CN109338288A - 一种燃气轮机叶片叶尖防护涂层及其制备方法和应用 - Google Patents

一种燃气轮机叶片叶尖防护涂层及其制备方法和应用 Download PDF

Info

Publication number
CN109338288A
CN109338288A CN201811079512.6A CN201811079512A CN109338288A CN 109338288 A CN109338288 A CN 109338288A CN 201811079512 A CN201811079512 A CN 201811079512A CN 109338288 A CN109338288 A CN 109338288A
Authority
CN
China
Prior art keywords
protective coating
blade tip
gas turbine
turbine blades
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811079512.6A
Other languages
English (en)
Other versions
CN109338288B (zh
Inventor
孙超
刘燚栋
刘溅洪
裴志亮
宫骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201811079512.6A priority Critical patent/CN109338288B/zh
Publication of CN109338288A publication Critical patent/CN109338288A/zh
Application granted granted Critical
Publication of CN109338288B publication Critical patent/CN109338288B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • C23C28/022Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer with at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明涉及金属材料表面沉积防护涂层技术领域,具体涉及一种燃气轮机叶片叶尖防护涂层及其制备方法和应用。采用电镀工艺与气相沉积技术相结合的工艺,在转子叶片叶尖制备出防护涂层。首先利用电弧离子镀在基体上沉积一层NiCrAlYSi粘结层,然后通过复合电镀法均匀在粘结层上固定一层硬质颗粒,电镀加固后通过气相渗铝的工艺方法生长外延层包裹硬质颗粒;燃气轮机叶片叶尖防护涂层包括连接基体的NiCrAlYSi粘结层、覆盖在粘结层上面的铝化物外延层和均匀镶嵌在外延层中的cBN硬质颗粒。该防护涂层呈现优异的耐磨性能、膜‑基结合强度和高温抗氧化等性能,可显著改善燃气涡轮发动机的封严性能,对于耐磨封严涂层的理论研究和实际应用具有重要意义。

Description

一种燃气轮机叶片叶尖防护涂层及其制备方法和应用
技术领域:
本发明涉及金属材料表面沉积防护涂层技术领域,具体涉及一种燃气轮机叶片叶尖防护涂层及其制备方法和应用。
背景技术:
随着燃气涡轮发动机的推力、推重比的提高,发动机的进口温度和燃气压力逐渐增加,燃油效率的要求逐渐增高,这就需要发动机拥有良好的气路封闭性能,以此保证燃油的最大利用率。通常,在燃气涡轮发动机运行期间,期望在转子叶片的尖端和相应的密封件之间保持最小间隙,以减少气体的径向流失。数据显示,当两者间隙增加125μm,发动机油耗将增加0.5%;当叶尖间隙降低0.0254mm,出口处燃气温度将会下降1℃。但是,当间隙过小时,转子部件和静子部件将会接触,进而产生刮擦,轻则磨损叶片、降低效率,重则损坏叶片。目前,较为常用的手段是在机匣部位喷涂可磨耗封严涂层,发动机工作时,叶尖将切入可磨耗封严涂层中,以减小叶片和机匣间的间隙。
由于燃气轮机叶片在高温下需要承受的应力和温度均较高,而且应力和温度的变化比较剧烈和频繁,与此同时,还存在着磨损和腐蚀的问题,尤其叶尖部分的服役环境更加恶劣,导致叶片尤其是叶尖发生磨损与氧化腐蚀等多种形式的失效,致使其使用寿命大幅缩减,在叶尖施加一层防护涂层是在高温腐蚀和磨损的环境下防止叶尖损伤的有效途径之一。
因此,在高速旋转的叶片和机匣部件之间建立封严涂层体系是实现提高叶片使用寿命、提高发动机效率、降低油耗和减少成本这一目标的主要措施。目前,国内外对于可磨耗封严涂层进行深入的研究,并且成果显著,但是对于叶尖部位的防护涂层报道较少。尤其国内对于发动机叶尖涂层的研究起步较晚,相应的研究成果和技术工艺尚不成熟,如:涂层的结构设计、制备工艺、性能测试等。
发明内容
在燃气轮机叶片叶尖制备封严防护涂层是增强叶片使用寿命、提高发动机效率、降低油耗和减少成本的有效途径。本发明的目的在于提供一种燃气轮机叶片叶尖防护涂层及其制备方法和应用,使用电镀和气相沉积技术相结合的方法制备出燃气轮机叶片叶尖防护涂层,以提高叶片使用寿命、提高发动机效率、降低油耗和减少成本。
本发明的技术方案是:
一种燃气轮机叶片叶尖防护涂层,首先利用电弧离子镀在基体上沉积一层NiCrAlYSi粘结层,然后通过复合电镀法均匀在粘结层上固定一层硬质颗粒,电镀加固后通过气相渗铝的工艺方法生长外延层包裹硬质颗粒;燃气轮机叶片叶尖防护涂层包括连接基体的NiCrAlYSi粘结层、覆盖在粘结层上面的铝化物外延层和均匀镶嵌在外延层中的cBN硬质颗粒。
所述的燃气轮机叶片叶尖防护涂层,基体为镍基高温合金。
所述的燃气轮机叶片叶尖防护涂层,NiCrAlYSi粘结层包括:17~20wt.%Cr,8~10wt.%Al,0.1~1wt%Y,0.1~1wt%Si,余量为Ni;cBN硬质颗粒粒径范围为80~ 150μm;铝化物外延层包括:1~7wt.%Cr,28~35wt.%Al,余量为Ni。
所述的燃气轮机叶片叶尖防护涂层,防护涂层在900℃以下的温度区间具有较好的抗氧化性能。
所述的燃气轮机叶片叶尖防护涂层,防护涂层的结合力采用拉伸试验的方法进行测试,镀层的结合力范围为45~55MPa。
所述的燃气轮机叶片叶尖防护涂层,防护涂层在常温下的摩擦系数为0.4~0.5,磨损率低,耐磨性能优异。
所述的燃气轮机叶片叶尖防护涂层的制备方法,该方法具体包括如下步骤:
(1)基体预处理过程:沉积前需对高温合金基体进行预处理,具体为:分别用240#、400#、600#、800#砂纸对基体进行打磨,然后对基体表面进行喷砂处理,而后先用丙酮超声清洗10~20min,再用酒精漂洗后烘干;
(2)采用电弧离子镀技术制备NiCrAlYSi粘结层:在预处理后的样品上沉积NiCrAlYSi粘结层,沉积时间为5~8h,粘结层厚度为30~40μm,所用NiCrAlYSi靶材的成分为:Cr 18.11wt.%,Al 11.5wt.%,Si 0.9wt.%,Y 0.6wt.%,余量为Ni;沉积工艺参数为:弧电压18~20V,弧电流50~60A,直流脉冲负偏压230~250V,占空比50%,氩气分压(3.0~3.3)×101Pa;
(3)采用复合电镀技术固定cBN硬质颗粒,工艺参数为:将镀有粘结层的样品放入18~22vol%的盐酸中活化30~60s,拿出蒸馏水冲洗后放入瓦特液中预镀一层1~ 5μm的Ni活化层,电流密度0.5~1A/dm2,时间3~5min;然后在试样表面均匀布一层cBN硬质颗粒,放入瓦特液中进行复合电镀,电镀槽温度35~50℃,电流密度为 0.5~2A/dm2,时间0.1~1h;待指定时间后拿出试样,拂去表层未被固定的cBN硬质颗粒,然后将样品放入瓦特液中加固,电镀槽温度35~50℃,电流密度为0.5~2A/dm2,时间2~5h,样品为阴极,阳极为纯镍板;
(4)外延层制备:将80~100g的Fe-34wt.%Al粉与0.1~1g氟化铝混合均匀并装入干净坩埚中,同时将试样悬挂于渗剂上方的坩埚内,然后用坩埚盖密封;将密封的坩埚放入化学气相渗炉内,关闭炉腔;采用机械泵抽真空至100Pa以下,然后向炉腔内充入Ar至大气压后,再开启机械泵抽至100Pa以下后,再次向炉腔内充Ar至 0.1atm;随后开启加热部分,以8~10℃/min升温速率升至1050~1080℃并保温4~ 6h,随炉冷却。
所述的燃气轮机叶片叶尖防护涂层的制备方法,步骤(2)、步骤(3)和步骤(4) 中,根据所需涂层厚度设定沉积时间。
所述的燃气轮机叶片叶尖防护涂层的制备方法,步骤(3)中,瓦特液的组成为:硫酸镍240~250g/L,氯化镍35~50g/L,硼酸35~40g/L,糖精钠0.4~0.6g/L,十二烷基硫酸钠0.1~0.2g/L,余量为水。
所述的燃气轮机叶片叶尖防护涂层的应用,燃气轮机叶片叶尖防护涂层应用于燃气轮机叶片叶尖的表面防护,并且用于改善燃气涡轮发动机的封严性能。
本发明具有以下优点及有益效果:
1.本发明所制备的燃气轮机叶片叶尖防护涂层,涂层与基体的结合良好,具有优异的耐磨性能,在900℃以下的温度区间具有较好的抗氧化性能。
2.本发明通过调节电镀层的厚度和渗铝时间,可控制粘结层和外延层的化学成分和厚度比,调控立方氮化硼(cBN)硬质颗粒裸露与包覆部位的比例来达到不同的摩擦、抗氧化等性能。
3.本发明所涉及的燃气轮机叶片叶尖防护涂层可应用于航空发动机叶片叶尖的表面防护,并能有效延长其使用寿命、提高发动机效率、降低油耗和减少成本。
4.本发明所涉及的这种防护涂层被成功合成,可显著改善燃气涡轮发动机的封严性能,对于耐磨封严涂层的理论研究和实际应用具有重要意义。
附图说明:
图1(a)-图1(b) 为燃气轮机叶片叶尖防护涂层渗铝前后的结构示意图。其中,图1(a)为渗铝前,图1(b) 为渗铝后。
图2(a)-图2(b)为燃气轮机叶片叶尖防护涂层的表面、截面形貌图。其中,图2(a)为表面,图2(b) 为截面。
图3为燃气轮机叶片叶尖防护涂层的X射线衍射图谱。图中,横坐标2θ代表衍射角(°),纵坐标Intensity代表强度(a.u.)。
图4为燃气轮机叶片叶尖防护涂层截面主要元素分布情况图。图中,横坐标Distance from Surface代表至表面距离(μm),纵坐标Concentration代表元素含量(wt.%)。
图5为燃气轮机叶片叶尖防护涂层的摩擦系数随时间变化曲线图。图中,横坐标Time代表时间(min),纵坐标Friction coefficient代表摩擦系数。
图6为燃气轮机叶片叶尖防护涂层的恒温氧化动力学曲线图。图中,横坐标Oxidation time代表氧化时间(h),纵坐标Mass change代表质量变化(mg/cm2)。
具体实施方式:
下面通过实施例和附图对本发明做进一步详细说明。
实施例1:
本实施例是在镍基单晶高温合金基体上制备所述的叶尖防护涂层,所用镍基高温合金DD413成分为(wt.%):Cr 12.0%,Co 9.0%,W 3.7%,Mo 1.9%,Ta 5.0%,Al 3.6%,Ti 4.0%,C 0.01%,余量为Ni。沉积前,镍基单晶高温合金基体表面先经过研磨、喷砂、超声清洗、干燥等预处理,具体为:分别用240#、400#、600#、800#砂纸对基体进行打磨,然后对基体表面进行喷砂处理,而后先用丙酮超声清洗15min,再用酒精漂洗后烘干。
(一)电弧离子镀制备NiCrAlYSi粘结层:
在预处理后的样品上沉积NiCrAlYSi粘结层,沉积时间为5h,粘结层厚度为 40μm,所用NiCrAlYSi靶材的成分为:Cr 18.11%,Al 11.5%,Si 0.9%,Y 0.6%,余量为Ni。沉积工艺参数为:弧电压20V,弧电流53A,直流脉冲负偏压240V,占空比50%,氩气分压3.2×101Pa。
(二)采用复合电镀法固定cBN颗粒:
将上述沉积有粘结层的基体先在20vol%(体积浓度)的盐酸中活化40s,然后将其放入瓦特液中预镀一层厚约1μm的Ni活化层。预镀Ni具体的工艺参数为:阴阳极距为3cm,电流密度为2A/dm2,时间为3min,镀液温度为45℃,样品作为阴极,阳极为纯镍靶。
然后在试样表面均匀布一层cBN颗粒放入瓦特液中进行复合电镀,其中cBN颗粒粒径为90~110μm,具体的加固工艺参数为:阴阳极距3cm,电流密度为1A/dm2,时间1h,镀液温度为45℃。
待指定时间后拿出试样,拂去试样表面未被固定的cBN颗粒,然后将样品放入瓦特液中加厚,具体的加厚工艺参数为:阴阳极距3cm,电流密度为1A/dm2,时间为 2.5h,镀液温度为45℃,样品作为阴极,阳极为纯镍靶。
上述瓦特液成分为:硫酸镍240g/L,氯化镍35g/L,硼酸40g/L,糖精钠0.6g/L,十二烷基硫酸钠0.2g/L,余量为水。
(三)采用气相渗铝法制备外延层:
将100g的Fe-34wt.%Al粉与1g氟化铝混合均匀并装入干净坩埚中,同时将上述制备好的样品悬挂于渗剂上方的坩埚内,然后用坩埚盖密封。将密封的坩埚放入化学气相渗炉内,关闭炉腔。采用机械泵抽真空至100Pa以下,然后向炉腔内充入Ar至大气压后,再开启机械泵抽至100Pa以下后,再次向炉腔内充Ar至0.1atm。随后开启加热,以10℃/min升温速率升至1080℃并保温5小时,随炉冷却。
图1(a)-图1(b)所示,从燃气轮机叶片叶尖防护涂层渗铝前后的结构可以看出:渗铝前涂层呈多层结构,主要分为粘结层NiCrAlYSi层以及固定cBN硬质颗粒和加厚的Ni镀层,且此时cBN硬质颗粒约70%的部位裸露在外;随着高温渗铝的进行,涂层中的元素发生互扩散,并且涂层增厚,渗铝结束后涂层主要由NiCrAlYSi粘结层和外延层组成,cBN硬质颗粒约20%的部位裸露在外。
如图2(a)-图2(b)所示,制备完成的涂层的表面形貌、截面形貌,燃气轮机叶片叶尖防护涂层包括连接基体的NiCrAlYSi粘结层、覆盖在粘结层上面的铝化物外延层和均匀镶嵌在外延层中的cBN硬质颗粒。cBN颗粒分布均匀,且部分包埋在涂层中,部分裸露在外;涂层结构致密,厚度分布均匀。涂层总厚度约为120μm,其中粘结层厚度约为40μm,外延层厚度约为80μm。
如图3所示,用XRD检测涂层中的相组成,涂层表面结构主要由β-NiAl相和cBN 组成。
如图4所示,为进一步表征涂层中各主要元素分布,对涂层进行EDS能谱分析,获得涂层截面各处主要成分的分布。渗铝后,不同结构层中的成分发生再分布,得到 Al、Cr梯度的NiCrAlYSi涂层,其中粘结层的主要成分依然为NiCrAlYSi,外延层主要为铝化物涂层。
在高温合金基体上镀制单面的复合涂层,采用拉伸试验的方法测得涂层与基体的结合力为52MPa。
实施例2:
本实例中所用的高温合金基体牌号、成分、预处理方式以及电弧离子镀制备NiCrAlYSi粘结层工艺和同实施例1。
采用复合电镀法固定cBN颗粒:
将上述沉积有粘结层的基体先在20vol%的盐酸中活化40s,然后将其放入瓦特液中预镀一层厚约1μm的Ni活化层。预镀Ni具体的工艺参数:阴阳极距为3cm,电流密度为2A/dm2,时间为3min,镀液温度为45℃,样品作为阴极,阳极为纯镍靶。
然后在试样表面均匀布一层cBN颗粒放入瓦特液中进行复合电镀,其中cBN颗粒粒径约为130~150μm,具体的加固工艺参数为阴阳极距3cm,电流密度为1A/dm2,时间1.5h,镀液温度为45℃。
待指定时间后拿出试样,拂去试样表面未被固定的cBN颗粒,然后将样品放入瓦特液中加厚,具体的加厚工艺参数为阴阳极距3cm,电流密度为1A/dm2,时间为3.5h,镀液温度为45℃,样品作为阴极,阳极为纯镍靶。
上述瓦特液成分为:硫酸镍240g/L,氯化镍35g/L,硼酸40g/L,糖精钠0.6g/L,十二烷基硫酸钠0.2g/L,余量为水。
将电镀后的样品采用气相渗铝法制备外延层,具体工艺参数同实施例1。
在高温合金基体上镀制单面的复合涂层,采用拉伸试验的方法测得涂层与基体的结合力为48MPa。
将制备完的样品采用超声清洗除油除杂,采用天平称重,采用旋转球盘式的实验方法测定涂层的摩擦磨损性能,测定参数为:对磨副GCr15钢球,载荷500g,旋转速度1000rpm,旋转半径3mm,磨损时间为2min,实验环境为室温、大气环境。实验后样品表面未见明显磨痕,说明该涂层具有优异的耐磨性能。如图5所示,该涂层的摩擦系数随摩擦时间的变化曲线,其平均摩擦系数为0.4579。
将制备好的样品放入之前烧至恒重的刚玉坩埚中进行恒温氧化实验,采用不连续称重方法测试试样增重曲线。实验过程中,对载有试样的刚玉坩埚放在相应温度的高温马弗炉内,隔一定时间将样品取出,冷却至室温,然后采用精度为10-5g的电子天平称装有试样的坩埚的总重量,随后将坩埚放入马弗炉中继续氧化。如图6所示,复合涂层的恒温氧化动力学曲线,900℃时cBN氧化极其微弱,样品重量一直呈增加趋势,25h前氧化增重速率较快,25h后氧化增重速率放缓,150h时增重达0.63mg/cm2,达到完全抗氧化级别。
实施例结果表明,本发明成功制备燃气轮机叶片叶尖防护涂层,该涂层具有良好的膜基结合力及优异的耐磨性能和耐高温抗氧化性能,可显著改善叶片叶尖的低耐磨性,对于延长叶片的使用寿命、提高发动机效率、降低油耗、减少成本和提高发动机的推重比具有重要意义。

Claims (10)

1.一种燃气轮机叶片叶尖防护涂层,其特征在于,首先利用电弧离子镀在基体上沉积一层NiCrAlYSi粘结层,然后通过复合电镀法均匀在粘结层上固定一层硬质颗粒,电镀加固后通过气相渗铝的工艺方法生长外延层包裹硬质颗粒;燃气轮机叶片叶尖防护涂层包括连接基体的NiCrAlYSi粘结层、覆盖在粘结层上面的铝化物外延层和均匀镶嵌在外延层中的cBN硬质颗粒。
2.根据权利要求1所述的燃气轮机叶片叶尖防护涂层,其特征在于,基体为镍基高温合金。
3.根据权利要求1所述的燃气轮机叶片叶尖防护涂层,其特征在于,NiCrAlYSi粘结层包括:17~20wt.%Cr,8~10wt.%Al,0.1~1wt%Y,0.1~1wt%Si,余量为Ni;cBN硬质颗粒粒径范围为80~150μm;铝化物外延层包括:1~7wt.%Cr,28~35wt.%Al,余量为Ni。
4.根据权利要求1所述的燃气轮机叶片叶尖防护涂层,其特征在于,防护涂层在900℃以下的温度区间具有较好的抗氧化性能。
5.根据权利要求1所述的燃气轮机叶片叶尖防护涂层,其特征在于,防护涂层的结合力采用拉伸试验的方法进行测试,镀层的结合力范围为45~55MPa。
6.根据权利要求1所述的燃气轮机叶片叶尖防护涂层,其特征在于,防护涂层在常温下的摩擦系数为0.4~0.5,磨损率低,耐磨性能优异。
7.一种权利要求1至6之一所述的燃气轮机叶片叶尖防护涂层的制备方法,其特征在于,该方法具体包括如下步骤:
(1)基体预处理过程:沉积前需对高温合金基体进行预处理,具体为:分别用240#、400#、600#、800#砂纸对基体进行打磨,然后对基体表面进行喷砂处理,而后先用丙酮超声清洗10~20min,再用酒精漂洗后烘干;
(2)采用电弧离子镀技术制备NiCrAlYSi粘结层:在预处理后的样品上沉积NiCrAlYSi粘结层,沉积时间为5~8h,粘结层厚度为30~40μm,所用NiCrAlYSi靶材的成分为:Cr18.11wt.%,Al 11.5wt.%,Si 0.9wt.%,Y 0.6wt.%,余量为Ni;沉积工艺参数为:弧电压18~20V,弧电流50~60A,直流脉冲负偏压230~250V,占空比50%,氩气分压(3.0~3.3)×101Pa;
(3)采用复合电镀技术固定cBN硬质颗粒,工艺参数为:将镀有粘结层的样品放入18~22vol%的盐酸中活化30~60s,拿出蒸馏水冲洗后放入瓦特液中预镀一层1~5μm的Ni活化层,电流密度0.5~1A/dm2,时间3~5min;然后在试样表面均匀布一层cBN硬质颗粒,放入瓦特液中进行复合电镀,电镀槽温度35~50℃,电流密度为0.5~2A/dm2,时间0.1~1h;待指定时间后拿出试样,拂去表层未被固定的cBN硬质颗粒,然后将样品放入瓦特液中加固,电镀槽温度35~50℃,电流密度为0.5~2A/dm2,时间2~5h,样品为阴极,阳极为纯镍板;
(4)外延层制备:将80~100g的Fe-34wt.%Al粉与0.1~1g氟化铝混合均匀并装入干净坩埚中,同时将试样悬挂于渗剂上方的坩埚内,然后用坩埚盖密封;将密封的坩埚放入化学气相渗炉内,关闭炉腔;采用机械泵抽真空至100Pa以下,然后向炉腔内充入Ar至大气压后,再开启机械泵抽至100Pa以下后,再次向炉腔内充Ar至0.1atm;随后开启加热部分,以8~10℃/min升温速率升至1050~1080℃并保温4~6h,随炉冷却。
8.根据权利要求7所述的燃气轮机叶片叶尖防护涂层的制备方法,其特征在于,步骤(2)、步骤(3)和步骤(4)中,根据所需涂层厚度设定沉积时间。
9.根据权利要求7所述的燃气轮机叶片叶尖防护涂层的制备方法,其特征在于,步骤(3)中,瓦特液的组成为:硫酸镍240~250g/L,氯化镍35~50g/L,硼酸35~40g/L,糖精钠0.4~0.6g/L,十二烷基硫酸钠0.1~0.2g/L,余量为水。
10.一种权利要求1至6之一所述的燃气轮机叶片叶尖防护涂层的应用,其特征在于,燃气轮机叶片叶尖防护涂层应用于燃气轮机叶片叶尖的表面防护,并且用于改善燃气涡轮发动机的封严性能。
CN201811079512.6A 2018-09-17 2018-09-17 一种燃气轮机叶片叶尖防护涂层及其制备方法和应用 Active CN109338288B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811079512.6A CN109338288B (zh) 2018-09-17 2018-09-17 一种燃气轮机叶片叶尖防护涂层及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811079512.6A CN109338288B (zh) 2018-09-17 2018-09-17 一种燃气轮机叶片叶尖防护涂层及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109338288A true CN109338288A (zh) 2019-02-15
CN109338288B CN109338288B (zh) 2020-09-18

Family

ID=65305523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811079512.6A Active CN109338288B (zh) 2018-09-17 2018-09-17 一种燃气轮机叶片叶尖防护涂层及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109338288B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110158041A (zh) * 2019-07-09 2019-08-23 中国科学院宁波材料技术与工程研究所 NiSiAlY涂层、其制备方法与应用
CN111962066A (zh) * 2020-08-20 2020-11-20 西安交通大学 一种棱边平齐且呈锯齿状排列的叶尖切削涂层及其制备方法
CN112064072A (zh) * 2020-08-28 2020-12-11 中国科学院金属研究所 一种在镍基单晶高温合金表面制备单相Pt-Al涂层的方法
CN112126882A (zh) * 2020-08-20 2020-12-25 西安交通大学 一种内部包裹镀层的叶尖超硬切削涂层及其制备方法
CN112251707A (zh) * 2020-09-27 2021-01-22 西安交通大学 一种边界颗粒等尺寸包络突出的叶尖切削涂层及制备方法
CN112281161A (zh) * 2020-10-27 2021-01-29 中国航发贵州黎阳航空动力有限公司 涂层及其制备方法与应用
CN112981330A (zh) * 2021-02-04 2021-06-18 北航(四川)西部国际创新港科技有限公司 一种改性NiCrAlYSi粘结层及其制备方法和应用
CN113637872A (zh) * 2021-08-18 2021-11-12 沈阳大陆激光先进制造技术创新有限公司 一种激光复合制造炉卷辊抗高温氧化功能层合金材料及工艺方法
CN114645306A (zh) * 2022-02-25 2022-06-21 中国航发北京航空材料研究院 在复杂形状工件表面制备大尺寸cBN颗粒镍基镀层的方法
CN115637400A (zh) * 2022-11-18 2023-01-24 矿冶科技集团有限公司 一种具有高结合力耐磨防护涂层的钛合金叶片及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169020A (en) * 1977-12-21 1979-09-25 General Electric Company Method for making an improved gas seal
EP0443877A1 (en) * 1990-02-23 1991-08-28 Baj Coatings Limited Gas turbine blades
CN1278873A (zh) * 1997-11-06 2001-01-03 铬合金气体涡轮公司 在燃气涡轮叶片上形成磨料叶尖的方法
US20030183529A1 (en) * 2001-02-28 2003-10-02 Minoru Ohara Wear-resistant coating and method for applying it
US20050129511A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Turbine blade tip with optimized abrasive
CN104862748A (zh) * 2015-05-29 2015-08-26 中国科学院金属研究所 一种晶粒尺度梯度金属镍及其可控制备方法
CN107119292A (zh) * 2017-03-10 2017-09-01 广东华普科技股份有限公司 一种镍电镀液及镀镍的方法
CN108048805A (zh) * 2017-12-08 2018-05-18 中国航发动力股份有限公司 一种涡轮叶片复合涂层及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169020A (en) * 1977-12-21 1979-09-25 General Electric Company Method for making an improved gas seal
EP0443877A1 (en) * 1990-02-23 1991-08-28 Baj Coatings Limited Gas turbine blades
US5076897A (en) * 1990-02-23 1991-12-31 Baj Limited Gas turbine blades
CN1278873A (zh) * 1997-11-06 2001-01-03 铬合金气体涡轮公司 在燃气涡轮叶片上形成磨料叶尖的方法
US20030183529A1 (en) * 2001-02-28 2003-10-02 Minoru Ohara Wear-resistant coating and method for applying it
US20050129511A1 (en) * 2003-12-11 2005-06-16 Siemens Westinghouse Power Corporation Turbine blade tip with optimized abrasive
CN104862748A (zh) * 2015-05-29 2015-08-26 中国科学院金属研究所 一种晶粒尺度梯度金属镍及其可控制备方法
CN107119292A (zh) * 2017-03-10 2017-09-01 广东华普科技股份有限公司 一种镍电镀液及镀镍的方法
CN108048805A (zh) * 2017-12-08 2018-05-18 中国航发动力股份有限公司 一种涡轮叶片复合涂层及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110158041A (zh) * 2019-07-09 2019-08-23 中国科学院宁波材料技术与工程研究所 NiSiAlY涂层、其制备方法与应用
CN112126882B (zh) * 2020-08-20 2022-02-22 西安交通大学 一种内部包裹镀层的叶尖超硬切削涂层及其制备方法
CN111962066A (zh) * 2020-08-20 2020-11-20 西安交通大学 一种棱边平齐且呈锯齿状排列的叶尖切削涂层及其制备方法
CN112126882A (zh) * 2020-08-20 2020-12-25 西安交通大学 一种内部包裹镀层的叶尖超硬切削涂层及其制备方法
CN112064072A (zh) * 2020-08-28 2020-12-11 中国科学院金属研究所 一种在镍基单晶高温合金表面制备单相Pt-Al涂层的方法
CN112251707A (zh) * 2020-09-27 2021-01-22 西安交通大学 一种边界颗粒等尺寸包络突出的叶尖切削涂层及制备方法
CN112281161A (zh) * 2020-10-27 2021-01-29 中国航发贵州黎阳航空动力有限公司 涂层及其制备方法与应用
CN112281161B (zh) * 2020-10-27 2022-10-25 中国航发贵州黎阳航空动力有限公司 涂层及其制备方法与应用
CN112981330A (zh) * 2021-02-04 2021-06-18 北航(四川)西部国际创新港科技有限公司 一种改性NiCrAlYSi粘结层及其制备方法和应用
CN113637872A (zh) * 2021-08-18 2021-11-12 沈阳大陆激光先进制造技术创新有限公司 一种激光复合制造炉卷辊抗高温氧化功能层合金材料及工艺方法
CN114645306A (zh) * 2022-02-25 2022-06-21 中国航发北京航空材料研究院 在复杂形状工件表面制备大尺寸cBN颗粒镍基镀层的方法
CN114645306B (zh) * 2022-02-25 2024-04-09 中国航发北京航空材料研究院 在复杂形状工件表面制备大尺寸cBN颗粒镍基镀层的方法
CN115637400A (zh) * 2022-11-18 2023-01-24 矿冶科技集团有限公司 一种具有高结合力耐磨防护涂层的钛合金叶片及其制备方法

Also Published As

Publication number Publication date
CN109338288B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
CN109338288A (zh) 一种燃气轮机叶片叶尖防护涂层及其制备方法和应用
Wang et al. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy
Cai et al. Influences of Al particles on the microstructure and property of electrodeposited Ni–Al composite coatings
US5079100A (en) Wear resistant coatings for engine components and a process for producing such coatings
Zhang et al. A novel functionally graded Ni-graphene coating and its corrosion resistance
EP2374916A1 (en) Erosion and corrosion resistant coating system for compressor
CN106884192B (zh) 一种自润滑陶瓷基复合材料的制备工艺
CN101444981A (zh) 铜合金表面激光诱导原位制备钴基合金梯度涂层及其方法
CN108486567A (zh) 一种单晶涡轮叶片叶尖纳米颗粒增强耐磨涂层的制备方法
Sheu et al. Effects of alumina addition and heat treatment on the behavior of Cr coatings electroplated from a trivalent chromium bath
CN108796564A (zh) 一种高硬度耐磨耐蚀的Ni-Mo合金/金刚石复合涂层及其制备方法
CN108998794A (zh) 一种Re-Si共改性铝化物涂层及其制备方法
Sheu et al. Improve the mechanical properties and wear resistance of Cr-C thin films by adding Al2O3 particles
CN107604312B (zh) 一种表面为(Ti,Al)N多层隔热耐磨超厚涂层的活塞及其制备方法和应用
Du et al. Microstructure and properties of plasma electrolytic oxidation coating on 55% SiCp/Al matrix composites
CN112048752A (zh) 一种cBN/Ni-Mo钛合金叶片叶尖防护涂层的制备方法和应用
Hong et al. A novel strategy for improving the wear resistance of electrodeposited Ni-diamond composite coatings by diamond surface morphology modification
Jia et al. Microstructure, friction and corrosion resistance properties of a Ni–Co–Al 2 O 3 composite coating
Song et al. Synthesis of Ni–B/diamond-Y2O3 binary nano-composite coatings and research on corrosion resistance and wear resistance of coatings with different pulse frequencies
Yan et al. Effects of Micro-arc Oxidation Process Parameters on Micro-structure and Properties of Al2O3 Coatings Prepared on Sintered 2024 Aluminum Alloy
US11866830B2 (en) Abrasive tip coating
CN113564574B (zh) 一种镍包石墨增强耐磨减摩耐腐蚀陶瓷涂层材料、涂层及其制备方法与应用
Wei et al. Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process
CN112048741B (zh) 一种Si3N4/Ni钛合金叶片叶尖防护涂层的制备方法和应用
CN111962112A (zh) 一种基于相变的高耐磨耐蚀的Ni-Mo/金刚石复合涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant