CN109324115A - 一种混响水池中评价充液管路消声器的方法 - Google Patents

一种混响水池中评价充液管路消声器的方法 Download PDF

Info

Publication number
CN109324115A
CN109324115A CN201811017337.8A CN201811017337A CN109324115A CN 109324115 A CN109324115 A CN 109324115A CN 201811017337 A CN201811017337 A CN 201811017337A CN 109324115 A CN109324115 A CN 109324115A
Authority
CN
China
Prior art keywords
reverberation
tank
pipe
measurement
line system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811017337.8A
Other languages
English (en)
Inventor
尚大晶
李琪
唐锐
宋佳朋
朱杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201811017337.8A priority Critical patent/CN109324115A/zh
Publication of CN109324115A publication Critical patent/CN109324115A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids

Abstract

本发明属于减振降噪及声学测量领域,具体涉及一种混响水池中评价充液管路消声器的方法,包括以下步骤:选择合适尺寸的混响水池,根据混响水池物理特性计算混响水池的截止频率fs;利用中断声源法测量混响水池的混响时间T60;连接管路系统,依次连接水泵、抽水软管、管路,并在管路系统中安装流量计及压力表;将未安装消声装置的待测管路管口出水端放入测量使用的混响水池中,且将管路中注满水;打开水泵,使管路系统工作,采用空间平均方法测量未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级<SPL>A;本发明不需要在管内布置水听器进行测量,解决了管中声压径向分布不均匀的问题。

Description

一种混响水池中评价充液管路消声器的方法
技术领域
本发明属于减振降噪及声学测量领域,具体涉及一种混响水池中评价充液管路消声器的方法。
背景技术
传统的管道消声器评价方式采用较多的是双传感器法。双传感器法来自于J.Y.Chung在1980年应用于空气声学中的一项研究。双传感器法是将声源放置在管道的一端,在管道中放置两只传感器,一只靠近声源,一只远离声源。通过传感器测量得到的数据,计算管道声传输时的传递损失,管道的传递损失为:
专利号为CN106802238A--测量消音器传递损失的装置及测量方法和专利号为CN103217309A--非对称管道消声器传递损失测量方法都是采用双传感器法通过测量传递损失对空气管道中的消音器进行评价。
双传感器法在测量空气管道的传递损失中具有广泛的应用,后来被引入到了水声测量中。但是,双传感器法在测量中存在以下问题。第一,双传感器法测量的是管道中某一点的声强,但是由于管道在径向方向同样有声压分布,所以测量得到的这一点并不一定是声强最强的点,所以如果测量的是管道中一个截面的声强的话,测量结果会更准确。第二,双传感器法的两只传感器都放置在管道中,测量时管道内液体的压力脉动会在传感器表面做功,使传感器产生“伪声”,伪声的存在将导致测量结果出现较大的偏差。第三,双传感器法测量的是管道的传递损失。而传递损失只取决于管道的结构,测量结果是管道入射能量与出射能量的比值,这种计算方法没有考虑声源的阻抗与管道出口的负载阻抗的影响。
综上所述,现有技术中存在测量结果不准确、没有考虑声源的阻抗与管道出口的负载阻抗的影响等问题。
发明内容
本发明目的在于提供一种在混响水池中测量充液管路的插入损失来评价管路系统消声器消声性能的方法。
一种混响水池中评价充液管路消声器的方法,包括以下步骤:
(1)选择合适尺寸的混响水池,根据混响水池物理特性计算混响水池的截止频率fs
(2)利用中断声源法测量混响水池的混响时间T60
(3)连接管路系统,依次连接水泵、抽水软管、管路,并在管路系统中安装流量计及压力表;
(4)将未安装消声装置的待测管路管口出水端放入测量使用的混响水池中,且将管路中注满水;
(5)打开水泵,使管路系统工作,采用空间平均方法测量未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;A
(6)安装消声装置,其他各条件不变,重复步骤3-步骤5测量安装消声装置的管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;B
(7)计算充液管路消声器的插入损失TL
(8)根据测得的插入损失TL对消声器的消声性能进行评价。
所述选择合适尺寸的混响水池,根据混响水池物理特性计算混响水池的截止频率fs,包括:
只考虑斜向波,体积为V的混响水池频率低于f的简正波平均总数为:
单位带宽内的简正波数为:
简正波共振峰的平均半功率带宽为:
其中,为水箱的平均阻尼常数,由此可见,简正波共振峰的平均半功率带宽取决于水箱的吸收系数;
其中,T60为混响时间;
混响水池混响场条件的截止频率决定于单位带宽内简正波的数目及简正波共振峰的半功率带宽,根据Schroeder截止频率假定,满足混响场条件时,平均共振峰的半功率带宽内包含有三个简正波,因此,混响场条件表示为:
由此求得:
其中,c0为声波在水中的传播速度,T60为混响时间,混响水池的体积为V。
所述利用中断声源法测量混响水池的混响时间T60,包括:
混响时间测量中会出现重复偏差和空间偏差,为减少重复偏差,每个位置作10次测量并进行平均;同时为减少空间偏差,对声源及水听器分别进行多点空间平均,所有测点距离水池壁面及底面不小于1.5米,声源及水听器取10点进行空间平均。
所述打开水泵,使管路系统工作,采用空间平均方法测量未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;A,包括:
(1)布置测试系统与水听器,128路水听器与128通道测试系统相连,128通道测试系统与128路水听器连接采用的是BNC连接头;
(2)打开128通道测试系统和电脑,进入电脑打开测试系统软件对128路水听器进行灵敏度校准;
(3)打开水泵,使管路系统工作,稳定工作3分钟后,采用128通道测试系统测试90秒,采样率为51.2kHz,测量得到每个通道的声压级,采用数据处理软件对采集的数据进行时间平均,再对128个通道的数据进行空间平均,得到空间平均声压级&lt;SPL&gt;A
所述计算充液管路消声器的插入损失TL,包括:
TL=&lt;SPL&gt;A-&lt;SPL&gt;B
其中,&lt;SPL&gt;A为未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级,&lt;SPL&gt;B为安装消声装置的管路系统在混响水池混响场中的空间平均声压级。
本发明的有益效果在于:
(1)不需要在管内布置水听器进行测量,解决了管中声压径向分布不均匀的问题;
(2)不需要在管路内部安装测量水听器,消除了脉动压力对水听器的影响;
(3)所测结果既与管路结构有关,又与声源阻抗和出口负载有关,评价结果更准确。
附图说明
图1是本发明操作流程图;
图2是混响水池混响时间测试系统;
图3是未安装消声装置的实验管路系统;
图4是测试系统框图;
图5是水听器布放图;
图6是水听器布放俯视图;
图7是水听器布放侧视图;
图8是安装消声装置的实验管路系统;
图9是混响水池中测量的某消声装置的插入损失;
具体实施方式
下面结合附图对本发明做进一步描述。
图2中:1-测量放大器;2-水听器;3-混响水池;4-球形换能器;5-第一计算机;6-采集器;7-功率放大器;
图3中:3-混响水池;8-高位水箱;9-软管;10-压力表;11-水泵;12-流量计;
图4中:1-测量放大器;:3-混响水池;13-管路系统;14-测试系统;15-第二计算机;16-128路水听器阵列;
图5中:3-混响水池;13-管路系统;16-128路水听器阵列;
图6中:3-混响水池;13-管路系统;16-128路水听器阵列;
图7中:3-混响水池;13-管路系统;16-128路水听器阵列;
图8中:10-压力表;11-水泵;12-流量计;17-消声装置;
本发明公开了一种在混响水池中通过测量安装消声装置前后管路系统出口端的空间平均声压级而得到插入损失来评估管路系统消声装置消声性能的方法,该方法包括以下步骤:(1)选择合适尺寸的混响水池。根据混响水池物理特性可估算混响水池的下限频率,确定混响法有效的测量频率范围。由测量的频率范围需要选择合适尺寸的水池;(2)将未安装消声器的待测管路出水端垂直插入水池中水的液面下,向待测管路系统中注水,使其处于充液状态;(3)采用空间平均方法测量未安装消声装置的待测管路系统空间平均声压级&lt;SPL&gt;A;(4)安装消声装置,其他不变,再次重复步骤(3)测量安装消声器的管路系统空间平均声压级&lt;SPL&gt;B;(5)根据上述步骤中得到&lt;SPL&gt;A,将其与&lt;SPL&gt;B做差可以得到充液管路消声器的插入损失TL;(6)根据测得的插入损失TL对消声器的消声性能进行评价。本发明的评价方法原理简单、操作方便,且对充液管路系统消声器消声性能的评价真实可靠,具有极大的实用价值。
本发明属于减振降噪及声学测量领域,具体涉及在混响水池中利用混响法测量充液管路的插入损失来评价充液管路消声器的消声性能。
传统的管道消声器评价方式采用较多的是双传感器法。双传感器法来自于J.Y.Chung在1980年应用于空气声学中的一项研究。双传感器法是将声源放置在管道的一端,在管道中放置两只传感器,一只靠近声源,一只远离声源。通过传感器测量得到的数据,计算管道声传输时的传递损失,管道的传递损失为:
其中,H12为两个传感器处声压的传递矩阵,Hr为两个传感器所在位置与反射波相关的传递矩阵,|Ht|为传递矩阵的数量级,一样,是分别由原始数据和经过信号系统整合之后的传递矩阵。
专利(CN 106802238 A)--测量消音器传递损失的装置及测量方法和专利(CN103217309A)--非对称管道消声器传递损失测量方法都是采用双传感器法通过测量传递损失对空气管道中的消音器进行评价。
双传感器法在测量空气管道的传递损失中具有广泛的应用,后来被引入到了水声测量中。但是,双传感器法在测量中存在以下问题。第一,双传感器法测量的是管道中某一点的声强,但是由于管道在径向方向同样有声压分布,所以测量得到的这一点并不一定是声强最强的点,所以如果测量的是管道中一个截面的声强的话,测量结果会更准确。第二,双传感器法的两只传感器都放置在管道中,测量时管道内液体的压力脉动会在传感器表面做功,使传感器产生“伪声”,伪声的存在将导致测量结果出现较大的偏差。第三,双传感器法测量的是管道的传递损失。而传递损失只取决于管道的结构,测量结果是管道入射能量与出射能量的比值,这种计算方法没有考虑声源的阻抗与管道出口的负载阻抗的影响。
本专利提出的混响水池充液管路消声器评价方法可解决以上问题。
本发明目的在于提供一种在混响水池中测量充液管路的插入损失来评价管路系统消声器消声性能的方法。
为实现上述发明目的,本发明所述的在混响水池中评价充液管路消声器消声性能的方法,其操作流程如图1,主要通过以下几个步骤来实现:
选择合适尺寸的混响水池。根据混响水池物理特性可估算混响水池的截止频率fs,具体估算方法如下:
若只考虑斜向波,体积为V的混响水池频率低于f的简正波平均总数为:
单位带宽内的简正波数为:
简正波共振峰的平均半功率带宽为:
这里,为水箱的平均阻尼常数。由此可见,简正波共振峰的平均半功率带宽取决于水箱的吸收系数,而:
混响水池混响场条件的截止频率决定于单位带宽内简正波的数目及简正波共振峰的半功率带宽。根据Schroeder截止频率假定,满足混响场条件时,平均共振峰的半功率带宽内包含有三个简正波,因此,混响场条件可表示为:
由此可求得:
通过式(6)可确定混响水池的截止频率,并确定该方法的测量频率范围。
1.混响水池混响时间T60的测量
为确定混响水池的截止频率fs,需测量混响水池的混响时间T60。混响时间的测量采用中断声源法,测量系统附图2所示。由PULSE(3560E)动态信号分析仪中的信号源产生的白噪声信号经功率放大器(B&K2713)放大后加到发射换能器。水听器收到的信号经测量放大器(B&K2692)放大后再送入到PULSE动态信号分析仪便可得到1/3倍频程带宽内的混响时间。系统采用自动触发方式,当声源停止发射后,被测信号下降5dB时系统自动开始记录,然后根据采集的数据计算出混响时间。
混响时间测量中会出现重复偏差和空间偏差。采用中断声源法测量混响时间时,测试信号为白噪声信号,由于其具有随机性,导致在声源终止发声时,其激发的简正波模式及程度也具有随机性,不同模式的混响时间是不同的,因此便产生了混响时间测量的重复偏差。为减少重复偏差,建议每个位置作10次测量并进行平均;同时为减少空间偏差,建议对声源及水听器分别进行多点空间平均,所有测点距离水池壁面及底面至少1.5米,声源及水听器至少取10个点进行空间平均。
按图3连接管路系统,依次连接水泵、抽水软管、管路,并在管路系统中安装流量计及压力表。
将未安装消声装置的待测管路管口出水端放入测量使用的混响水池中,见图3,将管路中注满水;
开泵,使管路系统工作,采用空间平均方法测量未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;A
a.设备布置及连接
按图4布置测试系统,按图5、图6、图7布置水听器。128水听器与128通道测试系统相连,128通道测试系统与128路水听器连接采用的是BNC连接头。
b.测试准备
打开128通道测试系统和电脑,进入电脑打开测试系统软件对128路水听器进行灵敏度校准。
c.测试
开水泵,使管路系统工作。稳定工作3分钟后,采用128通道测试系统测试90秒,采样率为51.2kHz,测量得到每个通道的声压级,采用数据处理软件对采集的数据进行时间平均,再对128个通道的数据进行空间平均,得到空间平均声压级&lt;SPL&gt;A
安装消声装置,如图8,其他不变,再次重复步骤3测量安装消声装置的管路系统空间平均声压级&lt;SPL&gt;B
利用步骤3及步骤4得到的&lt;SPL&gt;A及&lt;SPL&gt;B,根据式(7)可得到充液管路消声器的插入损失TL
TL=&lt;SPL&gt;A-&lt;SPL&gt;B (7)
根据测得的插入损失TL就可以对消声器的消声性能进行评价。
本发明与现有技术相比,其优点在于:(1)不需要在管内布置水听器进行测量,解决了管中声压径向分布不均匀的问题;(2)不需要在管路内部安装测量水听器,消除了脉动压力对水听器的影响;(3)所测结果既与管路结构有关,又与声源阻抗和出口负载有关,评价结果更准确。
图1本发明操作流程图
图2混响水池混响时间测试系统
图3未安装消声装置的实验管路系统
图4测试系统框图
图5水听器布放图
图6水听器布放俯视图
图7水听器布放侧视图
图8安装消声装置的实验管路系统
图中:1测量放大器(B&K 2692);2水听器;3混响水池;4球形换能器;5计算机1;6采集器(PULSE3560E);7功率放大器(B&K 2713);8高位水箱;9软管;10压力表;11水泵;12流量计;13管路系统;14测试系统(DH8306A);15计算机2;16128路水听器阵列;17消声装置。
下面以哈尔滨工程大学水声技术实验室的混响水池为例,对本发明的测量评估方法做详细说明。混响水池池壁为混凝土结构,内壁敷设瓷砖,该水池长15m,宽9m,水面距池底高6m,水温20℃,水中声速1485m/s,混响水池下限频率fs为500Hz。
在500Hz以上可在混响水池中通过测量充液管路系统是否安装消声装置时出口端的空间平均声压级来得到消声装置的插入损失。
连接好管路系统,将未安装消声装置的待测管路管口出水端放入测量使用的混响水池中,见图3,将管路中注满水;
采用空间平均方法测量未安装消声装置的待测管路系统空间平均声压级&lt;SPL&gt;A
a.设备布置及连接
按图4布置测试系统,按图5、图6、图7布置水听器。128水听器与128通道测试系统相连,128通道测试系统与128路水听器连接采用的是BNC连接头。
b.测试准备
打开128通道测试系统和电脑,进入电脑打开测试系统软件对128路水听器进行灵敏度校准。
c.测试
开水泵,使管路系统工作。稳定工作3分钟后,采用128通道测试系统测试90秒,采样率为51.2kHz,测量得到每个通道的声压级,采用数据处理软件对采集的数据进行时间平均,再对128个通道的数据进行空间平均,得到空间平均声压级&lt;SPL&gt;A
安装消声装置,如图8,其他不变,再次重复步骤(3)测量安装消声装置的管路系统空间平均声压级&lt;SPL&gt;B
利用步骤(3)及步骤(4)得到的&lt;SPL&gt;A及&lt;SPL&gt;B,由根据式(7)可得到充液管路消声器的插入损失TL
采用混响水池测量的某充液管路消声装置插入损失结果如图9。

Claims (5)

1.一种混响水池中评价充液管路消声器的方法,其特征在于,包括以下步骤:
(1)选择合适尺寸的混响水池,根据混响水池物理特性计算混响水池的截止频率fs
(2)利用中断声源法测量混响水池的混响时间T60
(3)连接管路系统,依次连接水泵、抽水软管、管路,并在管路系统中安装流量计及压力表;
(4)将未安装消声装置的待测管路管口出水端放入测量使用的混响水池中,且将管路中注满水;
(5)打开水泵,使管路系统工作,采用空间平均方法测量未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;A
(6)安装消声装置,其他各条件不变,重复步骤3-步骤5测量安装消声装置的管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;B
(7)计算充液管路消声器的插入损失TL
(8)根据测得的插入损失TL对消声器的消声性能进行评价。
2.根据权利要求1所述的方法,其特征在于,所述选择合适尺寸的混响水池,根据混响水池物理特性计算混响水池的截止频率fs,包括:
只考虑斜向波,体积为V的混响水池频率低于f的简正波平均总数为:
单位带宽内的简正波数为:
简正波共振峰的平均半功率带宽为:
其中,为水箱的平均阻尼常数,由此可见,简正波共振峰的平均半功率带宽Δf取决于水箱的吸收系数;
其中,T60为混响时间;
混响水池混响场条件的截止频率决定于单位带宽内简正波的数目及简正波共振峰的半功率带宽,根据Schroeder截止频率假定,满足混响场条件时,平均共振峰的半功率带宽内包含有三个简正波,因此,混响场条件表示为:
由此求得:
其中,c0为声波在水中的传播速度,T60为混响时间,混响水池的体积为V。
3.根据权利要求1所述的方法,其特征在于,所述利用中断声源法测量混响水池的混响时间T60,包括:
混响时间测量中会出现重复偏差和空间偏差,为减少重复偏差,每个位置作10次测量并进行平均;同时为减少空间偏差,对声源及水听器分别进行多点空间平均,所有测点距离水池壁面及底面不小于1.5米,声源及水听器取10点进行空间平均。
4.根据权利要求1所述的方法,其特征在于,所述打开水泵,使管路系统工作,采用空间平均方法测量未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级&lt;SPL&gt;A,包括:
(1)布置测试系统与水听器,128路水听器与128通道测试系统相连,128通道测试系统与128路水听器连接采用的是BNC连接头;
(2)打开128通道测试系统和电脑,进入电脑打开测试系统软件对128路水听器进行灵敏度校准;
(3)打开水泵,使管路系统工作,稳定工作3分钟后,采用128通道测试系统测试90秒,采样率为51.2kHz,测量得到每个通道的声压级,采用数据处理软件对采集的数据进行时间平均,再对128个通道的数据进行空间平均,得到空间平均声压级&lt;SPL&gt;A
5.根据权利要求1所述的方法,其特征在于,所述计算充液管路消声器的插入损失TL,包括:
TL=&lt;SPL&gt;A-&lt;SPL&gt;B
其中,&lt;SPL&gt;A为未安装消声装置的待测管路系统在混响水池混响场中的空间平均声压级,&lt;SPL&gt;B为安装消声装置的管路系统在混响水池混响场中的空间平均声压级。
CN201811017337.8A 2018-09-01 2018-09-01 一种混响水池中评价充液管路消声器的方法 Pending CN109324115A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811017337.8A CN109324115A (zh) 2018-09-01 2018-09-01 一种混响水池中评价充液管路消声器的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811017337.8A CN109324115A (zh) 2018-09-01 2018-09-01 一种混响水池中评价充液管路消声器的方法

Publications (1)

Publication Number Publication Date
CN109324115A true CN109324115A (zh) 2019-02-12

Family

ID=65264542

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811017337.8A Pending CN109324115A (zh) 2018-09-01 2018-09-01 一种混响水池中评价充液管路消声器的方法

Country Status (1)

Country Link
CN (1) CN109324115A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255202A (ja) * 2000-03-13 2001-09-21 Suzuki Motor Corp 振動計測装置及び方法
CN103217309A (zh) * 2013-04-03 2013-07-24 哈尔滨工程大学 非对称管道消声器传递损失测量方法
CN103969071A (zh) * 2014-05-09 2014-08-06 同济大学 消声器消声量和压力损失的测量方法及其测量装置
CN104217062A (zh) * 2014-07-10 2014-12-17 中国嘉陵工业股份有限公司(集团) 消声器插入损失计算及优化方法
CN106289753A (zh) * 2016-09-26 2017-01-04 上海声望声学科技股份有限公司 一种消声器检测系统
CN106802238A (zh) * 2017-03-15 2017-06-06 上汽通用汽车有限公司 测量消音器传递损失的装置及测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001255202A (ja) * 2000-03-13 2001-09-21 Suzuki Motor Corp 振動計測装置及び方法
CN103217309A (zh) * 2013-04-03 2013-07-24 哈尔滨工程大学 非对称管道消声器传递损失测量方法
CN103969071A (zh) * 2014-05-09 2014-08-06 同济大学 消声器消声量和压力损失的测量方法及其测量装置
CN104217062A (zh) * 2014-07-10 2014-12-17 中国嘉陵工业股份有限公司(集团) 消声器插入损失计算及优化方法
CN106289753A (zh) * 2016-09-26 2017-01-04 上海声望声学科技股份有限公司 一种消声器检测系统
CN106802238A (zh) * 2017-03-15 2017-06-06 上汽通用汽车有限公司 测量消音器传递损失的装置及测量方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LU XUESONG 等: "Research on the Acoustic Insert Loss in Water Filled Pipes", 《APPLIED MECHANICS AND MATERIALS》 *
尚大晶: "水下复杂声源辐射声功率的混响法测量技术研究", 《万方数据》 *
芦雪松: "弹性充液管道声传输特性研究", 《中国博士学位论文全文数据库 工程科技II辑》 *

Similar Documents

Publication Publication Date Title
KR102189240B1 (ko) 배송관의 누출 모니터링 장치 및 방법
JP2935833B2 (ja) 多回線流量測定装置
US5361636A (en) Apparatus and process for measuring the magnitude of leaks
US7677103B2 (en) Systems and methods for non-destructive testing of tubular systems
JP5292001B2 (ja) 流量計の現場較正用のシステムおよび方法
AU2012225475B2 (en) Apparatus and method for acoustic monitoring of steam quality and flow
CA2716489C (en) Method and system of determining forthcoming failure of transducers
US20110000311A1 (en) Augmented Surface Sensor for Measuring Flow Velocity
US20170328751A1 (en) Method for detection of pipeline vibrations and measuring instrument
CN106018561B (zh) 不同管道结构中声波幅值衰减系数的测量系统及方法
CN107490473A (zh) 一种基于气流温度和流量匹配的消声器测试装置
JP6221624B2 (ja) 流体種類判別装置及び流体種類判別方法
JP6331164B2 (ja) 水道配管における漏水位置検知装置
CN109324115A (zh) 一种混响水池中评价充液管路消声器的方法
CN109324114A (zh) 一种混响水池中水泵及管路声学特性的评价方法
JP7151344B2 (ja) 圧力計測装置
CN106885849A (zh) 一种管道超声导波检测虚假回波的多点测试排除方法
KR101146518B1 (ko) 외장형 다회선 초음파 유량센서 및 그 설치 방법
KR101119998B1 (ko) 다회선 외벽부착식 초음파 트랜스듀서
CN217132288U (zh) 一种高温高压超声流量计的管段结构
RU2789793C1 (ru) Способ определения линейной координаты места возникновения течи в трубопроводе
KR100989515B1 (ko) 마이크로프로세서를 이용한 관로 파이프 구간의 검사 장치 및 그 방법
WO2002086436A1 (en) Device, method and probe in a pipe for acoustically detection of leakage
RU2451932C1 (ru) Способ измерения коррозии трубы магистральных трубопроводов
JP2009270882A (ja) 超音波流量計

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190212