CN109325540A - A kind of space NO emissions reduction method for the daily precipitation data of remote sensing - Google Patents

A kind of space NO emissions reduction method for the daily precipitation data of remote sensing Download PDF

Info

Publication number
CN109325540A
CN109325540A CN201811157032.7A CN201811157032A CN109325540A CN 109325540 A CN109325540 A CN 109325540A CN 201811157032 A CN201811157032 A CN 201811157032A CN 109325540 A CN109325540 A CN 109325540A
Authority
CN
China
Prior art keywords
precipitation
remote sensing
daily
emissions reduction
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811157032.7A
Other languages
Chinese (zh)
Other versions
CN109325540B (en
Inventor
陈锋锐
刘宇
潘少奇
秦奋
冯兆东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN201811157032.7A priority Critical patent/CN109325540B/en
Publication of CN109325540A publication Critical patent/CN109325540A/en
Application granted granted Critical
Publication of CN109325540B publication Critical patent/CN109325540B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Processing (AREA)

Abstract

A kind of space NO emissions reduction method for the daily precipitation data of remote sensing, this method comprises the following steps: first, NO emissions reduction is carried out to the daily precipitation data of remote sensing to realize indirectly using a space-time NO emissions reduction scheme, obtains the preliminary NO emissions reduction result of the daily precipitation of remote sensing;Secondly, based on the moon, merging all preliminary NO emissions reduction results of the daily precipitation of remote sensing and the observation of daily website in the moon using a kind of set fusion method, obtaining the daily precipitation fusion results of remote sensing;Then, the daily precipitation fusion results of remote sensing are accumulated, generates remote sensing monthly or annual precipitation fusion results.The present invention can overcome the limitation of prior art, comprehensively consider the time change of the space non-stationary relationship and daily precipitation between precipitation and the auxiliary environment factor, sufficiently take the entire error field of the preliminary NO emissions reduction result of the daily precipitation of remote sensing into account simultaneously, the spatial resolution and precision of the daily precipitation of remote sensing can be increased substantially, in addition, being obviously improved it in the ability in detection precipitation and non-precipitation region.

Description

A kind of space NO emissions reduction method for the daily precipitation data of remote sensing
Technical field
It is especially a kind of for the daily precipitation data of remote sensing the present invention relates to a kind of remote sensing precipitation data processing method Space NO emissions reduction method.
Background technique
Though meteorological site provides accurately precipitation measurement, the high change in time and space characteristic of precipitation, the lower density of website with And serious uneven distribution etc. seriously limits the precision of space interpolation result.The development of remote sensing technology brings for precipitation measurement A series of unprecedented opportunities, in recent decades, with the transmitting exclusively for Rainfall Monitoring design satellite, remote sensing Precipitation Products It is obtained.By the improvement persistently to remote sensing precipitation inversion algorithm, these data have been able to provide Global Scale, Gao Shi at present Between resolution ratio Precipitation Products, such as: TRMM and PERSIANN etc., however, spatial resolution that these data are thicker (such as 0.25 °) seriously constrain their application depth and range.
Space NO emissions reduction can effectively solve the problems, such as this, and NO emissions reduction has been cited as remote sensing Precipitation Products in engineering and decision An important research field.Current remote sensing precipitation NO emissions reduction research is concentrated mainly on year and moon precipitation;And it is directed to remote sensing The NO emissions reduction research of daily precipitation is then less, and only the heavy rain to mountain area and heavy rain carry out.Itself the reason is as follows that: 1) precipitation with Significant relation between environmental factor there's almost no on day scale, directly can not carry out remote sensing using the relationship in this way and drop daily The space NO emissions reduction of water;2) precipitation is spatially discrete daily;3) it is different from the every monthly total precipitation product of remote sensing, remote sensing Daily precipitation is not integrated with the Precipitation Products based on site analysis, and therefore, precision is relatively low;4) precipitation data has Have Multiple Time Scales characteristic, this is required while obtaining accurate NO emissions reduction result daily, it should also ensure that the accumulation of its moon and Year accumulation also has significant precision improvement.In short, existing space NO emissions reduction method can not carry out sky to the daily precipitation of remote sensing Between NO emissions reduction, and significantly improve its precision and promote it in the monitoring precipitation and regional ability of non-precipitation.
Summary of the invention
The purpose of the present invention is to provide a kind of space NO emissions reduction method for the daily precipitation data of remote sensing, its energy gram The limitation for taking prior art, comprehensively consider space non-stationary relationship between precipitation and the auxiliary environment factor and daily precipitation when Between change, while sufficiently taking the entire error field of the preliminary NO emissions reduction result of the daily precipitation of remote sensing into account, can increase substantially distant Feel the spatial resolution and precision of daily precipitation, and is obviously improved final result in the energy in detection precipitation and non-precipitation region Power.
The present invention is achieved through the following technical solutions:
Step I. data prediction
Precipitation data (DailyPre daily to remote sensinglow) carry out accumulation generation remote sensing annual precipitation (AnnPrelow), on Marking low indicates low spatial resolution;Monthly all NDVI data are synthesized using synthetic method is maximized, are generated monthly NDVI data, then to 12 months monthly NDVI data averagely generate annual NDVI data;It is flat to year using the pixel method of average Equal NDVI data and dem data carry out a liter scale, them is made to have spatial resolution identical with remote sensing annual precipitation data, That is the annual NDVI data of low spatial resolution, are expressed as NDVIlowAnd the dem data of low spatial resolution, it is expressed as DEMlow;In addition, annual NDVI data and dem data are risen scale to desired high-space resolution using the pixel method of average Rate, such as 1km or 0.01 °, i.e. the annual NDVI data of high spatial resolution, are expressed as NDVIhighAnd high spatial point The dem data of resolution, is expressed as DEMhigh, subscript
High indicates high spatial resolution.
Step II. remote sensing annual precipitation space-time NO emissions reduction
1, remote sensing annual precipitation space NO emissions reduction
Remote sensing annual precipitation space NO emissions reduction is based primarily upon between annual precipitation and vegetation and landform that there is significant phases Pass relationship constructs NO emissions reduction model using the relationship.In view of between annual precipitation and vegetation and landform relationship it is non-stationary, AnnPre is explored using Geographically weighted regression procedurelowWith NDVIlowAnd DEMlowBetween relationship, it is specific as follows:
In formula,For the parameter changed with spatial variations, u is position.By these parameter weights Sampling is to desired high spatial resolution, i.e.,Next to residual epsilonlow(u) batten letter is carried out Number interpolation, generates the residual error item ε of high spatial resolutionhigh(u).Finally, the preliminary NO emissions reduction result of remote sensing annual precipitation calculates such as Under:
In formula,For the preliminary NO emissions reduction of remote sensing annual precipitation as a result, subscript high indicates high-space resolution Rate.
(2) the preliminary NO emissions reduction result time NO emissions reduction of remote sensing annual precipitation
Using the daily precipitation of remote sensing specific gravity information shared in accumulation in its year to the preliminary NO emissions reduction of remote sensing annual precipitation As a result time NO emissions reduction is carried out.Firstly, the daily precipitation of remote sensing specific gravity shared in accumulation in its year is calculated, it is specific as follows:
In formula,It is i-th day remote sensing precipitation,For its shared ratio in annual precipitation Weight.
It, will in order to be consistent with the high spatial resolution of the preliminary NO emissions reduction result of remote sensing annual precipitation It is resampled to desired high spatial resolution, i.e.,In this way, the preliminary NO emissions reduction result meter of the daily precipitation of remote sensing It calculates as follows:
In formula,It is i-th day preliminary NO emissions reduction result of remote sensing precipitation.
Step III. merges the preliminary NO emissions reduction result of the daily precipitation of remote sensing and daily website is observed
As unit of monthly, using set fusion method to the preliminary NO emissions reduction knot of the daily precipitation of remote sensing all in this month Fruit and the observation of daily website are merged, and the daily precipitation fusion results of remote sensing in the moon are generated.First by the daily precipitation of remote sensing It measures preliminary NO emissions reduction result serializing and generates 1 dimensional vector x, then using day as sequence generator matrix N is the number of days of this month in formula, and n is the pixel number of the preliminary NO emissions reduction result of the daily precipitation of remote sensing;Daily website is observed to stand Dot sequency generates 1 dimensional vector y, then using day as sequence then generator matrixN is the moon in formula Number of days, m be daily website observe data number.It is as follows to gather fusion calculation:
Xf=X+K (Y-HX) (5)
In formula, XfIt is the daily precipitation fusion results of remote sensing, H is mapping matrix, it is by the remote sensing of site location in matrix X The daily preliminary NO emissions reduction result of precipitation projects to corresponding site location in observing matrix Y.K is weight matrix, is calculated such as Under:
K=(C ο P) HT(H(CοP)HT+R)-1 (6)
Wherein, P and R is error co-variance matrix respectively, and approximate calculation is as follows respectively:
Wherein, X ' is the set exception matrix of X, is defined as:Y ' is the set exception matrix of Y, is determined Justice are as follows:N is number of days monthly, and diag () is the diagonal line of one matrix of extraction to construct diagonal matrix.
In formula (6), operator ο is Schur product.For the related coefficient square based on distance Battle array, in which: m is the number that daily website observes data;N is the pixel number of the preliminary NO emissions reduction result of the daily precipitation of remote sensing;ci It is each grid in the preliminary NO emissions reduction result of the daily precipitation of remote sensing to i-th website apart from associated vector, the value range of i For [1, m], it is similarly 1 dimensional vector after serializing, wherein as follows apart from relevant calculation:
In formula, s is defined as d*0.5752/r, and d is each grid in the preliminary NO emissions reduction result of the daily precipitation of remote sensing to i-th The Euclidean distance of a website, r are the radius of setting.
Step IV. accumulation generates remote sensing monthly and annual precipitation fusion results
The daily precipitation fusion results of remote sensing are obtained to step III to accumulate, and generate remote sensing monthly and annual precipitation Fusion results.
In above step, the daily precipitation data (DailyPre of the remote sensinglow) it is the daily precipitation of TRMM or IMERG Measure data;NDVI is vegetation index data, derives from PROBA-V S10TOC or MODIS MOD13A2, they are respectively 10 days Or the NDVI data of synthesis in 16 days;DEM is the digital elevation model from SRTM data, the spatial resolution with 90m;It is described Resampling is closest resampling or bilinear interpolation or Spline interpolation.
The present invention is by adopting the above technical scheme.Firstly, every to remote sensing to realize indirectly using a space-time NO emissions reduction scheme Its precipitation data carries out space NO emissions reduction, obtains the preliminary NO emissions reduction result of the daily precipitation of remote sensing;Secondly, using a kind of set Fusion method is merged all preliminary NO emissions reduction results of the daily precipitation of remote sensing and daily website in the moon and is observed based on the moon, Obtain the daily precipitation fusion results of remote sensing;Then, the daily precipitation fusion results of remote sensing are accumulated, generates remote sensing monthly Or annual precipitation fusion results.The present invention, which can be realized effectively, carries out NO emissions reduction to the daily precipitation data of remote sensing, not only significantly Its spatial resolution and precision are improved, while promoting the monitoring capability to precipitation and non-precipitation region;Furthermore it is ensured that remote sensing is every The moon, annual precipitation fusion results equally have significant precision improvement;Therefore, the present invention has broad application prospects.
Detailed description of the invention
Attached drawing 1 is a kind of flow chart of space NO emissions reduction method for the daily precipitation data of remote sensing
Specific embodiment
It describes the specific embodiments of the present invention in detail with reference to the accompanying drawings and examples
The remote sensing precipitation data of selection is the daily precipitation data of IMERG in 2015, with 0.1 ° of spatial resolution;DEM Data come from SRTM, with 90 meters of spatial resolution;NDVI data (are closed for 10 days from PROBA-V S10TOC NDVI At), the spatial resolution with 1km.Research area is central China and western some areas, and longitude and latitude range is 25 ° N-38 ° N and 105 ° of E-118.5 ° of E;The daily precipitation measurement data that meteorological site obtains are studied within the scope of area from National Meteorological Bureau There are 289 weather stations, wherein daily website observes 80% for model construction, remaining 20% is used for final precision test.
The specific embodiment of the method for the present invention includes the following steps:
Step I. data prediction
The daily precipitation of IMERG in 2015 is accumulated and generates IMERG annual precipitation, is expressed as AnnIMERG0.1°;To 2015 The NDVI data of year monthly 3 synthesis in 10 days generate monthly NDVI data using synthetic method is maximized, then every to 12 months Month NDVI data take average generations annual NDVI data, and annual NDVI data are risen ruler by the use pixel method of average respectively For degree to 0.1 ° and 0.01 °, 0.1 ° and 0.01 ° of annual NDVI data are expressed as NDVI0.1°And NDVI0.01°;This Outside, DEM is risen to scale respectively using the pixel method of average to 0.1 ° and 0.01 °, 0.1 ° and 0.01 ° of dem data respectively indicates For DEM0.1°And DEM0.01°.0.01 ° and 0.1 ° of the subscript spatial resolution for respectively indicating the data.
Step II. remote sensing annual precipitation space-time NO emissions reduction
IMERG annual precipitation space NO emissions reduction
In view of the space non-stationary relationship between annual precipitation and vegetation and elevation, using Geographically weighted regression procedure come Explore AnnIMERG0.1°And NDVI0.1°And DEM0.1°Between relationship, it is specific as follows:
In formula,The parameter changed for spatial variations, u are position;Then by these parameters It is resampled to 0.01 °, i.e.,The method for resampling used is closest resampling or bilinearity Interpolation or Spline interpolation method.It should be noted that in three kinds of methods, using any one method, specifically optionally Depending on, now by taking closest resampling as an example;Next to residual epsilon0.1°(u) Spline interpolation is carried out, 0.01 ° of residual error is generated Item ε0.01°(u).Finally, the preliminary NO emissions reduction result of IMERG annual precipitation calculates as follows:
In formula,The preliminary NO emissions reduction result of remote sensing annual precipitation for being 0.01 ° for spatial resolution.
The preliminary NO emissions reduction result time NO emissions reduction of IMERG annual precipitation
Ruler is tentatively dropped to IMERG annual precipitation using the daily precipitation of IMERG specific gravity information shared in accumulation in its year It spends result and carries out time NO emissions reduction.Firstly, the daily precipitation of IMERG specific gravity shared in accumulation in its year is calculated, it is specific as follows:
In formula,It is i-th day IMERG precipitation,For its in annual precipitation it is shared Specific gravity;It, will in order to be consistent with the spatial resolution of the preliminary NO emissions reduction result of IMERG annual precipitationIt adopts again Sample is at 0.01 °, i.e.,The method for resampling used is closest resampling or bilinear interpolation or batten letter Number interpolation method, it should be noted that in three kinds of methods, using any one method, specifically depend on the circumstances, now with most adjacent For nearly resampling.In this way, the preliminary NO emissions reduction result calculating of the daily precipitation of IMERG is as follows:
In formula,It is i-th day IMERG precipitation fusion results.
Step III. merges the preliminary NO emissions reduction result of the daily precipitation of IMERG and daily website is observed
As unit of monthly, using set fusion method to the preliminary NO emissions reduction of the daily precipitation of IMERG all in this month As a result and website observation daily is merged, and generates the daily precipitation fusion results of this month IMERG, specific as follows: by IMERG The daily preliminary NO emissions reduction result serializing of precipitation data generates 1 dimensional vector x, then using day as sequence generator matrixN is the number of days of this month in formula, and n is the pixel of the preliminary NO emissions reduction result of the daily precipitation of IMERG Number;Daily website is observed, 1 dimensional vector y is sequentially generated with website, then using day as sequence then generator matrixN is the number of days of this month in formula, and m is the number that daily website observes data.Set fusion It calculates as follows:
Xf=X+K (Y-HX) (5)
In formula, XfIt is the daily precipitation fusion results of IMERG, H is mapping matrix, it is by the drop of site location in matrix X Scale result projects to corresponding observation position in observing matrix Y.K is weight matrix, is calculated as follows:
K=(C ο P) HT(H(CοP)HT+R)-1 (6)
Wherein, P and R is error co-variance matrix respectively, and difference approximate calculation is as follows:
In formula, X ' is the set exception matrix of X, is defined as:Y ' is the set exception matrix of Y, definition Are as follows: its is defined as:N is number of days monthly, and diag () is the diagonal line of one matrix of extraction to construct to angular moment Battle array.
In formula (6), operator ο is Schur product.For the related coefficient square based on distance Battle array, in which: m is the number that daily website observes data;N is the pixel number of the preliminary NO emissions reduction result of the daily precipitation of IMERG; ciIt is each grid in the preliminary NO emissions reduction result of the daily precipitation of IMERG to i-th website apart from associated vector, the value of i Range is [1, m], it is similarly 1 dimensional vector after serializing, wherein as follows apart from relevant calculation:
In formula, s is defined as d*0.5752/r, wherein d is each grid in the preliminary NO emissions reduction result of the daily precipitation of IMERG Lattice are to the Euclidean distance of i-th website, and r is the radius of setting, and radius r is set as 0.5 ° in this research.
Step IV. accumulation generates IMERG monthly and annual precipitation fusion results
The every intra day ward fusion results of IMERG are obtained to step III to accumulate, and generate remote sensing monthly and annual precipitation Fusion results.
Finally, verifying the precision of IMERG precipitation fusion results using residue 20%, the evaluation index used is root mean square Error.The result shows that: original I MERG data are compared, IMERG is daily, and monthly and annual precipitation fusion results reduce respectively Square error is 20%, 10% and 15%;In addition, their significantly improving due to spatial resolution, are capable of providing more drops Water detailed information.

Claims (2)

1. a kind of space NO emissions reduction method for the daily precipitation data of remote sensing, which is characterized in that comprise the following steps:
Step I. data prediction
Precipitation data (DailyPre daily to remote sensinglow) accumulated, generate remote sensing annual precipitation data (AnnPrelow), Wherein subscript low indicates low spatial resolution;Monthly all NDVI data are synthesized using synthetic method is maximized, are generated Monthly NDVI data, then to 12 months monthly NDVI data averagely generate annual NDVI data;Using the pixel method of average pair Annual NDVI data and dem data carry out a liter scale, make them with space identical with remote sensing annual precipitation data point Resolution, i.e. the annual NDVI data of low spatial resolution, are expressed as NDVIlowAnd the dem data of low spatial resolution, table It is shown as DEMlow;In addition, annual NDVI data and dem data are risen scale to desired high spatial using the pixel method of average Resolution ratio, i.e. the annual NDVI data of high spatial resolution, are expressed as NDVIhighAnd the DEM number of high spatial resolution According to being expressed as DEMhigh, wherein subscript high indicates high spatial resolution;
Step II. remote sensing annual precipitation space-time NO emissions reduction
(1) remote sensing annual precipitation space NO emissions reduction
AnnPre is explored using Geographically weighted regression procedurelowWith NDVIlowAnd DEMlowBetween relationship, it is specific as follows:
In formula,For the parameter changed with spatial variations, u is spatial position;By these parameter weights Sampling is to desired high spatial resolution, i.e.,Next to residual epsilonlow(u) batten letter is carried out Number interpolation, generates the residual error item ε of high spatial resolutionhigh(u), finally, the preliminary NO emissions reduction result of remote sensing annual precipitation calculates such as Under:
In formula,For the preliminary NO emissions reduction of remote sensing annual precipitation as a result, subscript high indicates high spatial resolution;
(2) the preliminary NO emissions reduction result time NO emissions reduction of remote sensing annual precipitation
Using the daily precipitation of remote sensing specific gravity information shared in accumulation in its year to the preliminary NO emissions reduction result of remote sensing annual precipitation Time NO emissions reduction is carried out, firstly, the daily precipitation of remote sensing specific gravity shared in accumulation in its year is calculated, it is specific as follows:
In formula,It is i-th day remote sensing precipitation,For its shared specific gravity in annual precipitation; It, will in order to be consistent with the high spatial resolution of the preliminary NO emissions reduction result of remote sensing annual precipitationIt is resampled to Desired high spatial resolution, i.e.,In this way, the preliminary NO emissions reduction result calculating of the daily precipitation of remote sensing is as follows:
In formula,It is i-th day preliminary NO emissions reduction result of remote sensing precipitation;
Step III. merges the preliminary NO emissions reduction result of the daily precipitation of remote sensing and daily website is observed
As unit of monthly, use set fusion method to the preliminary NO emissions reduction result of the daily precipitation of remote sensing all in this month with And website observation daily is merged, and the daily precipitation fusion results of remote sensing in the moon are generated.First by the daily precipitation of remote sensing Preliminary NO emissions reduction result serializing generates 1 dimensional vector x, then using day as sequence generator matrix N is the number of days of this month in formula, and n is the pixel number of the preliminary NO emissions reduction result of the daily precipitation of remote sensing;Daily website is observed to stand Dot sequency generates 1 dimensional vector y, then using day as sequence then generator matrixN is the moon in formula Number of days, m be daily website observe data number, set fusion calculation it is as follows:
Xf=X+K (Y-HX) (5)
In formula, XfIt is the daily precipitation fusion results of remote sensing, H is mapping matrix, it is daily by the remote sensing of site location in matrix X The preliminary NO emissions reduction result of precipitation projects to corresponding site location in observing matrix Y, and K is weight matrix, calculates as follows:
K=(C ο P) HT(H(CοP)HT+R)-1 (6)
Wherein, P and R is error co-variance matrix respectively, and it is as follows that they distinguish approximate calculation:
Wherein, X ' is the set exception matrix of X, is defined asY ' is the set exception matrix of Y, is defined asN is number of days monthly, and diag () is the diagonal line of one matrix of extraction to construct diagonal matrix;
In formula (6), operator ο is Schur product,For the correlation matrix based on distance, In: m is the number that daily website observes data;N is the pixel number of the preliminary NO emissions reduction result of the daily precipitation of remote sensing;ciFor remote sensing In the daily preliminary NO emissions reduction result of precipitation each grid to i-th website apart from associated vector, the value range of i be [1, M], it is similarly 1 dimensional vector after serializing, wherein as follows apart from relevant calculation:
In formula, s is defined as d*0.5752/r, and d is each grid in the preliminary NO emissions reduction result of the daily precipitation of remote sensing to i-th of station The Ou De distance of point, r are the radius of setting;
Step IV. accumulation generate remote sensing monthly, annual precipitation fusion results
The daily precipitation fusion results of remote sensing are obtained to step III to accumulate, and generate remote sensing monthly and annual precipitation merges As a result.
2. a kind of space NO emissions reduction method for the daily precipitation data of remote sensing according to claim 1, feature exist In: the daily precipitation data of the remote sensing is the daily precipitation data of TRMM 3B42 or IMERG;NDVI is vegetation index, should For data from PROBA-V S10TOC or MODIS MOD13A2, they are respectively the NDVI data of synthesis in 10 days or 16 days; DEM is digital elevation model, and the data are from SRTM data, the spatial resolution with 90m;The method for resampling is Closest resampling or bilinear interpolation or Spline interpolation.
CN201811157032.7A 2018-09-30 2018-09-30 Spatial downscaling method for remote sensing daily precipitation data Active CN109325540B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811157032.7A CN109325540B (en) 2018-09-30 2018-09-30 Spatial downscaling method for remote sensing daily precipitation data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811157032.7A CN109325540B (en) 2018-09-30 2018-09-30 Spatial downscaling method for remote sensing daily precipitation data

Publications (2)

Publication Number Publication Date
CN109325540A true CN109325540A (en) 2019-02-12
CN109325540B CN109325540B (en) 2020-04-10

Family

ID=65266706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811157032.7A Active CN109325540B (en) 2018-09-30 2018-09-30 Spatial downscaling method for remote sensing daily precipitation data

Country Status (1)

Country Link
CN (1) CN109325540B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110766229A (en) * 2019-10-24 2020-02-07 河南大学 High-resolution daily rainfall mapping method based on downscaling-fusion
CN112699959A (en) * 2021-01-11 2021-04-23 中国科学院地理科学与资源研究所 Multi-source multi-scale precipitation data fusion method and device based on energy functional model
CN114417646A (en) * 2022-03-31 2022-04-29 中国科学院地理科学与资源研究所 High-dimensional heterogeneous precipitation data fusion method and system
CN115659853A (en) * 2022-12-28 2023-01-31 中国科学院地理科学与资源研究所 Nonlinear mixed-effect strain coefficient downscaling method and system
CN116070792A (en) * 2023-03-28 2023-05-05 中国科学院地理科学与资源研究所 Fusion method, device, storage medium and equipment of multi-source precipitation data

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021872A (en) * 2016-05-10 2016-10-12 浙江大学 Dynamic filtering modeling downscaling method of environment variable on the basis of low-resolution satellite remote sensing data

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106021872A (en) * 2016-05-10 2016-10-12 浙江大学 Dynamic filtering modeling downscaling method of environment variable on the basis of low-resolution satellite remote sensing data

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
孙云华: "《典型卫星影像数据反演降水产品精度分析与融合改进研究》", 《中国博士学位论文电子期刊网》 *
蔡明勇等: "《雅鲁藏布江流域TRMM降水数据降尺度研究》", 《北京师范大学学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110766229A (en) * 2019-10-24 2020-02-07 河南大学 High-resolution daily rainfall mapping method based on downscaling-fusion
CN112699959A (en) * 2021-01-11 2021-04-23 中国科学院地理科学与资源研究所 Multi-source multi-scale precipitation data fusion method and device based on energy functional model
CN114417646A (en) * 2022-03-31 2022-04-29 中国科学院地理科学与资源研究所 High-dimensional heterogeneous precipitation data fusion method and system
CN115659853A (en) * 2022-12-28 2023-01-31 中国科学院地理科学与资源研究所 Nonlinear mixed-effect strain coefficient downscaling method and system
CN115659853B (en) * 2022-12-28 2023-03-10 中国科学院地理科学与资源研究所 Nonlinear mixed-effect strain coefficient downscaling method and system
CN116070792A (en) * 2023-03-28 2023-05-05 中国科学院地理科学与资源研究所 Fusion method, device, storage medium and equipment of multi-source precipitation data

Also Published As

Publication number Publication date
CN109325540B (en) 2020-04-10

Similar Documents

Publication Publication Date Title
CN109325540A (en) A kind of space NO emissions reduction method for the daily precipitation data of remote sensing
Mitra et al. Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates
CN104134095B (en) Crop yield estimation method based on scale transformation and data assimilation
CN105912836B (en) A kind of watershed hydrologic cycle analogy method of pure remotely-sensed data driving
CN104537222B (en) Evaluation method of the regional vegetation covering based on remote sensing on the influence of earth's surface temperature
Li et al. Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution
CN102175209B (en) Effective sampling method for crop cultivated area measurement under support of historical remote sensing product data
CN103810376A (en) Ground daily rainfall predicting method based on satellite remote sensing and regression Kriging
CN110909449B (en) Multi-source data ionization layer region reporting method
CN113553782B (en) Downscaling method for forecasting wind speed
CN114254802B (en) Prediction method for vegetation coverage space-time change under climate change drive
CN105550423A (en) CMORPH satellite precipitation data downscaling method based on Fuzzy-OLS (Ordinary Least Squares)
CN108981616B (en) Method for inverting effective leaf area index of artificial forest by unmanned aerial vehicle laser radar
CN114819737B (en) Method, system and storage medium for estimating carbon reserves of highway road vegetation
CN104698462A (en) Sea surface wind field fusion method for SAR (Synthetic Aperture Radar) based on variation
Li et al. Multiscale comparative evaluation of the GPM and TRMM precipitation products against ground precipitation observations over Chinese Tibetan Plateau
CN114297578A (en) Grassland vegetation coverage estimation and prediction method based on remote sensing
El Kenawy et al. Climatological modeling of monthly air temperature and precipitation in Egypt through GIS techniques
CN117409335B (en) Meteorological radar precipitation rate downscaling method based on visible light image
CN114170524A (en) Single-day tidal flat digital terrain construction method based on high-time-space satellite data fusion
Tietsche et al. Arctic sea ice in the ECMWF MyOcean2 ocean reanalysis ORAP5
CN107688712B (en) A kind of temperature NO emissions reduction method based on DEM and NDVI
Federico Verification of surface minimum, mean, and maximum temperature forecasts in Calabria for summer 2008
Zhou et al. Daily rainfall model to merge TRMM and ground based observations for rainfall estimations
CN113762383B (en) Vegetation index fusion method based on multi-source data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant