CN109321892A - 一种电阻层及其制备方法 - Google Patents

一种电阻层及其制备方法 Download PDF

Info

Publication number
CN109321892A
CN109321892A CN201811177424.XA CN201811177424A CN109321892A CN 109321892 A CN109321892 A CN 109321892A CN 201811177424 A CN201811177424 A CN 201811177424A CN 109321892 A CN109321892 A CN 109321892A
Authority
CN
China
Prior art keywords
seconds
film
resistive layer
reactor
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811177424.XA
Other languages
English (en)
Other versions
CN109321892B (zh
Inventor
冯昊
龚婷
秦利军
李建国
王维平
惠龙飞
张王乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Modern Chemistry Research Institute
Original Assignee
Xian Modern Chemistry Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Modern Chemistry Research Institute filed Critical Xian Modern Chemistry Research Institute
Priority to CN201811177424.XA priority Critical patent/CN109321892B/zh
Publication of CN109321892A publication Critical patent/CN109321892A/zh
Application granted granted Critical
Publication of CN109321892B publication Critical patent/CN109321892B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种电阻层及其制备方法。电阻层成份为Ru:Al2O3。电阻层Ru:Al2O3原子层沉积方法主要步骤是:(1)将基底材料置于原子层沉积反应器内;(2)N2载气将Ru(Cp)2带入反应器吸附在基底材料表面,吹扫,O2脉冲进入反应器,吹扫,生成Ru薄膜;N2载气将Al(CH3)3带入反应器吸附在Ru薄膜表面,吹扫,H2O脉冲进入反应器,吹扫,生成Al2O3;(3)根据需要的电阻重复执行步骤(2)。本发明方法可以精确调节电阻层掺杂比例以满足标准电阻范围,具有薄膜纯度高,致密均匀,厚度可精确控制的优点,并且无有毒有害气体排出,易于批量化生产。

Description

一种电阻层及其制备方法
技术领域
本发明属于光电成像器件纳米制造技术,具体涉及一种电阻层及其制备方法。
背景技术
微通道板作为一种起始专为微光像增强器开发的具有二维空间分辨能力的紧凑型通道式阵列电子倍增器,可使来自光阴极的光电子获得倍增放大后还原为可见光图像。微通道板是一种电子倍增元件,当高速电子入射到固体表面表层时,连续与体内电子碰撞使电子受到激发而逸出表面,该过程称为二次电子发射。微通道板就是利用材料表面的二次电子倍增性质完成电子图像的增强。伴随着微通道板器件的不断发展,可将基底材料和电阻层及二次电子发射层分开制作,解决了传统微通道板玻璃材料拉制和氢还原处理之间相互牵制的矛盾。化学气相沉积、分子束外延法、磁控溅射法、脉冲激光沉积法、电子束蒸发法等薄膜技术广泛用于微通道板电阻层和二次电子发射层的制作,然而上述技术却难以控制薄膜均匀性、阶梯覆盖率以及厚度,而这直接影响到微通道板性能的稳定性。探索新型的微孔内壁表面功能层的制备技术也是实现微通道板商业化必须要解决的问题。随着纳米材料科学的发展,各种新材料新技术层出不穷,其中一种先进的镀膜技术为微通道板的研制増添了助力:原子层沉积技术(Atomic Layer Deposition,简称ALD)。近年来,ALD由于其在薄膜成分、均一性、厚度、致密性、界面控制等方面的优势而被广泛关注。目前ALD已经成为业界研究热点,成功沉积多种功能薄膜,这些研究不断推动了ALD的发展,拓展了ALD技术在微纳制造领域的应用,尤其是在半导体功能薄膜、光学薄膜制备方面已经得到产业化。
原子层沉积的表面反应具有自限制性,即在每个脉冲期间,气相前驱体只能在沉积表面的原子成键位反应,而所沉积于表面的材料,在物质的量上是一定的,并且恰好以饱和量覆盖表面各部分,沉积的薄膜具有优良的保形性。当第一种反应前驱体输入到基体材料表面并通过化学吸附(饱和吸附)保持在表面。第二种前驱体通入反应器,就会和已吸附在基体材料表面的第一反应前驱体发生反应。两个前驱体之间会发生置换反应并产生相应的副产物,直到表面的第一前驱体完全消耗,反应会自动停止并形成需要的原子层。因此这是一种自限制过程,而且不断重复这种反应形成薄膜。ALD与其它的薄膜工艺相比,具有以下三个特点,首先ALD制备的薄膜具有厚度精确可控、表面均匀性好、保形性优、可在高深宽比沟槽以及通道内沉积等。其次,薄膜的厚度仅取决于原子层沉积的循环次数。由于厚度可以精确控制,薄膜的组分可以在原子层厚度的尺度下裁剪,这在调整混合薄膜的电阻率大小上特别有用。ALD技术可以在较宽的温度范围内实施,因此多种材料构成的多层薄膜可以在同一反应室内依次交替镀制,易于沉积多层薄膜。第三,ALD的自限制特性使得固体前驱物可以方便的用于系统中。另外由于前驱物是交替脉冲通入反应室的,可以精确控制薄膜成分,免除了CVD反应过程中易生成有害颗粒物的不足。同时连续的ALD过程使薄膜无针孔,具有很高的密度。因此,可借助ALD技术完成在很大长径比微通道板孔径内壁表面均匀制备薄膜,解决传统的薄膜制备工艺无法实现的难题。因此,可借助ALD技术制备功能层,极大提高微通道板的性能。
为了实现连续不断的二次电子倍增,必须形成稳定的电场和供给足够的电子,也就要求具有合适的体电阻。作为发射极间分配电位的电位器,施加高电压后,它能够供给足够的电流以补偿所放出的二次电子。若电阻率太高,则不能连续供给足够的电子;太低,玻璃体流过的电流太大,导致材料本身发热,性能不稳定,从而限制微通道板的使用。因此,为了得到合适的体电阻,需要精确调节电阻层成分,到目前为止还没有特定的单一材料符合该电阻范围。ALD技术可以实现具有导体和绝缘体两种材料的充分混合,调节ALD工艺参数就可以制备出符合标准电阻的电阻层100MΩ量级。Elam等人在专利US8921799B2率先采用ALD技术在MCP孔道内沉积复合薄膜,例如W:Al2O3,Mo:Al2O3作为电阻层,W和Mo电阻率约10-5Ωcm,Al2O3电阻率约1014Ωcm,根据应用需求调节两种不同电阻率材料的相对成分,极大的提高了微通道板的增益。然而W:Al2O3,Mo:Al2O3电阻层却存在诸多缺点:一方面前躯体WF6、MoF6呈气态,化学性质不稳定,毒性很大且不易保存,存在巨大的安全隐患,W:Al2O3,Mo:Al2O3的电阻层中含有16.5%F、C元素会影响微通道板的电子增益、空间分辨率、使用寿命等性能,并且ALD反应还会产生AlF3、HF、CHFx氟化物副产物严重腐蚀设备(Anil U.Mane,Jeffrey W.Elam.Atomic layer deposition of W:Al2O3nanocomposite film.ChemicalVapor Deposition,2013,19,186-193)、(Anil U.Mane,Jeffrey W.Elam.Nanostructuredcomposite thin films with tailored resistivity by atomic layer deposition,2013,Proc.of SPIE vol.8818);另一方面金属W的生长速率/周期,Al2O3的生长速率/周期,W生长速率过快必然会导致W薄膜颗粒包覆Al2O3颗粒因此掺杂的不均匀,也会最终影响电阻层性能。专利CN104152868B也采用ALD技术在微通道板合成铝掺杂氧化锌或镁掺杂氧化锌薄膜作为电阻层,而氧化镁和氧化铝与氧化锌的电阻率差别较小,调节范围缩小难以通过ALD周期数控制电阻,此外,制备氧化锌的前躯体二乙基锌在专利中所述的200℃反应温度会发生部分分解。
发明内容
为了解决现有技术存在的不足和缺陷,本发明提供一种电阻层及其制备方法。
本发明开发新的电阻层材料以及对应的ALD工艺参数。贵金属Ru具有良好的热稳定性、抗高温耐腐蚀性、化学稳定性及较低的电阻率(7.6×10-4Ωcm)并且价格低廉,作为电极材料广泛应用在微电子行业。ALD制备Ru薄膜的前驱体Ru(C5H5)2(简写Ru(Cp)2)是一种蒸汽压较高、毒性小、成本低、易保存的固体金属有机化合物,与氧化剂O2发生燃烧反应主要副产物是CO2、H2O及少量的CO。Ru薄膜制备过程中O2的脉冲时间和氧分压决定最终的生成物是Ru或者RuO2,O2的注入量过少配体燃烧不充分表面会有大量的碳化物,过量会生成电阻率较大的RuO2(15×10-4Ωcm),不仅影响到电阻层电阻的调制,过多的O2注入量还会增加绝缘体Al2O3的生长速率,因此O2源的条件控制至关重要。另外ALD Ru可在270-400℃温度范围内实现增长,平均生长速率/周期。ALD技术生长Al2O3薄膜是一个在本领域内已经研究较多的并且成熟的自限制反应,通常使用的前驱体是Al(CH3)3(简写TMA)和H2O,发生置换反应主要的副产物是CH4,沉积温度较宽50-300℃,生长速率约/周期,因此Ru与Al2O3在270-300℃温度区间内实现共同生长。Ru:Al2O3电阻层ALD沉积过程是首先生长一层Ru薄膜然后再生长一层Al2O3薄膜,再一层Ru薄膜一层Al2O3薄膜······一直重复这个过程组成类似夹层结构的电阻层。Ru:Al2O3电阻层掺杂比例表示为:Ru%=Ru/(Ru+Al2O3)100%,Al2O3和Ru是TMA/H2O和Ru(Cp)2/O2的循环周期数。由此本发明采用Ru:Al2O3作为电阻层通过ALD精确调节两种材料的掺杂比例即周期数,不仅满足当下需求还解决了现有技术中存在的问题,将成为微通道板增加增益、延长使用寿命的一条新型技术路线。
对于上述技术任务,本发明采用如下技术方案予以实现:
一种电阻层,成份为Ru:Al2O3,Ru:Al2O3电阻层的1个总周期是由x个子周期的Ru和y个子周期的Al2O3构成,掺杂比例x:y=1:2~20(优选1:2~10)。
Ru:Al2O3电阻层的制备方法采用原子层沉积,具体步骤如下:
第一步,将基底材料置于原子层沉积反应器内,设置反应器温度280℃,压力1Torr,载气N2流量80ml/min,生长Ru薄膜的前躯体为Ru(Cp)2和O2,Ru(Cp)2加热温度为80℃,吹扫Ru(Cp)2蒸汽的N2流量40ml/min,O2分压20-70%(优选50%),生长Al2O3薄膜的前躯体为Al(CH3)3和H2O;
第二步,Ru:Al2O3电阻层的1个总周期是由x个子周期的Ru和y个子周期的Al2O3构成。1个周期的Ru薄膜生长时序:N2载气将Ru(Cp)2蒸汽带入反应器在基底材料表面吸附t1秒,N2吹扫t2秒,O2脉冲进入反应器吸附t3秒,N2吹扫t4秒;1个周期的Al2O3薄膜生长时序:N2载气将Al(CH3)3带入反应器在Ru薄膜表面吸附t1秒,N2吹扫t2秒,H2O脉冲进入反应器吸附t3秒,N2吹扫t4秒;其中,t1为3秒,t3为20-60秒(优选30-40秒),t2和t4为30秒;Al2O3薄膜的生长时序:t1为5秒,t3为5秒,t2和t4为30秒。根据实际需要的掺杂比例,重复执行相应的Ru和Al2O3子周期数;
第三步,重复执行第二步Ru:Al2O3电阻层总周期数5~100个(优选5~60个),电阻层厚度20-70nm(优选20-50nm)。Ru:Al2O3电阻层厚度随着周期数增加而线性增加,平均生长速率/周期。
本发明与现有技术相比的有益技术效果:
1、避免使用WF6、MoF6前驱体引起的安全隐患;
2、Ru:Al2O3薄膜纯度高,无其它杂质,并且Ru和Al2O3薄膜反应条件、生长速率相近,薄膜的均匀性和致密性更为优良。生长Ru薄膜使用的前驱体Ru(Cp)2是一种蒸汽压较高、毒性小、成本低、易保存的金属有机化合物和O2发生燃烧反应主要副产物是CO2、H2O,无有毒有害气体产生;
3、Ru:Al2O3电阻层提高微通道板增益,延长使用寿命,容易实现批量化生产。
附图说明
图1是实施例2掺杂比1:4的Ru:Al2O3电阻层放大5万倍SEM图。
图2是实施例2掺杂比1:4的Ru:Al2O3电阻层放大10万倍SEM图。
图3是实施例6O2脉冲时间为20秒的Ru:Al2O3薄膜生长QCM图。
图4是实施例7O2脉冲时间为30秒的Ru:Al2O3薄膜生长QCM图。
图5是实施例8O2脉冲时间为40秒的Ru:Al2O3薄膜生长QCM图。
图6是实施例9O2脉冲时间为60秒的Ru:Al2O3薄膜生长QCM图。
具体实施方式
下面通过具体实施例对本发明做进一步的解释说明。
实施例1~5
采用高阻仪(B2985A/87A)测量薄膜的电阻。石英晶体微天平(QCM,STM-2)用来原位监测薄膜生长过程。椭偏仪(UVISEL)测试薄膜厚度。扫描电镜(SEM,FEI Quanta 600)观测薄膜形貌。
采用原子层沉积制备Ru:Al2O3电阻层的步骤如下:
第一步,将Si(100)片置于原子层沉积反应器内,反应器温度280℃,压力1Torr,载气N2流量80ml/min,Ru(Cp)2加热温度为80℃,吹扫Ru(Cp)2的N2流量40ml/min,氧分压50%;
第二步,1个周期的Ru薄膜生长时序:N2载气将Ru(Cp)2蒸汽带入反应器在基底材料表面吸附5秒,N2吹扫30秒,O2脉冲进入反应器吸附30秒,N2吹扫30秒;1个周期的Al2O3薄膜生长时序:N2载气将Al(CH3)3带入反应器在Ru薄膜表面吸附5秒,N2吹扫30秒,H2O脉冲进入反应器吸附5秒,N2吹扫30秒;
第三步,第一步和第二步反应条件不变,考察Ru:Al2O3电阻层掺杂比例对电阻的影响(保持Ru和Al2O3周期总数不变,均为300周期),结果如表1所示。
表1 Ru:Al2O3掺杂比例对电阻的影响
从表1中看出Ru:Al2O3掺杂比例对电阻的影响较为明显,随着Ru掺杂比例从1:2减少至1:9时,电阻首先快速从49增长到153MΩ,然后逐渐增加到176MΩ,可以看出通过ALD技术精细调节掺杂比例是可以使电阻调到所需要的范围内,这是其它薄膜制备技术所不具备的优势。当对1:4的掺杂比例成倍扩大2-3倍((4,16)和(6,24)),电阻会逐渐减少到73MΩ,说明多倍数掺杂比例会使薄膜掺杂的不均匀,效果较差。
图1和图2是实施例2掺杂比1:4的Ru:Al2O3电阻层放大5和10万倍SEM图,可以看出薄膜均匀致密组成颗粒的大小均一,不仅得益于ALD对薄膜均匀性的控制程度高,而且在于Ru和Al2O3两种材料生长速率相近。
实施例6~9
采用原子层沉积技术制备Ru:Al2O3电阻层的步骤如下:
第一步,将Si(100)片置于原子层沉积反应器内,反应器温度280℃,压力1Torr,载气N2流量80ml/min,Ru(Cp)2加热温度为80℃,吹扫Ru(Cp)2的N2流量40ml/min,氧分压50%;
第二步,1个周期的Ru薄膜生长时序:N2载气将Ru(Cp)2蒸汽带入反应器在基底材料表面吸附5秒,N2吹扫30秒,O2脉冲进入反应器吸附20~60秒,N2吹扫30秒;1个周期的Al2O3薄膜生长时序:N2载气将Al(CH3)3带入反应器在Ru薄膜表面吸附5秒,N2吹扫30秒,H2O脉冲进入反应器吸附5秒,N2吹扫30秒;
第三步,Ru:Al2O3电阻层掺杂比例x:y=1:4(Ru周期数2个,Al2O3周期数8个),电阻层总周期30个。
考察O2脉冲时间对Ru:Al2O3电阻及电阻层厚度的影响,结果如表2所示。从表2看出,O2脉冲时间对薄膜生长速率和电阻都有明显的影响,在反应过程中增加O2脉冲时间会充分燃烧Ru(Cp)2中的配体,使得薄膜更加致密,然而时间过长也会带来负面作用,容易生成RuO2化合物导致薄膜生长速率逐渐降低,而且增加氧含量。
表2 O2脉冲时间对生长速率和电阻的影响
图3~图6是不同O2脉冲时间下Ru:Al2O3薄膜生长过程QCM图,可以看出Ru:Al2O3薄膜厚度随着ALD周期数呈线性增加是一个完美的ALD过程。在Si(100)基底上验证了Ru:Al2O3电阻层完全可以通过ALD精细调控比例使其在合适的电阻范围。微通道板的组成材料和Si(100)相同,因此ALD技术参数也同样适用于微通道板。
实施例10
采用原子层沉积技术制备Ru:Al2O3电阻层的步骤如下:
第一步,将微通道板置于原子层沉积反应器内,反应器温度280℃,压力1Torr,载气N2流量80ml/min,Ru(Cp)2加热温度为80℃,吹扫Ru(Cp)2的N2流量40ml/min,氧分压50%;
第二步,1个周期的Ru薄膜生长时序:N2载气将Ru(Cp)2蒸汽带入反应器在基底材料表面吸附5秒,N2吹扫30秒,O2脉冲进入反应器吸附30秒,N2吹扫30秒;1个周期的Al2O3薄膜生长时序:N2载气将Al(CH3)3带入反应器在Ru薄膜表面吸附5秒,N2吹扫30秒,H2O脉冲进入反应器吸附5秒,N2吹扫30秒;
第三步,Ru:Al2O3电阻层掺杂比例x:y=1:4(Ru周期数2个,Al2O3周期数8个),电阻层总周期数30个。
经过椭偏仪测试厚度为35nm,电阻180MΩ。

Claims (8)

1.一种电阻层,其特征在于成份为Ru:Al2O3,电阻层的1个总周期是由x个子周期的Ru和y个子周期的Al2O3构成,掺杂比例x:y=1:2~20。
2.根据权利要求1所述的电阻层,其特征在于所述掺杂比例x:y=1:2~10。
3.一种权利要求1或2所述电阻层的制备方法,其特征在于步骤为:
第一步,将基底材料置于原子层沉积反应器内,生长Ru薄膜的前驱体为Ru(Cp)2和O2,O2分压20-70%,生长Al2O3薄膜的前驱体为Al(CH3)3和H2O;
第二步,Ru:Al2O3电阻层的1个总周期是由x个子周期的Ru和y个子周期的Al2O3构成。1个周期的Ru薄膜生长时序:N2载气将Ru(Cp)2蒸汽带入反应器在基底材料表面吸附t1秒,N2吹扫t2秒,O2脉冲进入反应器吸附t3秒,N2吹扫t4秒;1个周期的Al2O3薄膜生长时序:N2载气将Al(CH3)3带入反应器在Ru薄膜表面吸附t1秒,N2吹扫t2秒,H2O脉冲进入反应器吸附t3秒,N2吹扫t4秒。根据实际需要的掺杂比例,重复执行相应的Ru和Al2O3子周期数;
第三步,重复执行第二步Ru:Al2O3电阻层总周期数5~100个,厚度20-70nm。
4.根据权利要求3所述的电阻层的制备方法,其特征在于所述基底材料为Si或微通道板。
5.根据权利要求3所述的电阻层的制备方法,其特征在于所述第一步中O2分压50%。
6.根据权利要求3所述的电阻层的制备方法,其特征在于所述第三步中电阻层总周期数5~60个,厚度20-50nm。
7.根据权利要求3所述的电阻层的制备方法,其特征在于所述第二步中Ru薄膜的生长时序:t1为3秒,t3为20-60秒,t2和t4为30秒;Al2O3薄膜的生长时序:t1为5秒,t3为5秒,t2和t4为30秒。
8.根据权利要求7所述的电阻层的制备方法,其特征在于所述Ru薄膜的生长时序中t3为30-40秒。
CN201811177424.XA 2018-10-10 2018-10-10 一种电阻层及其制备方法 Active CN109321892B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811177424.XA CN109321892B (zh) 2018-10-10 2018-10-10 一种电阻层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811177424.XA CN109321892B (zh) 2018-10-10 2018-10-10 一种电阻层及其制备方法

Publications (2)

Publication Number Publication Date
CN109321892A true CN109321892A (zh) 2019-02-12
CN109321892B CN109321892B (zh) 2021-05-18

Family

ID=65262410

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811177424.XA Active CN109321892B (zh) 2018-10-10 2018-10-10 一种电阻层及其制备方法

Country Status (1)

Country Link
CN (1) CN109321892B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468390A (zh) * 2019-08-02 2019-11-19 北方夜视技术股份有限公司 超大长径比微通道板通道内壁制备功能膜层的方法
CN110981192A (zh) * 2019-12-11 2020-04-10 中国建筑材料科学研究总院有限公司 低温用高稳定温阻特性的微通道板皮料玻璃及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829420A (zh) * 2005-03-02 2006-09-06 三星电机株式会社 其中具有嵌入式电容器的印刷电路板及其制造方法
WO2012121677A1 (en) * 2011-03-09 2012-09-13 Nanyang Technological University Method for depositing gradient films on a substrate surface by atomic layer deposition
CN102903699A (zh) * 2012-10-15 2013-01-30 复旦大学 一种铜互连结构及其制备方法
WO2014113720A1 (en) * 2013-01-20 2014-07-24 Kla-Tencor Corporation Charge drain coating for electron-optical mems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1829420A (zh) * 2005-03-02 2006-09-06 三星电机株式会社 其中具有嵌入式电容器的印刷电路板及其制造方法
WO2012121677A1 (en) * 2011-03-09 2012-09-13 Nanyang Technological University Method for depositing gradient films on a substrate surface by atomic layer deposition
CN102903699A (zh) * 2012-10-15 2013-01-30 复旦大学 一种铜互连结构及其制备方法
WO2014113720A1 (en) * 2013-01-20 2014-07-24 Kla-Tencor Corporation Charge drain coating for electron-optical mems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARTIN KNAUT等: ""Atomic layer deposition for high aspect ratio through silicon vias"", 《MICROELECTRONIC ENGINEERING》 *
TAEHOON CHEON等: ""Atomic Layer Deposition of RuAlO Thin Films as a Diffusion Barrier for Seedless Cu Interconnects"", 《ELECTROCHEMICAL AND SOLID-STATE LETTERS》 *
TITTA AALTONEN等: ""Ruthenium Thin Films Grown by Atomic Layer Deposition"", 《CHEMICAL VAPOR DEPOSITION》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468390A (zh) * 2019-08-02 2019-11-19 北方夜视技术股份有限公司 超大长径比微通道板通道内壁制备功能膜层的方法
CN110981192A (zh) * 2019-12-11 2020-04-10 中国建筑材料科学研究总院有限公司 低温用高稳定温阻特性的微通道板皮料玻璃及其制备方法和应用

Also Published As

Publication number Publication date
CN109321892B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
US8921799B2 (en) Tunable resistance coatings
US9105379B2 (en) Tunable resistance coatings
US8969823B2 (en) Microchannel plate detector and methods for their fabrication
Heil et al. In situ reaction mechanism studies of plasma-assisted atomic layer deposition of Al2O3
Shimizu et al. Hot-wire-assisted atomic layer deposition of a high quality cobalt film using cobaltocene: Elementary reaction analysis on NHx radical formation
Leick et al. Atomic layer deposition of Ru from CpRu (CO) 2Et using O2 gas and O2 plasma
Jackson et al. Optimizing AlF3 atomic layer deposition using trimethylaluminum and TaF5: Application to high voltage Li-ion battery cathodes
Vangelista et al. Low-temperature atomic layer deposition of MgO thin films on Si
Choudhury et al. Molecular layer deposition of alucone films using trimethylaluminum and hydroquinone
Park et al. Effect oxygen exposure on the quality of atomic layer deposition of ruthenium from bis (cyclopentadienyl) ruthenium and oxygen
Tian et al. Aluminum nitride thin films deposited by hydrogen plasma enhanced and thermal atomic layer deposition
Schwille et al. Temperature dependence of the sticking coefficients of bis-diethyl aminosilane and trimethylaluminum in atomic layer deposition
Knaut et al. In-situ real-time ellipsometric investigations during the atomic layer deposition of ruthenium: A process development from [(ethylcyclopentadienyl)(pyrrolyl) ruthenium] and molecular oxygen
Sowa et al. Plasma-enhanced atomic layer deposition of superconducting niobium nitride
CN109321892A (zh) 一种电阻层及其制备方法
Yan et al. Nano-oxide thin films deposited via atomic layer deposition on microchannel plates
Jones et al. Atomic layer deposition of h-BN (0001) multilayers on Ni (111) and chemical vapor deposition of graphene on h-BN (0001)/Ni (111)
Bönhardt et al. Formation of highly conformal spinel lithium titanate thin films based on a novel three-step atomic layer deposition process
Han et al. Atomic layer deposition of cobalt oxide thin films using cyclopentadienylcobalt dicarbonyl and ozone at low temperatures
Thompson et al. Vapor phase deposition of copper films with a Cu (I) β-diketiminate precursor
US20210254209A1 (en) Atomic layer deposition of fluoride thin films
Suh et al. Investigation on spatially separated atomic layer deposition by gas flow simulation and depositing Al2O3 films
Putkonen et al. Magnesium aluminate thin films by atomic layer deposition from organometallic precursors and water
Sahu et al. Effect of helium incorporation on plasma parameters and characteristic properties of hydrogen free carbon films deposited using DC magnetron sputtering
Zhirkov et al. Effect of Si on DC arc plasma generation from Al-Cr and Al-Cr-Si cathodes used in oxygen

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Feng Hao

Inventor after: Gong Ting

Inventor after: Hui Longfei

Inventor after: Qin Lijun

Inventor after: Li Jianguo

Inventor after: Zhang Wangle

Inventor after: Wang Weiping

Inventor before: Feng Hao

Inventor before: Gong Ting

Inventor before: Qin Lijun

Inventor before: Li Jianguo

Inventor before: Wang Weiping

Inventor before: Hui Longfei

Inventor before: Zhang Wangle