CN109339760A - 一种水平井一段多簇压裂裂缝条数诊断方法 - Google Patents

一种水平井一段多簇压裂裂缝条数诊断方法 Download PDF

Info

Publication number
CN109339760A
CN109339760A CN201811305992.3A CN201811305992A CN109339760A CN 109339760 A CN109339760 A CN 109339760A CN 201811305992 A CN201811305992 A CN 201811305992A CN 109339760 A CN109339760 A CN 109339760A
Authority
CN
China
Prior art keywords
pressure
fracture
section
cluster
fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811305992.3A
Other languages
English (en)
Other versions
CN109339760B (zh
Inventor
张冲
夏富国
高春华
高志华
王娟娟
宋宪实
郭显赋
张颖超
杨靖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Original Assignee
China Petroleum and Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp filed Critical China Petroleum and Chemical Corp
Priority to CN201811305992.3A priority Critical patent/CN109339760B/zh
Publication of CN109339760A publication Critical patent/CN109339760A/zh
Application granted granted Critical
Publication of CN109339760B publication Critical patent/CN109339760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种水平井一段多簇压裂裂缝条数诊断方法,其方法为:第一步:收集区块内与水平井同层的储层发育特征相同压裂井的基础资料;第二步:建立基于测井数据的破裂压力计算模型;第三步:利用第二步获得的破裂压力预测模型对一段多簇的压裂点进行破裂压力预测;第四步:通过测试压裂的压降数据分析判断裂缝的闭合时间、闭合压力及裂缝滤失特征信息;第五步:利用PT或Stimplan压裂软件,对测试压裂采集到的施工数据进行G函数分析,第六步:判断一段多簇压裂的裂缝开启及延伸情况,便于指导其余压裂段的设计优化。有益效果:能够实时、有效的诊断水平井一段多簇压裂压开裂缝条数,确保一段多簇的有效性,保障水平井改造效果。

Description

一种水平井一段多簇压裂裂缝条数诊断方法
技术领域
本发明涉及一种压裂裂缝条数诊断方法,特别涉及一种水平井一段多簇压裂裂缝条数诊断方法。
背景技术
目前,在致密油气、页岩气等非常规气藏开发过程中,水平井压裂是必需的投产措施。水平井分段压裂在增加可采储量,提高单井产能及稳产时间具有重要意义。随着石油装备技术的发展,水平井分段压裂工艺也从最初的一段一簇压裂逐渐发展为一段两簇、一段多簇。一段多簇压裂能保障储层改造体积的前提下有效的缩减压裂段数,减少井下工具的应用数量,缩短施工周期,具有显著的经济效益。但是在实际的压裂过程中,一段多簇压裂是不是每簇射孔段都形成了裂缝或者一段多簇压裂最终形成了几条裂缝,是很难实时、准确确定的。当前获取一段多簇压裂形成的裂缝条数的主要手段是裂缝检测,常规的方法是采用井下微地震。一方面微地震监测费用昂贵,不可能每口井都进行监测,另一方面,监测获取的数据需要经过一段时间的处理,不能实时指导现场的施工,这些都限制了裂缝监测工艺的推广应用。
发明内容
本发明的目的是为了实时、准确确定一段多簇压裂最终形成裂缝数量而提供的一种水平井一段多簇压裂裂缝条数诊断方法。
本发明提供的水平井一段多簇压裂裂缝条数诊断方法,其方法包括如下步骤:
第一步:收集区块内与水平井同层的储层发育特征相同压裂井的基础资料,获取单层/单簇压裂的施工压力数据、地层破裂压力、裂缝延伸压力、施工排量和净压力值相关参数;
第二步:选取区块内与水平井同层的储层发育特征相同的相邻直井/导眼井,建立基于测井数据的破裂压力计算模型,然后利用区块内同层位的岩石力学及地应力实验结果及同层位已实施压裂施工数据校正模型,形成适应该区块特点的破裂压力预测模型;
第三步:利用第二步获得的破裂压力预测模型对一段多簇的压裂点进行破裂压力预测,获取各压裂点的破裂压力,利用收集到的前期压裂施工资料,根据限流压裂原理,即裂缝延伸压力+净压力>地层破裂压力的新裂缝开启条件,综合确定破裂压力差值界限,若某个压裂点的破裂压力小于待压裂点中最小破裂压力值+破裂压力差值界限,则该点在多簇压裂时,裂缝能开启;若某个压裂点的破裂压力大于最小破裂压力值+破裂压力差值界限,则多簇压裂时,该点不能产生裂缝,通过破裂压力的计算,从力学角度甑选压裂点,确保一段多簇的压裂点均能压开;
第四步:对水平井的各段进行小型测试压裂,测试压裂包括阶梯升、降排量和停泵测压,即在主压裂施工前,采用压裂泵车以不同排量将一定量的液体注入地层,液体为滑溜水或压裂液,使地层产生裂缝,停泵后监测压力60分钟,通过测试压裂的压降数据分析判断裂缝的闭合时间、闭合压力及裂缝滤失特征信息;
第五步:利用PT或Stimplan压裂软件,对测试压裂采集到的施工数据进行G函数分析,G函数导数分析要求一个井底压力、压力的导数,即dP/dG,压力的"叠加"导数,即GdP/dG,前述导数对G函数的曲线图,使用导数和叠加导数曲线的特征形态来识别滤失的类型,利用一段多簇产生多条裂缝,每条裂缝的滤失及闭合时间的差异,测试分析获得的G函数曲线会在正常滤失特征的外推直线上方出现"隆起"的多裂缝曲线特性,通过"隆起"数量综合来判断多裂缝开启条数,同时对比步骤一中单层/单簇压裂后的压降分析获得的G函数,进一步确认一段多簇压裂测试是否存在多裂缝及多裂缝的数量,若小型压裂测试分析未获得多裂缝延伸特征,则在主裂缝施工前进行酸洗射孔段或者投暂堵球及优化主压裂施工排量的方式实施干预调整,确保主压裂施工多裂缝延伸;
第六步:一段多簇主压裂施工结束后,监测主压裂停泵压降60分钟,利用PT或Stimplan压裂软件,对主压裂采集到的压降数据进行G函数分析,根据G函数反应的滤失特征,判断一段多簇压裂的裂缝开启及延伸情况,便于指导其余压裂段的设计优化。
第五步中的PT软件压裂软件是由美国尖端技术公司开发,Stimplan压裂软件是由美国NSI技术公司开发。
第一步中压裂井的基础资料包括有测录井资料、岩性物性、岩石力学及地应力数据和压裂施工数据资料。
第二步中破裂压力计算模型,其计算模型如下:
即:
式中Pf--地层破裂压力,MPa
PP--地层孔隙压力,MPa
μ--泊松比,无量纲
S--上覆岩层压力,MPa
St--岩石的抗张强度,MPa
K--构造应力函数,K=α-3β,其中α、β分别为最大、最小水平主应力方向的构造系数,无量纲;
模型中的地层孔隙压力PP由地层压力系数与储层深度确定,上覆岩层压力S可通过密度测井曲线求得,岩石的抗张强度St通过岩石力学实验中的巴西劈裂法获取,构造系数α、β通过地应力实验获得,岩石泊松比μ通过测井资料里的纵、横波速确定,但需要结合岩石力学实验结果进行校正,转化为静态泊松比。
本发明的有益效果:
本发明提供的水平井一段多簇压裂裂缝条数诊断方法,能够实时、有效的诊断水平井一段多簇压裂压开裂缝条数,指导一段多簇压裂的设计优化,确保一段多簇的有效性,保障水平井改造效果。
附图说明
图1为本发明所述诊断方法的流程图。
图2为单裂缝延伸时的标准化G函数滤失特性曲线示意图。
图3为多裂缝延伸时G函数滤失特性曲线示意图。
具体实施方式
请参阅图1至图3所示:
本发明提供的水平井一段多簇压裂裂缝条数诊断方法,其具体方法如下:
本发明提供的一种水平井一段多簇压裂裂缝条数诊断方法,其方法包括如下步骤:
第一步:收集区块内与水平井同层的储层发育特征相同压裂井的基础资料,获取单层/单簇压裂的施工压力数据、地层破裂压力、裂缝延伸压力、施工排量和净压力值相关参数;
第二步:选取区块内与水平井同层的储层发育特征相同的相邻直井/导眼井,建立基于测井数据的破裂压力计算模型,然后利用区块内同层位的岩石力学及地应力实验结果及同层位已实施压裂施工数据校正模型,形成适应该区块特点的破裂压力预测模型;
第三步:利用第二步获得的破裂压力预测模型对一段多簇的压裂点进行破裂压力预测,获取各压裂点的破裂压力,利用收集到的前期压裂施工资料,根据限流压裂原理,即裂缝延伸压力+净压力>地层破裂压力的新裂缝开启条件,综合确定破裂压力差值界限,若某个压裂点的破裂压力小于待压裂点中最小破裂压力值+破裂压力差值界限,则该点在多簇压裂时,裂缝能开启;若某个压裂点的破裂压力大于最小破裂压力值+破裂压力差值界限,则多簇压裂时,该点不能产生裂缝,通过破裂压力的计算,从力学角度甑选压裂点,确保一段多簇的压裂点均能压开;
第四步:对水平井的各段进行小型测试压裂,测试压裂包括阶梯升、降排量和停泵测压,即在主压裂施工前,采用压裂泵车以不同排量将一定量的液体注入地层,液体为滑溜水或压裂液,使地层产生裂缝,停泵后监测压力60分钟,通过测试压裂的压降数据分析判断裂缝的闭合时间、闭合压力及裂缝滤失特征信息;
第五步:用美国尖端技术公司开发的PT软件或美国NSI技术公司开发的Stimplan压裂软件,对测试压裂采集到的施工数据进行G函数分析,G函数导数分析要求一个井底压力、压力的导数,即dP/dG,压力的"叠加"导数,即GdP/dG,前述导数对G函数的曲线图,使用导数和叠加导数曲线的特征形态来识别滤失的类型,利用一段多簇产生多条裂缝,每条裂缝的滤失及闭合时间的差异,测试分析获得的G函数曲线会在正常滤失特征的外推直线上方出现"隆起"的多裂缝曲线特性,通过"隆起"数量综合来判断多裂缝开启条数,同时对比步骤一中单层/单簇压裂后的压降分析获得的G函数,进一步确认一段多簇压裂测试是否存在多裂缝及多裂缝的数量,若小型压裂测试分析未获得多裂缝延伸特征,则在主裂缝施工前进行酸洗射孔段或者投暂堵球及优化主压裂施工排量的方式实施干预调整,确保主压裂施工多裂缝延伸;
第六步:一段多簇主压裂施工结束后,监测主压裂停泵压降60分钟,利用PT或Stimplan压裂软件,对主压裂采集到的压降数据进行G函数分析,根据G函数反应的滤失特征,判断一段多簇压裂的裂缝开启及延伸情况,便于指导其余压裂段的设计优化。
第一步中压裂井的基础资料包括有测录井资料、岩性物性、岩石力学及地应力数据和压裂施工数据资料。
第二步中破裂压力计算模型,其计算模型如下:
即:
式中Pf--地层破裂压力,MPa
PP--地层孔隙压力,MPa
μ--泊松比,无量纲
S--上覆岩层压力,MPa
St--岩石的抗张强度,MPa
K--构造应力函数,K=α-3β,其中α、β分别为最大、最小水平主应力方向的构造系数,无量纲;
模型中的地层孔隙压力PP由地层压力系数与储层深度确定,上覆岩层压力S可通过密度测井曲线求得,岩石的抗张强度St通过岩石力学实验中的巴西劈裂法获取,构造系数α、β通过地应力实验获得,岩石泊松比μ通过测井资料里的纵、横波速确定,但需要结合岩石力学实验结果进行校正,转化为静态泊松比。

Claims (3)

1.一种水平井一段多簇压裂裂缝条数诊断方法,其特征在于:其方法包括如下步骤:
第一步:收集区块内与水平井同层的储层发育特征相同压裂井的基础资料,获取单层/单簇压裂的施工压力数据、地层破裂压力、裂缝延伸压力、施工排量和净压力值相关参数;
第二步:选取区块内与水平井同层的储层发育特征相同的相邻直井/导眼井,建立基于测井数据的破裂压力计算模型,然后利用区块内同层位的岩石力学及地应力实验结果及同层位已实施压裂施工数据校正模型,形成适应该区块特点的破裂压力预测模型;
第三步:利用第二步获得的破裂压力预测模型对一段多簇的压裂点进行破裂压力预测,获取各压裂点的破裂压力,利用收集到的前期压裂施工资料,根据限流压裂原理,即裂缝延伸压力+净压力>地层破裂压力的新裂缝开启条件,综合确定破裂压力差值界限,若某个压裂点的破裂压力小于待压裂点中最小破裂压力值+破裂压力差值界限,则该点在多簇压裂时,裂缝能开启;若某个压裂点的破裂压力大于最小破裂压力值+破裂压力差值界限,则多簇压裂时,该点不能产生裂缝,通过破裂压力的计算,从力学角度甑选压裂点,确保一段多簇的压裂点均能压开;
第四步:对水平井的各段进行小型测试压裂,测试压裂包括阶梯升、降排量和停泵测压,即在主压裂施工前,采用压裂泵车以不同排量将一定量的液体注入地层,液体为滑溜水或压裂液,使地层产生裂缝,停泵后监测压力60分钟,通过测试压裂的压降数据分析判断裂缝的闭合时间、闭合压力及裂缝滤失特征信息;
第五步:利用PT或Stimplan压裂软件,对测试压裂采集到的施工数据进行G函数分析,G函数导数分析要求一个井底压力、压力的导数,即dP/dG,压力的"叠加"导数,即GdP/dG,前述导数对G函数的曲线图,使用导数和叠加导数曲线的特征形态来识别滤失的类型,利用一段多簇产生多条裂缝,每条裂缝的滤失及闭合时间的差异,测试分析获得的G函数曲线会在正常滤失特征的外推直线上方出现"隆起"的多裂缝曲线特性,通过"隆起"数量综合来判断多裂缝开启条数,同时对比步骤一中单层/单簇压裂后的压降分析获得的G函数,进一步确认一段多簇压裂测试是否存在多裂缝及多裂缝的数量,若小型压裂测试分析未获得多裂缝延伸特征,则在主裂缝施工前进行酸洗射孔段或者投暂堵球及优化主压裂施工排量的方式实施干预调整,确保主压裂施工多裂缝延伸;
第六步:一段多簇主压裂施工结束后,监测主压裂停泵压降60分钟,利用PT或Stimplan压裂软件,对主压裂采集到的压降数据进行G函数分析,根据G函数反应的滤失特征,判断一段多簇压裂的裂缝开启及延伸情况,便于指导其余压裂段的设计优化。
2.根据权利要求1所述的一种水平井一段多簇压裂裂缝条数诊断方法,其特征在于:所述的第一步中压裂井的基础资料包括有测录井资料、岩性物性、岩石力学及地应力数据和压裂施工数据资料。
3.根据权利要求1所述的一种水平井一段多簇压裂裂缝条数诊断方法,其特征在于:所述的第二步中破裂压力计算模型,其计算模型如下:
即:
式中Pf--地层破裂压力,MPa
PP--地层孔隙压力,MPa
μ--泊松比,无量纲
S--上覆岩层压力,MPa
St--岩石的抗张强度,MPa
K--构造应力函数,K=α-3β,其中α、β分别为最大、最小水平主应力方向的构造系数,无量纲;
模型中的地层孔隙压力PP由地层压力系数与储层深度确定,上覆岩层压力S可通过密度测井曲线求得,岩石的抗张强度St通过岩石力学实验中的巴西劈裂法获取,构造系数α、β通过地应力实验获得,岩石泊松比μ通过测井资料里的纵、横波速确定,但需要结合岩石力学实验结果进行校正,转化为静态泊松比。
CN201811305992.3A 2018-11-05 2018-11-05 一种水平井一段多簇压裂裂缝条数诊断方法 Active CN109339760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811305992.3A CN109339760B (zh) 2018-11-05 2018-11-05 一种水平井一段多簇压裂裂缝条数诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811305992.3A CN109339760B (zh) 2018-11-05 2018-11-05 一种水平井一段多簇压裂裂缝条数诊断方法

Publications (2)

Publication Number Publication Date
CN109339760A true CN109339760A (zh) 2019-02-15
CN109339760B CN109339760B (zh) 2021-08-31

Family

ID=65313482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811305992.3A Active CN109339760B (zh) 2018-11-05 2018-11-05 一种水平井一段多簇压裂裂缝条数诊断方法

Country Status (1)

Country Link
CN (1) CN109339760B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113435059A (zh) * 2021-07-13 2021-09-24 中国石油大学(北京) 模型建立方法、裂缝起裂事件诊断方法和装置
CN113803042A (zh) * 2020-06-12 2021-12-17 中国石油化工股份有限公司 一种单段单簇密集压裂方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030079875A1 (en) * 2001-08-03 2003-05-01 Xiaowei Weng Fracture closure pressure determination
US20110162849A1 (en) * 2005-01-08 2011-07-07 Halliburton Energy Services, Inc. Method and System for Determining Formation Properties Based on Fracture Treatment
CN102606126A (zh) * 2012-03-27 2012-07-25 东方宝麟科技发展(北京)有限公司 裂缝性储层非平面网络裂缝压裂控制方法
CN103437746A (zh) * 2013-06-28 2013-12-11 东方宝麟科技发展(北京)有限公司 一种水平井多段段内多缝体积压裂方法
CN103577886A (zh) * 2012-08-06 2014-02-12 中国石油化工股份有限公司 一种低渗气藏水平井分段压裂产能预测方法
CN106979000A (zh) * 2017-05-06 2017-07-25 东北石油大学 水平井分段多簇压裂各射孔簇破裂压力计算方法
CN107194101A (zh) * 2017-06-05 2017-09-22 中国石油天然气股份有限公司 水平井压裂裂缝穿层层数诊断方法
CN107229989A (zh) * 2016-03-25 2017-10-03 中国石油化工股份有限公司 一种水平井分段压裂簇射孔方案优化方法
CN107965305A (zh) * 2016-10-20 2018-04-27 中国石油化工股份有限公司 一种分层重复压裂方法
CN108442922A (zh) * 2018-03-26 2018-08-24 刘敬寿 一种水平井最优钻井轨迹预测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030079875A1 (en) * 2001-08-03 2003-05-01 Xiaowei Weng Fracture closure pressure determination
US20110162849A1 (en) * 2005-01-08 2011-07-07 Halliburton Energy Services, Inc. Method and System for Determining Formation Properties Based on Fracture Treatment
CN102606126A (zh) * 2012-03-27 2012-07-25 东方宝麟科技发展(北京)有限公司 裂缝性储层非平面网络裂缝压裂控制方法
CN103577886A (zh) * 2012-08-06 2014-02-12 中国石油化工股份有限公司 一种低渗气藏水平井分段压裂产能预测方法
CN103437746A (zh) * 2013-06-28 2013-12-11 东方宝麟科技发展(北京)有限公司 一种水平井多段段内多缝体积压裂方法
CN107229989A (zh) * 2016-03-25 2017-10-03 中国石油化工股份有限公司 一种水平井分段压裂簇射孔方案优化方法
CN107965305A (zh) * 2016-10-20 2018-04-27 中国石油化工股份有限公司 一种分层重复压裂方法
CN106979000A (zh) * 2017-05-06 2017-07-25 东北石油大学 水平井分段多簇压裂各射孔簇破裂压力计算方法
CN107194101A (zh) * 2017-06-05 2017-09-22 中国石油天然气股份有限公司 水平井压裂裂缝穿层层数诊断方法
CN108442922A (zh) * 2018-03-26 2018-08-24 刘敬寿 一种水平井最优钻井轨迹预测方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
MALEKAN, M等: "Well-conditioning global-local analysis using stable generalized/extended finite element method for linear elastic fracture mechanics", 《COMPUTATIONAL MECHANICS 》 *
WU, YH等: "Propagation mechanism study of hydraulic fracture in low permeability glutenite reservoir", 《EXPLORATION AND PROCESSING OF MINERAL RESOURCES》 *
万仁溥等: "《采油技术手册(修订本) 第九分册 压裂酸化工艺技术》", 31 January 1998 *
张玮: "裂缝性油藏岩石力学特性及其对水力压裂起裂的影响研究", 《中国优秀硕士学位论文全文数据库工程科技Ι辑》 *
李扬等: "水平井分段多簇限流压裂数值模拟", 《断块油气田》 *
李海波等: "岩石冲击开裂裂缝条数预测模型的建立与验证", 《安石油大学学报(自然科学版)》 *
苟波等: "基于FracproPT软件的缝高延伸因素模拟分析", 《天然气勘探与开发》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113803042A (zh) * 2020-06-12 2021-12-17 中国石油化工股份有限公司 一种单段单簇密集压裂方法及系统
CN113435059A (zh) * 2021-07-13 2021-09-24 中国石油大学(北京) 模型建立方法、裂缝起裂事件诊断方法和装置
CN113435059B (zh) * 2021-07-13 2022-09-27 中国石油大学(北京) 模型建立方法、裂缝起裂事件诊断方法和装置

Also Published As

Publication number Publication date
CN109339760B (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
US10436027B2 (en) Method of geometric evaluation of hydraulic fractures
Wang What factors control shale-gas production and production-decline trend in fractured systems: a comprehensive analysis and investigation
CN106295095B (zh) 基于常规测井资料预测低渗透砂岩储层产能的方法
Addis et al. A comparison of leak-off test and extended leak-off test data for stress estimation
WO2021119300A1 (en) Spectral analysis, machine learning, and frac score assignment to acoustic signatures of fracking events
CN108518218B (zh) 一种非常规油气藏多段压裂水平井单井动态储量确定方法
CN104899411B (zh) 一种储层产能预测模型建立方法和系统
CN111794740B (zh) 一种适用在缝洞型碳酸盐岩油藏动态储量计算的方法
CN105931125B (zh) 一种致密油分段多簇体积压裂水平井产量预测方法
Zhang et al. An evaluation method of volume fracturing effects for vertical wells in low permeability reservoirs
CN106522928A (zh) 一种酸化压裂后停泵测井口压降不稳定试井方法
US20190010789A1 (en) Method to determine a location for placing a well within a target reservoir
CN110043254A (zh) 一种基于电缆地层测试资料地层有效渗透率的获取方法
CN109339760A (zh) 一种水平井一段多簇压裂裂缝条数诊断方法
CN109555515A (zh) 地层坍塌压力确定方法和装置
CN105678082B (zh) 一种识别油气井酸压沟通储层类型的双压降法
CN109426689B (zh) 水平井压裂裂缝的评价方法及系统
CN112699554A (zh) 一种基于压裂示踪约束的致密油藏水平井压后分段试井分析方法
Singh et al. A comprehensive review of fracture-driven interaction in unconventional oil and gas plays: Characterization, real-time diagnosis, and impact on production
Bazan et al. Innovative analysis of treatment well data determines cluster efficiency, assesses fracture complexity, and provides fracture geometry in unconventional reservoirs
CN111734375A (zh) 确定压裂层段射孔簇开启顺序及开启效率的方法
Zhao et al. Diagnosis model of shale gas fracture network fracturing operation pressure curves
CN105257288A (zh) 基于注入压降试井技术确定致密储层原始地层压力的方法
Mehana et al. Diagnostic fracture injection test (DFIT)
CN111963161B (zh) 确定隐性不正常油井的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant