CN109341651A - 条带式房柱胶结充填采矿法地表沉降量的预测方法 - Google Patents

条带式房柱胶结充填采矿法地表沉降量的预测方法 Download PDF

Info

Publication number
CN109341651A
CN109341651A CN201811181146.5A CN201811181146A CN109341651A CN 109341651 A CN109341651 A CN 109341651A CN 201811181146 A CN201811181146 A CN 201811181146A CN 109341651 A CN109341651 A CN 109341651A
Authority
CN
China
Prior art keywords
house
subsidence
strip
cemented filling
filling method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811181146.5A
Other languages
English (en)
Other versions
CN109341651B (zh
Inventor
刘照朗
刘永龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GUANGDONG ANYUAN MINING TECHNOLOGY SERVICE Co Ltd
Original Assignee
GUANGDONG ANYUAN MINING TECHNOLOGY SERVICE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GUANGDONG ANYUAN MINING TECHNOLOGY SERVICE Co Ltd filed Critical GUANGDONG ANYUAN MINING TECHNOLOGY SERVICE Co Ltd
Priority to CN201811181146.5A priority Critical patent/CN109341651B/zh
Publication of CN109341651A publication Critical patent/CN109341651A/zh
Application granted granted Critical
Publication of CN109341651B publication Critical patent/CN109341651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Abstract

它认为:条带式房柱胶结充填采矿过程中,即使地压作用不会造成采场结构破坏,但采场结构在地压作用下会发生压缩变形,并由此引发地表沉降;地表沉降量的预测计算式为:s=ηHp(k1/Ek+(1+k2)/EC+d);式中:s是地表实际可能发生的最大沉降量;η是下沉系数,先期参照煤炭系统资料预测,后期用本矿区实测数据验算;H是回采高度,若矿体多中段上下重叠时H是各中段回采高度之和;p是与开采深度相应的竖向地应力;预测计算时期令k1=λ,k2=1/λ,λ是矿房与矿柱的宽度之比,验证时期k1和k2的值能够现场实测得到;Ek、EC分别是矿柱(原矿体)和充填体的变形模量,查阅资料或实测均能够求得;d是非密实充填的空顶高度。

Description

条带式房柱胶结充填采矿法地表沉降量的预测方法
技术领域:
本申请属地下采矿技术领域,针对水平—缓倾斜矿体的条带式房柱胶结充填采矿法所引发的地表沉降预测。
技术背景:
地下采矿活动对地方环境的重要影响之一是地表沉降,这个问题经常成为矿山和地方在经济补偿方面的矛盾焦点;矿山和一些设计部门经常坚持的意见是:井下采用条带式房柱法开采、全胶结充填且密实接顶,开采过程中采场结构稳定,支撑矿柱和充填房柱没有破坏,这种开采工况不会造成地表下沉;地方和民众则坚持认为会造成地表下沉,具有破坏性影响;政府主管部门在调解企业和地方的争论关系方面往往缺乏技术依据,无法定论;目前,在这一技术领域,国家没有相关规范,煤炭系统‘三下开采(建筑物下、道路下、水体下)’经验中有关地表沉降量的统计数据,并不能完全适应金属非金属矿山的房柱法全胶结充填的采矿实际情况,煤炭系统的经验参数难以采信;为了给矿山、地方和政府提供能形成共识的、符合科学原则的、三方都能认可的技术参考,本发明依据岩体力学的基本理论,结合实际采矿过程中岩移变形的产生和发展真相,论证条带式房柱胶结充填采矿法理论上存在引发地表沉降的必然性,并据此提出地表沉降量的预测计算方法。
发明内容:
条带式房柱胶结充填采矿法的采场结构变形分为三个阶段:第一个阶段是矿房回采阶段,如附图1的⑴剖面所示,在矿体1中,以保留矿柱2作为支撑,回采矿房3,此阶段中顶板覆盖层4的地压近似的全部转移到保留矿柱2;第二个阶段是矿柱回采阶段,如附图1的⑵剖面所示,矿房3采空并完成胶结充填后转化成房柱5,以房柱5作为支撑,回采保留矿柱2,此阶段中顶板覆盖层4的地压近似的全部转移到房柱5;第三个阶段是嗣后充填阶段,如附图1的⑶剖面所示,矿柱2回采完毕并完成胶结充填后转化成肩柱6;此阶段没有明显的终结期,胶结充填的房柱5和肩柱6共同支撑顶板覆盖层4,使地压逐渐恢复平衡;假定胶结充填能达到密实接顶,假设该采矿深度的竖向地应力=p,回采高度=H,并假设λ=矿房宽度/保留矿柱宽度,对这三个阶段中采场结构的压缩变形量,进行逐次分析。
第一个回采阶段:那么在不计矿柱自重应力时,保留矿柱中的竖向压应力σ=(1+k1)p,k1=λ,即假定矿房的地应力全部转移到保留矿柱;矿柱的应力增量Δσ=(1+k1)p-p=k1p;应力增量使矿柱在即使不破坏的情况下也会发生压缩变形;矿柱的变形模量Ek能够实测或者查阅相关资料得到,则采场结构的压缩变形量=保留矿柱的压缩变形量=HΔσ/Ek=Hk1p/Ek
第二个回采阶段:胶结充填体房柱5中的竖向压应力σ=(1+k2)p,k2=1/λ,即假定矿柱的地应力全部转移到胶结充填的房柱;由于不计充填体自重应力时,房柱5中的原始竖向应力约为零值,房柱的压应力增量Δσ=(1+k2)p;该压应力增量使房柱在即使不破坏的情况下也会发生压缩变形;房柱胶结充填体(一般是混凝土)的变形模量EC能够实测或者查阅相关资料得到,则本阶段中,采场结构的压缩变形量=充填房柱的压缩变形量=Hp(1+k2)/EC
第三个嗣后充填阶段:后充填体肩柱6的初始主应力——垂直方向应力σ1≈0(不计充填体自重应力),两侧房柱5的压缩变形作用会延续到第三个阶段;因此,房柱侧向压缩应变的强大挤压作用,使得肩柱6中水平方向的应力(岩体力学中的σ2、σ3)大于垂直方向的主应力(σ1),根据岩体力学的应变理论,肩柱6在水平面上是压缩的,在竖直方向上有增长趋势(应变值为负),正是这一增长趋势产生竖向压应力,使房柱的压应力缓慢向肩柱转移,最终实现地应力平衡;因此,在这个阶段中采场结构基本不会发生压缩变形,即采场结构的压缩变形量≈0。
根据上述分析,采矿过程三个阶段的采场结构压缩变形量之和约等于Hpk1/Ek+Hp(1+k2)/EC+0=Hp(k1/Ek+(1+k2)/EC);但是,地表实际发生的沉降量会小于地下采矿结构的最大压缩变形量,主要原因是受到下沉系数η的影响;下沉系数η是煤炭系统多年统计总结的多种开采条件下的经验系数,其原义是水平煤层在无充填壁式崩落法开采时地表最大下沉值与开采的煤层厚度之比;可以理解为:下沉系数η是地表实际发生最大下沉值与地下能够提供的最大下沉空间高度值之比;金属非金属矿山通过地表沉降测量和地下应力应变的实地监测,也能够求得适合本矿区开采条件的下沉系数η;因此,可以预测得到:地表实际可能发生的最大沉降量=地下采场结构的最大压缩变形量×下沉系数η。
最终结论是:条带式房柱胶结充填采矿法即使采场结构在地压作用下可能不发生破坏,但采场结构会发生压缩变形,并必然可能引发地表沉降;地表实际可能发生的最大沉降量s≈ηHp(k1/Ek+(1+k2)/EC);式中:η是下沉系数,先期参照煤炭系统资料预测,后期用本矿区实测数据验算;H是回采高度,若矿体多中段上下重叠时H是各中段回采高度之和;p是与开采深度相应的竖向地应力,由p=γh计算求得,γ是上覆底层重度,h是开采深度;初期预测令k1=λ,k2=1/λ,λ是矿房与矿柱的宽度之比,后期验证时k1和k2的值能够现场实测得到;Ek、EC分别是矿柱(原矿体)和充填体的变形模量,查阅资料或实测均能够求得;另补充说明:上述结论假定的充填工况条件是密实接顶,若非密实接顶时,地表实际可能发生的最大沉降量=地下采场可能产生的最大虚空高度×下沉系数η;地下采场可能产生的最大虚空高度=地下采场结构的最大压缩变形量+矿房充填空顶高度;因此,非密实接顶充填时,地表实际可能发生的最大沉降量=(地下采场结构的最大压缩变形量+矿房充填空顶高度)×下沉系数η。
附图说明:
图1是采矿过程三个阶段的采场结构示意图,其中图1的⑴剖面表示的是矿柱支撑、矿房回采阶段,标注符号的意义如下:
1——矿体,2——矿柱,3——矿房,4——顶板覆盖层;
图1的⑵剖面表示的是房柱支撑、矿柱回采阶段,标注符号的意义如下:
2——矿柱,5——房柱(矿房3采空充填后转化),4——顶板覆盖层;
图1的⑶剖面表示的是嗣后充填阶段,标注符号的意义如下:
6——肩柱(矿柱2采空充填后转化),5——房柱,4——顶板覆盖层。

Claims (1)

1.条带式房柱胶结充填采矿法地表沉降量的预测方法,主要针对水平—缓倾斜矿体的条带式房柱胶结充填采矿法所引发的的地表沉降量预测,其主要技术特征在于:
条带式房柱胶结充填采矿法的全过程划分为三个阶段,在前两个阶段中,即使地压作用不会造成采场结构破坏,但采场结构在地压作用下会发生压缩变形,并由此引发地表沉降的可能性;地表实际可能发生的最大沉降量s=ηHp(k1/Ek+(1+k2)/EC+d);式中:s是地表实际可能发生的最大沉降量;η是下沉系数,先期参照煤炭系统资料预测,后期用本矿区实测数据验算;H是回采高度,若矿体多中段上下重叠时H是各中段回采高度之和;p是与开采深度相应的竖向地应力;预测计算中令k1=λ,k2=1/λ,λ是矿房与矿柱的宽度之比,验证时期k1和k2的值能够现场实测得到;Ek、EC分别是矿柱(原矿体)和充填体的变形模量,查阅资料或实测均能够求得;d是非密实充填的空顶高度。
CN201811181146.5A 2018-10-11 2018-10-11 条带式房柱胶结充填采矿法地表沉降量的预测方法 Active CN109341651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811181146.5A CN109341651B (zh) 2018-10-11 2018-10-11 条带式房柱胶结充填采矿法地表沉降量的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811181146.5A CN109341651B (zh) 2018-10-11 2018-10-11 条带式房柱胶结充填采矿法地表沉降量的预测方法

Publications (2)

Publication Number Publication Date
CN109341651A true CN109341651A (zh) 2019-02-15
CN109341651B CN109341651B (zh) 2020-10-23

Family

ID=65308660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811181146.5A Active CN109341651B (zh) 2018-10-11 2018-10-11 条带式房柱胶结充填采矿法地表沉降量的预测方法

Country Status (1)

Country Link
CN (1) CN109341651B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113486575A (zh) * 2021-06-21 2021-10-08 武汉科技大学 一种地表变形破坏预测预警方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309059A (en) * 1978-01-11 1982-01-05 Walsh Myles A Mining method
CN103104287A (zh) * 2013-01-28 2013-05-15 山东科技大学 一种条带采空区充填复采方法
CN103902780A (zh) * 2014-04-08 2014-07-02 中国矿业大学 固体充填采煤地表变形预计方法
CN106593524A (zh) * 2017-01-24 2017-04-26 安徽大学 一种固体充填开采地表沉陷动态预计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309059A (en) * 1978-01-11 1982-01-05 Walsh Myles A Mining method
CN103104287A (zh) * 2013-01-28 2013-05-15 山东科技大学 一种条带采空区充填复采方法
CN103902780A (zh) * 2014-04-08 2014-07-02 中国矿业大学 固体充填采煤地表变形预计方法
CN106593524A (zh) * 2017-01-24 2017-04-26 安徽大学 一种固体充填开采地表沉陷动态预计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
杜国庆等: "充填房柱采矿中永久矿柱合理参数的确定 ", 《矿业快报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113486575A (zh) * 2021-06-21 2021-10-08 武汉科技大学 一种地表变形破坏预测预警方法、装置及存储介质

Also Published As

Publication number Publication date
CN109341651B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
Rybak et al. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing
Mazaira et al. Intense rockburst impacts in deep underground construction and their prevention
Miao et al. The height of fractured water-conducting zone in undermined rock strata
Emad et al. Effect of blast-induced vibrations on fill failure in vertical block mining with delayed backfill
Sainsbury et al. Investigation of caving induced subsidence at the abandoned Grace Mine
Huang et al. Application of concrete‐filled steel tubular columns in gob‐side entry retaining under thick and hard roof stratum: a case study
Gerrard Rock bolting in theory: A keynote lecture
Wang et al. Analysis of the damage mechanism of strainbursts by a global-local modeling approach
Xu et al. Use of an artificial crown pillar in transition from open pit to underground mining
CN103758519A (zh) 厚大矿床阶段嗣后充填法采矿逐段优化设计与实施方法
Dehghan et al. 3-D modeling of rock burst in pillar No. 19 of Fetr6 chromite mine
Ulusay Rock mechanics and rock engineering: From the past to the future
Zhao et al. Ground control monitoring in backfilled strip mining under the metropolitan district: case study
Yang et al. Failure mechanism and bulking characteristic of goaf roof in no-pillar mining by roof cutting technology
CN109341651A (zh) 条带式房柱胶结充填采矿法地表沉降量的预测方法
Jeromel et al. An analysis of the geomechanical processes in coal mining using the Velenje mining method
Manekar et al. Prediction of subsidence parameters & 3-D analysis at balaghat underground manganese mine of MOIL limited, India
González-Nicieza et al. Analysis of support by hydraulic props in a longwall working
Wang et al. Numerical investigation on safe mining of residual pillar in goaf: A case study of Panlong lead–zinc mine
CHENG et al. Power caverns of Mingtan pumped storage project, Taiwan
Zhuo et al. Mining hazards to the safety of segment lining for tunnel boring machine inclined tunnels
Wang et al. Studies on ground settlement and pre-arching stress of pre-cutting tunnelling method
Ercelebi et al. Surface settlement prediction for Istanbul metro tunnels via 3D FE and empirical methods
Oliveira et al. Revisiting the applicability of voussoir beam theory for tunnel design in Sydney
Guo et al. Study of “3-step mining” subsidence control in coal mining under buildings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant