions, the controller gain becomes larger, so that the output error cannot reach its limit boundary. The inventor found that the finite time of the existing finite-time controller design method is affected by the initial value of the system and the design parameters, which is complicated to determine.
多单臂机械手的系统模型往往具有未知非线性,模糊逻辑系统作为一种处理非线性的常用手段,被广泛应用于控制器的设计当中。发明人发现,现有采用模糊逻辑系统的逼近方法,大多不能准确逼近系统未知非线性,进而导致控制器鲁棒性弱,控制效果差。The system model of the multi-arm manipulator often has unknown nonlinearity. As a common method to deal with nonlinearity, fuzzy logic system is widely used in the design of the controller. The inventor found that most of the existing approximation methods using fuzzy logic systems cannot accurately approximate the unknown nonlinearity of the system, thus resulting in weak controller robustness and poor control effect.
发明内容SUMMARY OF THE INVENTION
本发明的目的是为克服现有技术的不足,提供了一种多单臂机械手系统控制器获取方法,使模糊逻辑系统能够准确逼近系统的未知非线性,并使跟一致踪误差有限时间收敛。The purpose of the present invention is to overcome the deficiencies of the prior art and provide a method for obtaining a controller of a multi-single-arm manipulator system, so that the fuzzy logic system can accurately approximate the unknown nonlinearity of the system and the tracking error can be converged in a limited time.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
第一方面,本发明的实施例提供了一种多单臂机械手系统控制方法,包括以下步骤:In a first aspect, an embodiment of the present invention provides a method for controlling a multi-single-arm manipulator system, including the following steps:
建立多单臂机械手的状态动力学模型;Establish the state dynamics model of the multi-arm manipulator;
根据多单臂机械手的一致跟踪误差模型和构建的预设有限时间性能函数进行误差变换得到变换后的跟踪误差;According to the consistent tracking error model of the multi-single-arm manipulator and the constructed preset finite time performance function, the error transformation is performed to obtain the transformed tracking error;
根据获得的状态动力学模型得到识别模型和扰动观测器;Obtain the identification model and the disturbance observer according to the obtained state dynamics model;
根据预设有限时间性能函数、变换后的跟踪误差和扰动观测器得到虚拟控制器;The virtual controller is obtained according to the preset finite-time performance function, the transformed tracking error and the disturbance observer;
对虚拟控制器的控制信号进行滤波,得到新的状态变量;Filter the control signal of the virtual controller to obtain a new state variable;
根据新的状态变量、识别模型和扰动观测器得到多单臂机械手系统的控制器,利用得到的控制器输出控制信号。According to the new state variables, identification model and disturbance observer, the controller of the multi-arm manipulator system is obtained, and the obtained controller is used to output the control signal.
可选的,建立单臂机械手的系统模型,对单臂机械手的系统模型进行转换,得到单臂机械手系统的状态动力学模型。Optionally, a system model of the single-arm manipulator is established, and the system model of the single-arm manipulator is converted to obtain a state dynamics model of the single-arm manipulator system.
可选的,采用一阶低通滤波器对虚拟控制器的控制信号进行滤波。Optionally, a first-order low-pass filter is used to filter the control signal of the virtual controller.
可选的,根据补偿信号得到补偿后的跟踪误差,根据新的状态变量得到第二个误差面,根据补偿后的跟踪误差、第二个误差面、识别模型和扰动观测器得到控制器。Optionally, the compensated tracking error is obtained according to the compensation signal, the second error surface is obtained according to the new state variable, and the controller is obtained according to the compensated tracking error, the second error surface, the identification model and the disturbance observer.
可选的,根据图论知识得到多单臂机械手的一致跟踪误差模型。Optionally, a consistent tracking error model of the multi-single-arm manipulator is obtained according to the knowledge of graph theory.
可选的,根据一致跟踪误差稳定的有限时间得到预设的有限时间性能函数。Optionally, a preset finite-time performance function is obtained according to the finite time during which the consistent tracking error is stable.
可选的,所述扰动观测器包括单臂机械手的连杆角速度扰动观测器和连杆角加速度扰动观测器。Optionally, the disturbance observer includes a connecting rod angular velocity disturbance observer and a connecting rod angular acceleration disturbance observer of the single-arm manipulator.
可选的,根据基函数向量、最优权值向量和逼近误差得到模糊逻辑系统逼近系统的未知非线性函数,根据多单臂机械手系统动力学模型得到识别模型。Optionally, the unknown nonlinear function of the fuzzy logic system approximation system is obtained according to the basis function vector, the optimal weight vector and the approximation error, and the identification model is obtained according to the dynamic model of the multi-single-arm manipulator system.
可选的,使用高斯函数得到基函数向量。Optionally, use a Gaussian function to obtain basis function vectors.
第二方面,本发明的实施例提供了一种多单臂机械手系统控制系统,包括:In a second aspect, an embodiment of the present invention provides a multi-arm manipulator system control system, including:
建模模块:用于建立多单臂机械手系统的状态动力学模型;Modeling module: used to establish the state dynamics model of the multi-arm manipulator system;
跟踪误差获取模块:用于根据多单臂机械手的一致跟踪误差模型和构建的有限时间性能函数进行误差变换,得到变换后的跟踪误差;Tracking error acquisition module: It is used to perform error transformation according to the consistent tracking error model of the multi-single-arm manipulator and the constructed finite-time performance function, and obtain the transformed tracking error;
识别模型和扰动观测器获取模块:用于根据获得的状态动力学模型得到识别模型和扰动观测器;Identification model and disturbance observer acquisition module: used to obtain identification model and disturbance observer according to the obtained state dynamics model;
虚拟控制器获取模型:用于根据预设有限时间性能函数、变换后的跟踪误差和扰动观测器得到虚拟控制器;Virtual controller acquisition model: used to obtain a virtual controller according to the preset finite-time performance function, the transformed tracking error and the disturbance observer;
状态变量获取模块:用于对虚拟控制器的控制信号进行滤波,得到新的状态变量;State variable acquisition module: used to filter the control signal of the virtual controller to obtain new state variables;
控制模块:用于根据新的状态变量、识别模型和扰动观测器得到多单臂机械手系统的控制器,利用得到的控制器输出控制信号。Control module: used to obtain the controller of the multi-arm manipulator system according to the new state variables, identification model and disturbance observer, and use the obtained controller to output control signals.
本发明的有益效果:Beneficial effects of the present invention:
1.本发明的方法,通过使用识别模型,使得模糊逻辑系统能够精确逼近系统未知非线性函数,能够使得根据识别模型获得的控制器的鲁棒性更强,控制效果更好。1. The method of the present invention, by using the recognition model, enables the fuzzy logic system to accurately approximate the unknown nonlinear function of the system, so that the controller obtained according to the recognition model has stronger robustness and better control effect.
2.本发明的方法,通过根据多单臂机械手的一致跟踪误差和构建的有限时间性能函数获取误差变化模型,使一致性跟踪误差满足限制条件并在预先设定的时间内达到稳定状态,进而保证多单臂机械手能够有效跟踪给定信号,而且该方法的有限时间设置更为灵活,与系统初值和设置参数无关。2. The method of the present invention obtains an error variation model according to the consistent tracking error of the multi-single-arm manipulator and the constructed finite-time performance function, so that the consistent tracking error satisfies the constraints and reaches a stable state within a preset time, and then It is guaranteed that the multi-arm manipulator can effectively track the given signal, and the limited time setting of this method is more flexible, independent of the initial value of the system and the setting parameters.
3.本发明的方法,通过设计扰动观测器,考虑了时变扰动的问题,进而使得得到的控制器能够满足多单臂机械手在更复杂环境中工作的需求。3. In the method of the present invention, by designing a disturbance observer, the problem of time-varying disturbance is taken into consideration, so that the obtained controller can meet the requirements of the multi-single-arm manipulator working in a more complex environment.
4.本发明的方法,对虚拟控制器的控制信号进行滤波,引入了动态面技术解决传统反步法存在的“计算爆炸”问题,并通过误差补偿模型消除了动态面技术中滤波误差造成的影响。4. The method of the present invention filters the control signal of the virtual controller, introduces the dynamic surface technology to solve the "computation explosion" problem existing in the traditional backstepping method, and eliminates the filter error caused by the dynamic surface technology through the error compensation model. influences.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的限定。The accompanying drawings that constitute a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute a limitation to the present application.
图1为本发明实施例1控制方法流程图;1 is a flowchart of a control method according to
图2为本发明实施例1单臂机械手之间的通信拓扑图;FIG. 2 is a communication topology diagram between the single-arm manipulators in
图3为本发明实施例1第i个单臂机械手预设有限时间内控制流程图;3 is a control flow chart of the i-th single-arm manipulator preset limited time in
图4为本发明实施例1仿真试验的跟踪效果图;4 is a tracking effect diagram of a simulation test in
图5为本发明实施例1仿真试验跟踪误差示意图;5 is a schematic diagram of the tracking error of the simulation test in
图6为本发明实施例1仿真试验时变扰动di,1观测结果示意图;6 is a schematic diagram of the observation results of the time-varying disturbance d i,1 in the simulation test of
图7为本发明实施例1仿真试验系统未知非线性函数和时变扰动fi,2+di,2的估计结果示意图。FIG. 7 is a schematic diagram of the estimation result of the unknown nonlinear function and the time-varying disturbance f i,2 +d i,2 in the simulation test system of
具体实施方式Detailed ways
实施例1Example 1
本实施例提供了一种多单臂机械手系统控制方法,所述多单臂机械手系统包括一个领导机械手和N个跟随机械手,所述跟随机械手为具有未知非线性和时变扰动的单臂机械手,如图1所示,所述控制方法包括以下步骤:This embodiment provides a method for controlling a multi-single-arm manipulator system, where the multiple-single-arm manipulator system includes a leading manipulator and N following manipulators, where the following manipulators are single-arm manipulators with unknown nonlinearity and time-varying disturbance, As shown in Figure 1, the control method includes the following steps:
步骤1:建立多单臂机械手的状态动力学模型。Step 1: Establish the state dynamics model of the multi-arm manipulator.
具体方法为:做为跟随机械手的单臂机械手系统模型已得到相关领域的广泛认可,如图1所示,跟随机械手中的第i个单臂机械手的系统模型为:The specific method is as follows: the system model of the single-arm manipulator as a follower manipulator has been widely recognized in related fields. As shown in Figure 1, the system model of the i-th single-arm manipulator in the follower manipulator is:
其中,分别为单臂机械手的连杆的转角位置、角速度和角加速度,mi为连杆总质量,Mi为连杆总转动惯量,g为重力加速度,Di为总阻尼系数,li为从关节轴到连杆质心的距离。in, are the angular position, angular velocity and angular acceleration of the connecting rod of the single-arm manipulator, m i is the total mass of the connecting rod, M i is the total moment of inertia of the connecting rod, g is the gravitational acceleration, D i is the total damping coefficient, l i is the Distance from joint axis to link center of mass.
状态动力学模型的建立步骤为:The steps of establishing the state dynamics model are as follows:
步骤1.1:建立描述多单臂机械手之间通讯关系的图论知识:Step 1.1: Establish the knowledge of graph theory describing the communication relationship between multiple single-arm manipulators:
为了便于描述图2拓扑图中机械手之间的通信关系,需要引入代数图论的相关知识。定义有向图为G=(V,E,A)。其中,V=(v1,v2,...,vN)为N个机械手的非空集合,为边的集合,(vi,vj)∈E表示机械手i能接收到机械手j的信息。机械手i的邻接节点集合表示为Ni={vj∈|(vi,vj)∈E,i≠j}。定义权重邻接矩阵为如果(vi,vj)∈E,那么ai,j>0;否则ai,j=0。假设拓扑图中不存在自环,即ai,i=0,定义节点i的入度矩阵为入度对角矩阵R=diag{b1,b2,...,bN},则图G的拉普拉斯矩阵为L=R-A。定义H=diag{a1,0,a2,0,...,aN,0},如果节点i能接收到领导者0的信息,则ai,0>0;否则,ai,0=0;In order to describe the communication relationship between the manipulators in the topology diagram of Figure 2, it is necessary to introduce the relevant knowledge of algebraic graph theory. A directed graph is defined as G=(V, E, A). Among them, V=(v 1 ,v 2 ,...,v N ) is a non-empty set of N manipulators, is a set of edges, (vi , v j )∈E means that robot i can receive the information of robot j . The set of adjacent nodes of robot i is expressed as N i ={v j ∈|(v i ,v j )∈E,i≠j}. Define the weight adjacency matrix as If (v i , v j )∈E, then a i,j >0; otherwise a i,j =0. Assuming that there is no self-loop in the topology graph, that is, a i,i =0, Define the in-degree matrix of node i as In-degree diagonal matrix R=diag{b 1 ,b 2 ,...,b N }, then the Laplacian matrix of graph G is L=RA. Define H=diag{a 1,0 ,a 2,0 ,...,a N,0 }, if node i can receive the information of
步骤1.2:将建模得到的单臂机械手的系统模型转换为状态动态力学模型:Step 1.2: Convert the modeled system model of the single-arm manipulator to a state dynamic mechanical model:
其中,xi,1=qi,1,单臂机械手的连杆的转角位置和角速度,系统未知非线性函数di,1(t),di,2(t)代表未知时变扰动。Among them, x i,1 =q i,1 , The angular position and angular velocity of the link of the single-arm manipulator, the system is unknown nonlinear function d i,1 (t),d i,2 (t) represent unknown time-varying disturbances.
步骤2:根据多单臂机械手的一致跟踪误差模型和构建的有限时间性能函数获取跟踪误差并进行坐标变换,得到变换后的跟踪误差。Step 2: Obtain the tracking error according to the consistent tracking error model of the multi-single-arm manipulator and the constructed finite-time performance function, and perform coordinate transformation to obtain the transformed tracking error.
步骤2.1:由图论知识如下定义第i个多单臂机械手一致跟踪误差模型:Step 2.1: Define the i-th multi-single-arm manipulator consistent tracking error model as follows:
其中,yi表示第i个机械手的连杆转角位置输出,y0表示领导机械手的连杆转角位置为系统跟踪的参考信号,ai,0,ai,j包含机械手之间的通信信息,由上述的图论知识定义;Among them, y i represents the output of the link angle position of the i-th manipulator, y 0 represents the link angle position of the leading manipulator as the reference signal for system tracking, a i,0 , a i,j contain the communication information between the manipulators, Defined by the above graph theory knowledge;
步骤2.2设计预设有限时间性能函数:Step 2.2 Design a preset finite time performance function:
其中,为设计参数;Ti为跟踪误差稳定的有限时间,可灵活设置,与系统初值无关,确定方法比较简单。in, is the design parameter; T i is the limited time for the stability of the tracking error, which can be set flexibly and has nothing to do with the initial value of the system, and the determination method is relatively simple.
步骤2.3做如下误差变化,得到变换后的跟踪误差。In step 2.3, the following error changes are made to obtain the transformed tracking error.
步骤3:根据步骤1得到的状态动力学模型,设计基于模糊逻辑系统的识别模型,根据步骤1得到的状态动力学模型,设计扰动观测器。Step 3: Design a recognition model based on a fuzzy logic system according to the state dynamics model obtained in
步骤3.1设计模糊逻辑系统逼近系统未知非线性函数:Step 3.1 Design the fuzzy logic system to approximate the unknown nonlinear function of the system:
系统未知非线性函数为:The unknown nonlinear function of the system is:
其中,为最优权值向量,θi,2为基函数向量,ε为逼近误差。in, is the optimal weight vector, θ i,2 is the basis function vector, and ε is the approximation error.
选择基函数向量:Choose basis function vectors:
其中,N为模糊规则个数,使用下面高斯函数:Among them, N is the number of fuzzy rules, using the following Gaussian function:
其中,为中心点,oi为高斯函数宽度。in, is the center point, and o i is the width of the Gaussian function.
步骤3.2:根据设计的模糊逻辑系统逼近系统未知非线性函数设计识别模型。Step 3.2: Design a recognition model according to the designed fuzzy logic system approximating the unknown nonlinear function of the system.
设计的识别模型为:The designed recognition model is:
其中,是最优权值向量的估计值,是对扰动di,2的估计值,为预测状态,βi,2,γi,2,δi,2>0为待设计参数。in, is the optimal weight vector the estimated value of , is an estimate of the disturbance di ,2 , is the predicted state, β i, 2 , γ i, 2 , δ i, 2 >0 are the parameters to be designed.
步骤3.3设计的扰动观测器包括单臂机械手的连杆角速度扰动观测器和连杆角加速度扰动观测器。The disturbance observers designed in step 3.3 include the link angular velocity disturbance observer and the link angular acceleration disturbance observer of the single-arm manipulator.
其中,连杆角速度扰动观测器为:Among them, the connecting rod angular velocity disturbance observer is:
连杆角加速度扰动观测器为:The connecting rod angular acceleration disturbance observer is:
其中,和是对扰动di,1,di,2的观测值,si,1和si,2为扰动观测器辅助系统状态根据扰动观测器设计的导数来变换,λi,1,λi,2>0为待设计参数。in, and is the observed value of the disturbance di ,1 ,di ,2 , s i,1 and s i,2 are the disturbance observer auxiliary system state and transform according to the derivative designed by the disturbance observer, λ i,1 ,λ i, 2 > 0 is the parameter to be designed.
步骤4:根据预设有限时间性能函数、变换后的跟踪误差和扰动观测器得到虚拟控制器Step 4: Obtain the virtual controller according to the preset finite-time performance function, the transformed tracking error and the disturbance observer
设计的虚拟控制器为:The designed virtual controller is:
其中,ki,1>0为设计参数。in, k i,1 > 0 are design parameters.
本实施例的控制方法是基于反步法设计的,而传统反步法需对虚拟控制器反复微分而引起“微分爆炸”问题。因此引入动态面技术,动态面将虚拟控制器的信号输入到一个一阶低通滤波器,得到新的状态变量代替第一个虚拟控制器进行下一步计算,这样处理的优点在于减小多单臂机械手系统的计算量,具体的,包括以下步骤:The control method of this embodiment is designed based on the backstepping method, while the traditional backstepping method requires the virtual controller Repeated differentiation causes the "differential explosion" problem. Therefore, the dynamic surface technology is introduced. The dynamic surface inputs the signal of the virtual controller into a first-order low-pass filter to obtain new state variables. Instead of the first virtual controller to perform the next calculation, the advantage of this processing is to reduce the calculation amount of the multi-arm manipulator system. Specifically, it includes the following steps:
步骤4.1采用一阶低通滤波器对虚拟控制器的控制信号进行滤波。Step 4.1 uses a first-order low-pass filter to filter the control signal of the virtual controller.
设计的一阶低通滤波器为:The designed first-order low-pass filter is:
其中,得到新的状态变量τi,1>0为设计参数。Among them, get the new state variable τ i, 1 > 0 is a design parameter.
步骤4.2为了消除滤波误差的影响,对变换后的跟踪误差进行补偿,定义补偿后的跟踪误差为:Step 4.2 In order to eliminate the influence of the filtering error, the tracking error after transformation is compensated, and the tracking error after compensation is defined as:
vi,1=ξi,1-zi,1 v i,1 =ξ i,1 -z i,1
其中,zi,1为针对滤波误差设计的补偿信号。Among them, z i,1 is the compensation signal designed for the filtering error.
步骤4.3设计的补偿信号的导数为:The derivative of the compensation signal designed in step 4.3 is:
步骤4.4:根据新的状态变量定义第二个误差面为:Step 4.4: Define the second error surface according to the new state variables as:
步骤5:根据新的状态变量、识别模型和扰动观测器得到多单臂机械手系统的控制器。Step 5: Obtain the controller of the multi-arm manipulator system according to the new state variables, recognition model and disturbance observer.
控制器ui为:The controller ui is:
其中,ki,2>0为设计参数。Among them, k i,2 > 0 are design parameters.
整个控制方法的实现过程如图3所示。The realization process of the whole control method is shown in Fig. 3.
利用控制器输出的控制信号控制系统工作,检测跟踪误差是否达到要求,如果未达到要求,循环上述步骤,形成闭环系统,直至达到要求。Use the control signal output by the controller to control the system to work, and detect whether the tracking error meets the requirements. If the requirements are not met, the above steps are repeated to form a closed-loop system until the requirements are met.
本实施例的一个仿真试验中:In a simulation test of this embodiment:
仿真实验的控制目标是使连杆的角度qi跟踪上给定轨迹信号y0=0.5sin(t)+sin(0.5t),考虑未知时变扰动,为了验证方法的有效性可假定为di,1=sin(t)-0.5sin(1.5t);di,2=-0.8[sin(t-0.6)-sin(t-0.8)]。The control goal of the simulation experiment is to make the angle q i of the connecting rod track the given trajectory signal y 0 =0.5sin(t)+sin(0.5t), considering the unknown time-varying disturbance, in order to verify the effectiveness of the method, it can be assumed as d i,1 =sin(t)-0.5sin(1.5t); di ,2 =-0.8[sin(t-0.6)-sin(t-0.8)].
根据实际系统,相关参数为连杆总质量mi=2kg,连杆总转动惯量Mi=2kg·m2,重力加速度g=10m/s2,总阻尼系数Di=2,从关节轴到质心的距离li=1m,系统未知非线性函数 According to the actual system, the relevant parameters are the total mass of the connecting rod m i = 2kg, the total moment of inertia of the connecting rod M i = 2kg·m 2 , the acceleration of gravity g = 10m/s 2 , the total damping coefficient D i = 2, from the joint axis to The distance li = 1m from the center of mass, the system is unknown nonlinear function
仿真初始条件为:xi,1(0)=[0.1,0.2,0.1,0.3];xi,2(0)=[0.2,0.1,0.2,0];si,1(0)=[0,0,0,0];si,2(0)=[0,0,0,0];wi,2(0)=[0,0,0,0,0,0,0,0,0,0]; The initial conditions of the simulation are: x i,1 (0)=[0.1,0.2,0.1,0.3]; xi,2 (0)=[0.2,0.1,0.2,0]; si,1 (0)=[ 0,0,0,0]; si,2 (0)=[0,0,0,0]; w i,2 (0)=[0,0,0,0,0,0,0,0,0,0];
相关参数设定如下:ρi,0=1;ρi,T=0.05;Ti=0.1;βi,2=1;γi,2=50;δi,2=20;λi,1=10;λi,2=10;ki,1=20;ki,2=20;τi,1=0.005。The relevant parameters are set as follows: ρ i,0 =1; ρ i,T =0.05; T i =0.1; β i,2 =1; γ i,2 =50; δ i,2 =20;λ i,1 =10; λ i,2 =10; ki ,1 =20; ki ,2 =20; τ i,1 =0.005.
仿真结果如图4-7所示。图4为多单臂机械手跟踪效果图,在极短的时间跟踪上给定轨迹y0。由图5的跟踪误差性能约束图可知,预设有限时间性能约束方法使一致跟踪误差约束在规定边界内,并在给定时间达到稳定状态。图6为时变扰动di,1的观测结果示意图,该扰动观测能准确估计时变扰动。图7为同时估计系统未知非线性函数和时变扰动fi,1+di,1的示意图,模糊逻辑系统和扰动观测器组合能准确估计系统未知部分fi,1+di,1。因此,数值仿真证明了所提出的控制方法的有效性。The simulation results are shown in Figure 4-7. Figure 4 shows the tracking effect of the multi-single-arm manipulator, and a given trajectory y 0 is tracked in a very short time. It can be seen from the tracking error performance constraint diagram in Fig. 5 that the preset finite time performance constraint method constrains the consistent tracking error within a specified boundary and reaches a stable state at a given time. Figure 6 is a schematic diagram of the observation results of the time-varying disturbance di ,1 , which can accurately estimate the time-varying disturbance. Figure 7 is a schematic diagram of simultaneously estimating the unknown nonlinear function of the system and the time-varying disturbance f i,1 +d i,1 . The combination of the fuzzy logic system and the disturbance observer can accurately estimate the unknown part of the system f i,1 +d i,1 . Therefore, numerical simulations demonstrate the effectiveness of the proposed control method.
综上所述,本实施例的方法具有以下优点:To sum up, the method of this embodiment has the following advantages:
(1)设计预设有限时间性能约束方法,使一致跟踪误差满足外界限制条件,并在所需的有限时间内达到稳定状态。(1) Design a preset finite-time performance constraint method to make the consistent tracking error meet the external constraints and reach a stable state within the required finite time.
(2)建立基于模糊逻辑系统的识别模型,使模糊逻辑系统准确逼近系统未知非线性。解决了受控系统模型未知问题,使所设计的控制器增强了所控制系统鲁棒性,可推广到更广泛的系统。(2) Establish a recognition model based on fuzzy logic system, so that the fuzzy logic system can accurately approximate the unknown nonlinearity of the system. The problem of unknown model of the controlled system is solved, and the designed controller enhances the robustness of the controlled system and can be extended to a wider range of systems.
(3)设计的扰动观测器能有效补偿时变扰动带来的影响,使多单臂机械手适用于更复杂的环境中。(3) The designed disturbance observer can effectively compensate the influence of time-varying disturbance, making the multi-arm manipulator suitable for more complex environments.
实施例2:Example 2:
本实施例公开了一种多单臂机械手系统控制系统,包括:This embodiment discloses a multi-single-arm manipulator system control system, including:
建模模块:用于建立多单臂机械手系统的状态动力学模型;Modeling module: used to establish the state dynamics model of the multi-arm manipulator system;
跟踪误差获取模块:用于根据单臂机械手的一致跟踪误差模型和构建的有限时间性能函数进行坐标变换,得到变换后的跟踪误差;Tracking error acquisition module: It is used to perform coordinate transformation according to the consistent tracking error model of the single-arm manipulator and the constructed finite-time performance function to obtain the transformed tracking error;
识别模型和扰动观测器获取模块:用于根据获得的状态动力学模型得到识别模型和扰动观测器;Identification model and disturbance observer acquisition module: used to obtain identification model and disturbance observer according to the obtained state dynamics model;
虚拟控制器获取模型:用于根据预设有限时间性能函数、变换后的跟踪误差和扰动观测器得到虚拟控制器;Virtual controller acquisition model: used to obtain a virtual controller according to the preset finite-time performance function, the transformed tracking error and the disturbance observer;
状态变量获取模块:用于对虚拟控制器的控制信号进行滤波,得到新的状态变量;State variable acquisition module: used to filter the control signal of the virtual controller to obtain new state variables;
控制模块:用于根据新的状态变量、识别模型和扰动观测器得到多单臂机械手系统的控制器。Control module: used to obtain the controller of the multi-arm manipulator system according to the new state variables, recognition model and disturbance observer.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the specific embodiments of the present invention have been described above in conjunction with the accompanying drawings, they do not limit the scope of protection of the present invention. Those skilled in the art should understand that on the basis of the technical solutions of the present invention, those skilled in the art do not need to pay creative efforts. Various modifications or variations that can be made are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111211197.XA CN113814983B (en) | 2021-10-18 | 2021-10-18 | A control method and system for a multi-single-arm manipulator system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111211197.XA CN113814983B (en) | 2021-10-18 | 2021-10-18 | A control method and system for a multi-single-arm manipulator system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113814983A true CN113814983A (en) | 2021-12-21 |
CN113814983B CN113814983B (en) | 2022-12-06 |
Family
ID=78917021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111211197.XA Active CN113814983B (en) | 2021-10-18 | 2021-10-18 | A control method and system for a multi-single-arm manipulator system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113814983B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114619446A (en) * | 2022-03-11 | 2022-06-14 | 广东工业大学 | Trajectory tracking control method and system based on dual observers |
CN115268263A (en) * | 2022-06-02 | 2022-11-01 | 河南科技大学 | A composite learning finite-time control method based on switched RLC circuit system |
CN115657482A (en) * | 2022-10-26 | 2023-01-31 | 渤海大学 | Multi-single-link manipulator cooperative control method and system with time-varying input delay |
CN116079741A (en) * | 2023-03-02 | 2023-05-09 | 淮阴工学院 | A self-adaptive control method for a single-link manipulator driven by a motor |
CN117359645A (en) * | 2023-12-04 | 2024-01-09 | 青岛理工大学 | Self-adaptive predefined time control method for single-link mechanical arm |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015102642A1 (en) * | 2015-02-24 | 2016-08-25 | Kastanienbaum GmbH | Device and method for controlling and regulating a robot manipulator |
CN110193833A (en) * | 2019-06-27 | 2019-09-03 | 青岛大学 | The adaptive finite time command filtering backstepping control method of Multi-arm robots |
CN110253572A (en) * | 2019-05-31 | 2019-09-20 | 广东工业大学 | An event-triggered control method for an input-saturated multi-single-arm manipulator based on a disturbance observer |
CN110275435A (en) * | 2019-05-24 | 2019-09-24 | 广东工业大学 | Observer-based output consistent adaptive command filtering control method for multi-arm manipulators |
CN113050417A (en) * | 2021-02-26 | 2021-06-29 | 中国地质大学(武汉) | Design method of rapid finite time controller of all-state constraint mechanical arm |
CN113341988A (en) * | 2021-06-17 | 2021-09-03 | 苏州科技大学 | Full-state constraint finite time control method of ship course system |
-
2021
- 2021-10-18 CN CN202111211197.XA patent/CN113814983B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015102642A1 (en) * | 2015-02-24 | 2016-08-25 | Kastanienbaum GmbH | Device and method for controlling and regulating a robot manipulator |
CN110275435A (en) * | 2019-05-24 | 2019-09-24 | 广东工业大学 | Observer-based output consistent adaptive command filtering control method for multi-arm manipulators |
CN110253572A (en) * | 2019-05-31 | 2019-09-20 | 广东工业大学 | An event-triggered control method for an input-saturated multi-single-arm manipulator based on a disturbance observer |
CN110193833A (en) * | 2019-06-27 | 2019-09-03 | 青岛大学 | The adaptive finite time command filtering backstepping control method of Multi-arm robots |
CN113050417A (en) * | 2021-02-26 | 2021-06-29 | 中国地质大学(武汉) | Design method of rapid finite time controller of all-state constraint mechanical arm |
CN113341988A (en) * | 2021-06-17 | 2021-09-03 | 苏州科技大学 | Full-state constraint finite time control method of ship course system |
Non-Patent Citations (1)
Title |
---|
郑晓宏等: "带有输出约束条件的随机多智能体系统容错控制", 《控制理论与应用》 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114619446A (en) * | 2022-03-11 | 2022-06-14 | 广东工业大学 | Trajectory tracking control method and system based on dual observers |
CN115268263A (en) * | 2022-06-02 | 2022-11-01 | 河南科技大学 | A composite learning finite-time control method based on switched RLC circuit system |
CN115657482A (en) * | 2022-10-26 | 2023-01-31 | 渤海大学 | Multi-single-link manipulator cooperative control method and system with time-varying input delay |
CN116079741A (en) * | 2023-03-02 | 2023-05-09 | 淮阴工学院 | A self-adaptive control method for a single-link manipulator driven by a motor |
CN116079741B (en) * | 2023-03-02 | 2023-12-01 | 淮阴工学院 | Self-adaptive control method for motor-driven single-link mechanical arm |
CN117359645A (en) * | 2023-12-04 | 2024-01-09 | 青岛理工大学 | Self-adaptive predefined time control method for single-link mechanical arm |
CN117359645B (en) * | 2023-12-04 | 2024-02-23 | 青岛理工大学 | An adaptive predefined time control method for single-link manipulator |
Also Published As
Publication number | Publication date |
---|---|
CN113814983B (en) | 2022-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113814983B (en) | A control method and system for a multi-single-arm manipulator system | |
CN110275436B (en) | RBF neural network self-adaptive control method of multi-single-arm manipulator | |
CN108942924B (en) | Model uncertainty manipulator motion control method based on multi-layer neural network | |
CN110275435B (en) | Observer-based multi-single-arm manipulator output consistent adaptive command filtering control method | |
Hu et al. | GRU-type LARC strategy for precision motion control with accurate tracking error prediction | |
CN109807902B (en) | A dual manipulator force/position fuzzy hybrid control method based on backstepping method | |
CN110154028A (en) | A Model-Free Adaptive Integral Terminal Sliding Mode Control Method for Manipulators | |
CN115157238B (en) | A dynamic modeling and trajectory tracking method for multi-degree-of-freedom robots | |
CN110181510B (en) | Mechanical arm trajectory tracking control method based on time delay estimation and fuzzy logic | |
CN107877511B (en) | Output position-based multi-double-link manipulator including controller and design method | |
Chu et al. | Backstepping control for flexible joint with friction using wavelet neural networks and L2‐gain approach | |
CN117681186A (en) | A robust control method for high-precision collaborative manipulator based on inequality constraints | |
CN108673502A (en) | A kind of mechanical arm motion control method based on Unknown Model Dynamic Observer | |
CN116069044B (en) | Multi-robot cooperative transportation capacity hybrid control method | |
CN110497415A (en) | A Consistent Control Method for Multi-manipulator System Based on Disturbance Observer | |
Liang et al. | Adaptive neural network finite-time tracking control for uncertain hydraulic manipulators | |
CN111590561B (en) | Robustness preset performance control method for distributed mechanical arm system | |
CN114619446A (en) | Trajectory tracking control method and system based on dual observers | |
CN111427264B (en) | A Neural Adaptive Fixed Time Control Method for Complex Telemanipulation Technology | |
Tran et al. | Finite-time output control for uncertain robotic manipulators with time-varying output constraints | |
Zhu et al. | Fixed-time parameter estimation and control design for unknown robot manipulators with asymmetric motion constraints | |
CN116000919B (en) | A full-state constraint control method for a single-link manipulator system with dead zone | |
Zhang et al. | Improved barrier function with adjustable parameter-based tracking control for robot under position constraints | |
Sharkawy et al. | A robust fuzzy tracking control scheme for robotic manipulators with experimental verification | |
CN116175585A (en) | UDE control method for multi-joint mechanical arm with input saturation and output constraint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |