CN109343472B - 基于恒定切削力的机匣零件表面应力应变场控制方法 - Google Patents

基于恒定切削力的机匣零件表面应力应变场控制方法 Download PDF

Info

Publication number
CN109343472B
CN109343472B CN201811440432.9A CN201811440432A CN109343472B CN 109343472 B CN109343472 B CN 109343472B CN 201811440432 A CN201811440432 A CN 201811440432A CN 109343472 B CN109343472 B CN 109343472B
Authority
CN
China
Prior art keywords
cutting
numerical control
control program
force
cutting force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811440432.9A
Other languages
English (en)
Other versions
CN109343472A (zh
Inventor
周鑫
高阳
兰影铎
张森堂
杨印权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Shenyang Liming Aero Engine Co Ltd
Original Assignee
AECC Shenyang Liming Aero Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Shenyang Liming Aero Engine Co Ltd filed Critical AECC Shenyang Liming Aero Engine Co Ltd
Priority to CN201811440432.9A priority Critical patent/CN109343472B/zh
Publication of CN109343472A publication Critical patent/CN109343472A/zh
Application granted granted Critical
Publication of CN109343472B publication Critical patent/CN109343472B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

本发明具体涉及一种基于恒定切削力的机匣零件表面应力应变场控制方法,属于航空航天数控加工技术领域。所述控制方法包括:1)零件模型导入计算机;2)将原始数控程序导入计算机;3)将机床信息导入计算机;4)设置刀具参数;5)进行切削力仿真;6)进行仿真数据分析;7)判断切削过程稳定性;8)判断切削过程是否属于局部跳动;9)调整原始数控程序:10)将原始数控程序进行适应性打断;11)进行逐段的数控程序切削参数优化;12)输出最优数控程序;13)应用最优数控程序进行加工验证。本发明可应用于各种整体机匣零件表面应力应变场控制中,经济效果及社会效益巨大。

Description

基于恒定切削力的机匣零件表面应力应变场控制方法
技术领域
本发明属于航空航天数控加工技术领域,具体涉及一种基于恒定切削力的机匣零件表面应力应变场控制方法。
背景技术
航空发动机机匣零件结构复杂、加工精度要求高,是典型的大型薄壁难加工零件,其加工变形问题一直是航空发动机制造关键技术难点之一。目前,机匣零件加工工艺方案制定依赖`人员的工程经验,编制的数控程序仅进行几何仿真验证,没有考虑残余应力对零件加工变形的影响。已有研究表明残余应力是引发零件加工变形的重要因素之一,而随着数控切削过程材料的去除,原有的应力状态将被破坏,其加工过程的切削力和切削热将对残余应力分布带来新的变化,仅通过工装夹具难以对零件加工变形进行有效控制。
零件残余应力的存在是引起加工变形的主要因素之一,目前残余应力的主要研究焦点集中在残余应力的释放和重新分布上,国内外最常用于控制并消除残余应力的方法包括:恒温时效法、振动时效法、深冷处理法等,并未考虑通过控制切削过程而控制残余应力。而在切削过程中,零件加工表面随着材料去除,必然引入新的残余应力,由于航空发动机机匣零件的薄壁、弱刚性等特性,产生的残余应力必然引发不可控的加工变形。因此,分析并优化数控程序,约束机匣零件车、铣、钻、镗等切削方式加工过程的切削力变化,是控制机匣零件表面应力应变场的重要工艺方法。
国内外研究学者在切削力产生机理上已经取得重大突破,先进物理仿真技术能够仿真出切削过程产生的切削力,但是缺乏有效的切削力控制手段。切削力控制及优化技术一直以来都未能在航空发动机机匣零件上实现工程应用,通过优化数控程序获得恒定切削力,进而均化机匣零件表面应力应变场更是行业空白。到目前为止,尚没有公开的用于航空发动机复杂机匣零件的表面应力应变场控制方法。
发明内容
针对上述存在的技术问题,本发明提供一种基于恒定切削力的机匣零件表面应力应变场控制方法,包括以下步骤:
步骤1,将零件模型,既零件目标形态的CAD模型导入计算机;
步骤2,将原始数控程序导入计算机;
所述原始数控程序中包含切削参数、走刀路径和刀具摆角,用于控制机床进行相应的加工动作;所述原始数控程序采用G代码或APT-Code文件;
步骤3,将机床信息导入计算机,包含行程极限、主轴转速及进给极限和主轴功率;
所述机床信息与导入的原始数控程序相互兼容;如导入的原始数控程序为G代码文件的NC程序中以R代表半径,则机床信息中的G-codes中必须使用R来表示半径;如果NC程序中使用另一个变量来代表半径,则机床配置中的G-codes中也须修改成同样的变量;如导入的原始数控程序为APT-Code文件,则机床信息中的APT-Code文件也与其相匹配;
步骤4,设置刀具参数;
所述刀具参数与机床实际刀具的刀具参数一致;所述刀具包括菱形刀片、槽刀和成型刀;
步骤5,进行切削力仿真;
计算机根据导入的零件模型、设置的刀具参数及导入的原始数控程序进行切削力仿真,包括车削、铣削、钻削、拉削的切削力仿真;
所述切削力仿真,既根据现有切削材料数据库和原始数控程序,模拟刀刃与材料的实时有效切削面积,计算切削过程中任意时间t产生的X向、Y向和Z向的切削力Fcx(t)、Fcy(t)和Fcz(t),进而得到切削过程中产生的切向力Fct(t)、径向力Fcr(t)、轴向力Fca(t)及合力Fcom(t);
步骤6,进行仿真数据分析;
所述的仿真数据分析,指计算在切削过程中总共n个时间点上的平均切削力
Figure BDA0001884569760000021
包括平均切向力
Figure BDA0001884569760000022
平均径向力
Figure BDA0001884569760000023
平均轴向力
Figure BDA0001884569760000024
及平均合力
Figure BDA0001884569760000025
计算方式如下:
Figure BDA0001884569760000026
步骤7,根据约束条件判断切削过程稳定性,如果切削过程稳定,则进行步骤12;如果切削过程不稳定,则进行步骤8;
所述的约束条件,指根据仿真数据分析计算出的平均切削力设定切削力的上限Flimmax及下限Flimmin,即
Figure BDA0001884569760000027
其中,根据实际情况,平均切削力
Figure BDA0001884569760000028
为平均切向力
Figure BDA0001884569760000029
平均径向力
Figure BDA00018845697600000210
平均轴向力
Figure BDA00018845697600000211
及平均合力
Figure BDA0001884569760000031
平均的其中之一;
当步骤5的全部仿真结果中超出约束条件的区间的总时间大于3%时,即认为切削状态不稳定;否则,认为切削状态达到稳定;
步骤8,判断切削过程是否属于局部跳动,如果切削过程不属于局部跳动,进行步骤9;如果切削过程属于局部跳动,进行步骤10;
所述的局部跳动,指步骤5的全部仿真结果中超出切削力约束条件的区域连续时间不超过10%,且整体切削力在约束区域之外的不超过30%,即认为切削过程属于局部跳动;否则,认为切削过程不属于局部跳动;
步骤9,根据步骤5的全部仿真结果调整原始数控程序,返回步骤5;
步骤10,将原始数控程序进行适应性打断;
步骤11,根据原始数控程序打断结果,进行逐段的数控程序切削参数优化,接步骤5继续开展切削力仿真;
所述的切削参数优化,指将打断后的数控程序通过调整切削参数,将每段程序的切削力控制在约束区间内,进而使数控程序均在约束区间内,从而保证数控程序切削过程的稳定性;
步骤12,计算机将现行数控程序作为最优数控程序,并输出最优数控程序;
步骤13,应用最优数控程序进行加工验证。
所述步骤10中的适应性打断,即根据实际情况,执行以下两种方式的任意一种进行原始数控程序区域划分:
第一种是固定划分周期,即每隔固定时间t1就对原始数控程序进行一次打断,共将原始数控程序打断成m段程序;其中,T为切削过程的总时间,则
Figure BDA0001884569760000032
第二种是按照切削力变化情况对原始数控程序进行人工划分,得出时长不同的若干段程序。
本发明的有益效果:
本发明提出一种基于恒定切削力的机匣零件表面应力应变场控制方法,基于切削载荷均衡原则,应用先进的物理仿真技术手段,从切削力入手开展物理仿真,依据仿真结果优化数控程序,控制机加过程的切削力变化,通过应用恒定切削力的数控程序控制零件表面应力应变场的分布状态,进而控制零件表面振纹的产生、降低表面应力集中现象、提升零件表面加工质量。
本发明经实际加工验证,按照优化程序进行数控切削,加工振纹明显降低,零件表面应力集中现象明显改善,多个零件加工后结果趋同,自由状态下应力释放引发的变形得到有效控制,填补机匣零件表面应力应变场控制技术空白。
本发明可以应用于各种航空发动机机匣零件的切削参数优化中,具有较强的通用型和实用性。本发明基于恒定切削力的应力应变场控制方法有效改善零件表面应力分布,在提升零件加工质量的前提下提升零件加工效率。
本发明的目的是针对航空发动机复杂机匣零件机加过程切削力变化幅度大、应力集中现象明显、应力分布不均匀而引发的表面精度低、变形不规律、变形幅度大等加工问题,基于恒定切削力的将数控程序进行区域性切削参数优化,提升数控切削过程稳定性,改善机匣零件表面应力应变场的分布状态,降低零件表面振纹及扭转变形,提升零件加工质量。
本发明可应用于各种整体机匣零件表面应力应变场控制中,经济效果及社会效益巨大。
本发明设计合理,易于实现,具有很好的实用价值。
附图说明
图1为本发明具体实施方式中所述零件模型的示意图;
图2为本发明具体实施方式中所述原始数控程序的切削力仿真结果的示意图;
图3为本发明具体实施方式中所述优化后的数控程序的切削力仿真结果的示意图;
图4为本发明具体实施方式中所述原始数控程序和优化后的数控程序的切削力仿真结果对比的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明做出进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
本发明提出一种基于恒定切削力的机匣零件表面应力应变场控制方法,包括以下步骤:
步骤1,将零件模型,既零件目标形态的CAD模型导入计算机;
步骤2,将原始数控程序导入计算机;
所述原始数控程序中包含切削参数、走刀路径和刀具摆角,用于控制机床进行相应的加工动作;所述原始数控程序采用G代码或APT-Code文件;
步骤3,将机床信息导入计算机,包含行程极限、主轴转速及进给极限和主轴功率;
所述机床信息与导入的原始数控程序相互兼容;如导入的原始数控程序为G代码文件的NC程序中以R代表半径,则机床信息中的G-codes中必须使用R来表示半径;如果NC程序中使用另一个变量来代表半径,则机床配置中的G-codes中也须修改成同样的变量;如导入的原始数控程序为APT-Code文件,则机床信息中的APT-Code文件也与其相匹配;
步骤4,设置刀具参数;
所述刀具参数与机床实际刀具的刀具参数一致;所述刀具包括菱形刀片、槽刀和成型刀;
步骤5,进行切削力仿真;
计算机根据导入的零件模型、设置的刀具参数及导入的原始数控程序进行切削力仿真,包括车削、铣削、钻削、拉削的切削力仿真;
所述切削力仿真,既根据现有切削材料数据库和原始数控程序,模拟刀刃与材料的实时有效切削面积,计算切削过程中任意时间t产生的X向、Y向和Z向的切削力Fcx(t)、Fcy(t)和Fcz(t),进而得到切削过程中产生的切向力Fct(t)、径向力Fcr(t)、轴向力Fca(t)及合力Fcom(t);
步骤6,进行仿真数据分析;
所述的仿真数据分析,指计算在切削过程中总共n个时间点上的平均切削力
Figure BDA0001884569760000051
包括平均切向力
Figure BDA0001884569760000052
平均径向力
Figure BDA0001884569760000053
平均轴向力
Figure BDA0001884569760000054
及平均合力
Figure BDA0001884569760000055
计算方式如下:
Figure BDA0001884569760000056
步骤7,根据约束条件判断切削过程稳定性,如果切削过程稳定,则进行步骤12;如果切削过程不稳定,则进行步骤8;
所述的约束条件,指根据仿真数据分析计算出的平均切削力设定切削力的上限Flimmax及下限Flimmin,即
Figure BDA0001884569760000057
其中,根据实际情况,平均切削力
Figure BDA0001884569760000058
为平均切向力
Figure BDA0001884569760000059
平均径向力
Figure BDA00018845697600000510
平均轴向力
Figure BDA00018845697600000511
及平均合力
Figure BDA00018845697600000512
平均的其中之一;
当步骤5的全部仿真结果中超出约束条件的区间的总时间大于3%时,即认为切削状态不稳定;否则,认为切削状态达到稳定;
步骤8,判断切削过程是否属于局部跳动,如果切削过程不属于局部跳动,进行步骤9;如果切削过程属于局部跳动,进行步骤10;
所述的局部跳动,指步骤5的全部仿真结果中超出切削力约束条件的区域连续时间不超过10%,且整体切削力在约束区域之外的不超过30%,即认为切削过程属于局部跳动;否则,认为切削过程不属于局部跳动;
步骤9,根据步骤5的全部仿真结果调整原始数控程序,返回步骤5;
步骤10,将原始数控程序进行适应性打断;
所述适应性打断,即根据实际情况,执行以下两种方式的任意一种进行原始数控程序区域划分:
第一种是固定划分周期,即每隔固定时间t1就对原始数控程序进行一次打断,共将原始数控程序打断成m段程序;其中,T为切削过程的总时间,则
Figure BDA0001884569760000061
第二种是按照切削力变化情况对原始数控程序进行人工划分,得出时长不同的若干段程序;
步骤11,根据原始数控程序打断结果,进行逐段的数控程序切削参数优化,接步骤5继续开展切削力仿真;
所述的切削参数优化,指将打断后的数控程序通过调整切削参数,将每段程序的切削力控制在约束区间内,进而使数控程序均在约束区间内,从而保证数控程序切削过程的稳定性;
步骤12,计算机将现行数控程序作为最优数控程序,并输出最优数控程序;
步骤13,应用最优数控程序进行加工验证。
针对上述基于恒定切削力的机匣零件表面应力应变场控制方法,为详细说明其所能达到的应力应变场控制效果,对零件表面残余应力进行多次检测,通过对比应力数据变化进行工艺方法验证,验证方法为:
1)针对4个未切削的环形机匣零件1和零件2,对各个零件切削前的初始应力进行检测;
每个零件大端面检测8点、小端面检测8点、侧面周向检测4点,4个零件检测位置相同,检测数据如表1所示;
Figure BDA0001884569760000071
表1
通过表1的测量结果可以发现,零件改进前表面残余应力的大小、位置均不相同,应力波动较大,零件1应力极值相差525MPa,零件2应力极值相差652MPa,零件3应力极值相差746MPa,零件4应力极值相差963MPa;
2)进行所述基于恒定切削力的机匣零件表面应力应变场控制方法,得到最优数控程序,其中涉及的具体内容包括:
所述步骤1中,零件模型的如图1所示;
所述步骤2中,数控程序采用G代码;
所述步骤3中,机床信息在仿真软件的G-code机床配置界面中需要进行相应的机床参数配置;其中,Programming_Type(编程模式)中选择Radial_Programming(半径编程);Motion(机床运动模式)中快速进给、直线插补、左圆弧、右圆弧分别设置成G00、G01、G02、G03;Tool_Nose_Radius_Compensation(刀具半径补偿)Left(左刀补)设置成G41,Right(右刀补)设置成G42;其余的参数均为默认值;
所述步骤4中,刀具参数:刀具选择车削刀具,刀片厚度4.762mm,最大切深10mm,两侧刀刃半径2.38mm,刀刃倾角2deg;
所述步骤5-7中,对于环形机匣零件,径向力是造成零件变形的主要切削力,对原始的数控程序进行切削力仿真,仿真结果如图2所示,最大切向力为833.9N,发生在转角加工处,由于该处余量较其余切削部位稍大,导致切向力较大,平均切削力
Figure BDA0001884569760000072
选定为平均径向力
Figure BDA0001884569760000073
平均径向力
Figure BDA0001884569760000074
经过分析可得:Flimmax=465N,Flimmin=271.25N;由图2可知,切削力跳动现象明显,且最大切削力是平均切削力
Figure BDA0001884569760000075
的2.152倍,明显不利于表面应力应变场的控制;
所述步骤10中,采用人工划分对数控程序进行分段;
所述步骤11中,优化后的数控程序重新进行切削力仿真,仿真结果如图3所示;图2与图3结合,得到如图4所示的原始数控程序和优化后的数控程序的切削力仿真结果对比的示意图;
由图4可以看出,对于优化后的每段数控程序,刀轨直线切削末端切削量较大的区域进给率降低到原来的1/2左右,空切削区域进给率增大到原来的10倍,总体加工时间由4878s减少到3635s,切削力降低无突变,在保证加工质量的同时提高加工效率;
3)分别采用原始数控程序和最优数控程序分别对2组相同的零件1-2进行切削加工,然后将2组零件经过加工后的上下端面的表面应力进行射线检测,得到应用原始数控程序进行加工得到的表面应力场,以及应用最优数控程序进行加工得到的表面应力场,如表2所示;
Figure BDA0001884569760000081
表2
由表2可知,应用原始数控程序,零件1表面应力最大值294MPa,最小值977MPa,应力相差650MPa;零件2端面表面最大应力能达到1226MPa,而最小应力仅263MPa,应力相差963MPa;
应用最优数控程序,零件1表面应力最大值684MPa,最小值616MPa,应力相差47.15MPa;零件2表面最大应力值681.21MPa,最小值616.69MPa,应力相差64.52MPa;
得到零件2组零件加工后的技术条件统计数据,如表3所示;
Figure BDA0001884569760000091
表3
由表3可知,应用原始数控程序,零件端面圆度最大0.29mm;应用最优数控程序,零件端面圆度最大值仅0.057mm,精度提升80.34%,满足圆度小于0.2mm的技术条件;
应用原始数控程序,零件同轴度0.465mm;应用最优数控程序,零件同轴度为0.171mm,同轴度提升63.22%,满足同轴度小于0.2mm的技术条件。
经过以上验证,应用所述基于恒定切削力的表面应力应变场控制方法,零件加工后的表面残余应力集中现象明显下降,且零件变形得到有效控制。

Claims (2)

1.一种基于恒定切削力的机匣零件表面应力应变场控制方法,其特征在于,包括以下步骤:
步骤1,将零件模型,即零件目标形态的CAD模型导入计算机;
步骤2,将原始数控程序导入计算机;
所述原始数控程序中包含切削参数、走刀路径和刀具摆角,用于控制机床进行相应的加工动作;所述原始数控程序采用G代码或APT-Code文件;
步骤3,将机床信息导入计算机,包含行程极限、主轴转速及进给极限和主轴功率;
所述机床信息与导入的原始数控程序相互兼容;如果导入的原始数控程序为G代码文件的NC程序中以R代表半径,则机床信息中的G-codes中必须使用R来表示半径;如果NC程序中使用另一个变量来代表半径,则机床配置中的G-codes中也须修改成同样的变量;如果导入的原始数控程序为APT-Code文件,则机床信息中的APT-Code文件也与其相匹配;
步骤4,设置刀具参数;
所述刀具参数与机床实际刀具的刀具参数一致;所述刀具包括菱形刀片、槽刀和成型刀;
步骤5,进行切削力仿真;
计算机根据导入的零件模型、设置的刀具参数及导入的原始数控程序进行切削力仿真,包括车削、铣削、钻削、拉削的切削力仿真;
所述切削力仿真,既根据现有切削材料数据库和原始数控程序,模拟刀刃与材料的实时有效切削面积,计算切削过程中任意时间t产生的X向、Y向和Z向的切削力Fcx(t)、Fcy(t)和Fcz(t),进而得到切削过程中产生的切向力Fct(t)、径向力Fcr(t)、轴向力Fca(t)及合力Fcom(t);
步骤6,进行仿真数据分析;
所述的仿真数据分析,指计算在切削过程中总共n个时间点上的平均切削力
Figure FDA0002723581630000011
包括平均切向力
Figure FDA0002723581630000012
平均径向力
Figure FDA0002723581630000013
平均轴向力
Figure FDA0002723581630000014
及平均合力
Figure FDA0002723581630000015
计算方式如下:
Figure FDA0002723581630000016
步骤7,根据约束条件判断切削过程稳定性,如果切削过程稳定,则进行步骤12;如果切削过程不稳定,则进行步骤8;
所述的约束条件,指根据仿真数据分析计算出的平均切削力设定切削力的上限Flimmax及下限Flimmin,即
Figure FDA0002723581630000021
其中,根据实际情况,选择平均切削力
Figure FDA0002723581630000022
中平均切向力
Figure FDA0002723581630000023
平均径向力
Figure FDA0002723581630000024
平均轴向力
Figure FDA0002723581630000025
及平均合力
Figure FDA0002723581630000026
的其中之一;
当步骤5的全部仿真结果中超出约束条件的区间的总时间大于3%时,即认为切削状态不稳定;否则,认为切削状态达到稳定;
步骤8,判断切削过程是否属于局部跳动,如果切削过程不属于局部跳动,进行步骤9;如果切削过程属于局部跳动,进行步骤10;
所述的局部跳动,指步骤5的全部仿真结果中超出切削力约束条件的区域连续时间不超过10%,且整体切削力在约束区域之外的不超过30%,即认为切削过程属于局部跳动;否则,认为切削过程不属于局部跳动;
步骤9,根据步骤5的全部仿真结果调整原始数控程序,返回步骤5;
步骤10,将原始数控程序进行适应性打断;
步骤11,根据原始数控程序打断结果,进行逐段的数控程序切削参数优化,接步骤5继续开展切削力仿真;
所述的切削参数优化,指将打断后的数控程序通过调整切削参数,将每段程序的切削力控制在约束区间内,进而使数控程序均在约束区间内,从而保证数控程序切削过程的稳定性;
步骤12,计算机将现行数控程序作为最优数控程序,并输出最优数控程序;
步骤13,应用最优数控程序进行加工验证。
2.根据权利要求1所述的基于恒定切削力的机匣零件表面应力应变场控制方法,其特征在于,所述步骤10中的适应性打断,即根据实际情况,执行以下两种方式的任意一种进行原始数控程序区域划分:
第一种是固定划分周期,即每隔固定时间t1就对原始数控程序进行一次打断,共将原始数控程序打断成m段程序;其中,T为切削过程的总时间,则
Figure FDA0002723581630000027
第二种是按照切削力变化情况对原始数控程序进行人工划分,得出时长不同的若干段程序。
CN201811440432.9A 2018-11-29 2018-11-29 基于恒定切削力的机匣零件表面应力应变场控制方法 Active CN109343472B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811440432.9A CN109343472B (zh) 2018-11-29 2018-11-29 基于恒定切削力的机匣零件表面应力应变场控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811440432.9A CN109343472B (zh) 2018-11-29 2018-11-29 基于恒定切削力的机匣零件表面应力应变场控制方法

Publications (2)

Publication Number Publication Date
CN109343472A CN109343472A (zh) 2019-02-15
CN109343472B true CN109343472B (zh) 2020-11-24

Family

ID=65319260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811440432.9A Active CN109343472B (zh) 2018-11-29 2018-11-29 基于恒定切削力的机匣零件表面应力应变场控制方法

Country Status (1)

Country Link
CN (1) CN109343472B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110750074B (zh) * 2019-11-19 2022-05-06 上海交通大学 基于物理仿真的数控加工优化系统及方法
CN112034786B (zh) * 2020-09-15 2022-02-11 中国航发沈阳黎明航空发动机有限责任公司 基于表面粗糙度控制的整体环型机匣数控加工优化方法
CN112051802B (zh) * 2020-09-16 2021-07-06 中国航发沈阳黎明航空发动机有限责任公司 航空发动机对开结构机匣类零件自动化数控加工工艺方法
CN113885439B (zh) * 2021-10-19 2023-05-23 中国航发沈阳黎明航空发动机有限责任公司 一种基于机床分度的叶片曲率识别及程序优化方法
CN113917888B (zh) * 2021-10-27 2023-05-23 中国航发沈阳黎明航空发动机有限责任公司 一种基于固定角向标定及补偿的加工精度提升方法
CN113778039B (zh) * 2021-11-11 2022-02-18 中国航发沈阳黎明航空发动机有限责任公司 一种基于特征的整体叶盘加工参数优化及质量控制方法
CN114939772B (zh) * 2022-04-20 2023-12-19 湖南星途航空航天器制造有限公司 一种加工薄壁弧形件的力适应性方法
CN115755774B (zh) * 2022-11-01 2024-04-26 中国航发沈阳黎明航空发动机有限责任公司 一种基于连续仿真的机匣零件装夹应力调控方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436053A (zh) * 2008-12-18 2009-05-20 浙江大学宁波理工学院 机床的控制方法
CN102248380A (zh) * 2011-07-04 2011-11-23 南京航空航天大学 发动机整体机匣加工方法
CN102873381A (zh) * 2012-09-29 2013-01-16 西安交通大学 一种基于动力学模型的高速铣削工艺参数优化方法
CN102929206A (zh) * 2012-10-31 2013-02-13 沈阳黎明航空发动机(集团)有限责任公司 基于加工特征的数控精车加工切削参数确定方法
CN105844356A (zh) * 2016-03-22 2016-08-10 江南大学 基于自适应遗传算法的机床切削用量能耗优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018157174A1 (en) * 2017-02-27 2018-08-30 Usnr, Llc Log and cant optimization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101436053A (zh) * 2008-12-18 2009-05-20 浙江大学宁波理工学院 机床的控制方法
CN102248380A (zh) * 2011-07-04 2011-11-23 南京航空航天大学 发动机整体机匣加工方法
CN102873381A (zh) * 2012-09-29 2013-01-16 西安交通大学 一种基于动力学模型的高速铣削工艺参数优化方法
CN102929206A (zh) * 2012-10-31 2013-02-13 沈阳黎明航空发动机(集团)有限责任公司 基于加工特征的数控精车加工切削参数确定方法
CN105844356A (zh) * 2016-03-22 2016-08-10 江南大学 基于自适应遗传算法的机床切削用量能耗优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
An approach for improving the machining efficiency and quality of aerospace curved thin-walled parts during five-axis NC machining;Jiang, Xiaohui.etc;《INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY》;20180731;第97卷(第5-8期);P2477-2488 *
弧齿锥齿轮数控铣齿机切削力及切削参数优化研究;贾新杰;《中国博士学位论文全文数据库工程科技Ⅰ辑(月刊)》;20150715(第07期);B022-196:P101 *

Also Published As

Publication number Publication date
CN109343472A (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
CN109343472B (zh) 基于恒定切削力的机匣零件表面应力应变场控制方法
CN103198186B (zh) 基于特征的飞机结构件切削参数优化方法
US20130024021A1 (en) Compensation for process variables in a numerically-controlled machining operation
Jarosz et al. Optimization of CNC face milling process of Al-6061-T6 aluminum alloy
CN113962105B (zh) 一种无颤振精加工铣削过程的高效参数优化方法
Fomin Microgeometry of surfaces after profile milling with the use of automatic cutting control system
Wang et al. A model of deformation of thin-wall surface parts during milling machining process
CN112558550A (zh) 一种使用cam软件加工异形螺纹的方法
Saturley et al. Integration of milling process simulation with on-line monitoring and control
Dodok et al. Influence of CNC milling strategies on complex surface machining
CN112034786B (zh) 基于表面粗糙度控制的整体环型机匣数控加工优化方法
Bailey et al. Integrated modeling for metal removal operations
Conradie et al. Evaluating the effect of milling strategy on process efficiency in machining titanium alloys-a cost modelling approach
Sumbodo et al. Optimization of CNC Milling Machining Time Through Variation of Machine Parameters and Toolpath Strategy in Various Cross-Sectional Shape on Tool Steels and Die Steels Materials
Cus et al. High-speed milling of light metals
Wu et al. Energy mapping and optimization in rough machining of impellers
Shan et al. Multi-axis NC machining of integral impeller parts based on NX
Guo et al. Study on multi-axis simulated NC machining for thin-walled impeller
Mgherony et al. Simulation of the working diameter in 3-axis ball-end milling of free form surface
Kim et al. An optimum 2.5 D contour parallel tool path
Bąk et al. Numerical simulation of self-excited vibrations under variable cutting conditions
Han et al. CNC machining optimization of hydro-turbine runner blade based on VERICUT
Zhang et al. The method of simulation analysis of machining techniques about complex curved surface
Pralea et al. Study of the Milling Tools When Machining X37CrMoV5-1 after Heat Treatment
Anania et al. Implementation of high cutting speed technologies in machine tools for increasing product quality

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant