CN109302251A - 一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统 - Google Patents

一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统 Download PDF

Info

Publication number
CN109302251A
CN109302251A CN201810798148.2A CN201810798148A CN109302251A CN 109302251 A CN109302251 A CN 109302251A CN 201810798148 A CN201810798148 A CN 201810798148A CN 109302251 A CN109302251 A CN 109302251A
Authority
CN
China
Prior art keywords
modulator
signal
frequency
phase
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810798148.2A
Other languages
English (en)
Other versions
CN109302251B (zh
Inventor
张建军
雷利华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Space Technology CAST
Original Assignee
China Academy of Space Technology CAST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Space Technology CAST filed Critical China Academy of Space Technology CAST
Priority to CN201810798148.2A priority Critical patent/CN109302251B/zh
Publication of CN109302251A publication Critical patent/CN109302251A/zh
Application granted granted Critical
Publication of CN109302251B publication Critical patent/CN109302251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/118Arrangements specific to free-space transmission, i.e. transmission through air or vacuum specially adapted for satellite communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5161Combination of different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/532Polarisation modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统,基于等幅值等间隔多波长的卫星频谱感知方法将光子技术引入到卫星导航电域的频谱感知技术中,采用等幅值、等间隔、多频率波长作为光源,在每个光波长上均实现一个微波频率信道感知,同时结合I/Q解调技术,以实现射频信号的高精度感知和处理,本发明在一个光路上完成并行多通道微波频率感知,极大地降低了系统的体积和复杂度,适用于卫星导航系统中对于星上系统模块的体积、重量和功耗的严格要求,突破传统电域感知器件对导航系统附近频段损耗的限制,解决卫星导航系统超宽带多信号感知处理的问题。

Description

一种基于等幅值等间隔多波长光源的卫星频谱感知方法及 系统
技术领域
本发明涉及卫星导航系统抗干扰与兼容互操作领域,由于太空工作环境 非常严酷,卫星导航系统对体积和重量有严格的限制等原因,特别涉及一种 基于等幅值等间隔多波长光源的并行通道卫星感知方法及系统。
背景技术
全球卫星导航系统(GNSS)是各国为了军事或民用目的,而发展的一套 使用卫星提供位置与时间的系统,由于卫星导航在国家安全和经济与社会发 展中有着不可或缺的重要作用,所以世界各主要大国都竞相发展独立自主的 卫星导航系统。
因为全球卫星导航系统信号有低功率,覆盖面广的特点,卫星仅能以十 瓦特的能量在超过地球表面20,000km的范围传送每种信号,这些能量被分 散在比地球更大的区域,造成接受的信号能量明显少于一毫微瓦特的数量 级,比接收机内噪声产生的能量还低,导致GNSS系统对复杂环境具有较强 的易感染性。在提供精确导航服务的同时,如何提供复杂环境感知能力,避 免干扰和欺骗,提高卫星导航系统整体的稳健性,已成为亟待解决的问题。 卫星导航系统在避免干扰和欺骗上提出的主要技术手段,在空间段主要是点 波束天线增强,在地面终端包括数字调零天线等技术,提高了系统的适应性 和鲁棒性,但这些技术不能根据复杂环境的变化,动态地进行相应性能配置 的切换,智能化能力尚显不足。
从国际电报联盟(ITU)给出的频谱划分可见,当前的卫星导航频率空 间已经非常拥挤,四大卫星导航系统有的频段部分重叠,有的完全重叠,除 了GLONASS的频段没有明显重叠之外,其它三个系统有的频段部分重叠,有 的完全重叠,因此,卫星导航信号相互之间的干扰不可避免。虽然新的导航 信号设计体制提供了缓解卫星导航信号互干扰的方法,但从长远看不能从根 本解决卫星导航信号兼容性问题。
以认知无线电、认知雷达为代表的认知技术的出现为卫星导航系统解决 上述问题提供了新的思路。一方面使传统的卫星导航系统具有了环境感知能 力,系统在突发干扰来到时可以进行有效躲避,具有很强的抗干扰性。另一 方面旨在变革传统卫星导航系统的固定频谱资源的应用模式,导航用户(包 括主用户、次用户)通过该技术提高了频谱利用率。无论是用于抗干扰还是 提高兼容性,对周围频谱环境感知、寻找可用频谱空穴是所有后续工作的基 础。
与此同时,随着现代空间信息网络技术的不断发展,频谱资源的使用日 趋频繁,频谱资源的紧缺是限制现代卫星服务应用持续发展的瓶颈。现代卫 星信息网络的频谱环境复杂性远甚地面通信网。传统的频谱管理方式是选择 固定的频段进行通信,这就要求保证此频段在地球的所有位置都相对干净。 且由于卫星和地面手持终端的功率限制,不能使用过高的传输频率。当前主 流的LEO系统及支持手持终端的GEO系统,用户链路频段主要集中在
200MHz-2GHz之间,这一频段同对也是地面设备使用密集的频率空间。而且 多个卫星系统集中在这个频段内就必须保证相互之间的干扰比较小。因此, 频谱利用的混乱和无线电环境的复杂对新的卫星网络频谱管理方案提出了 要求。
目前针对频谱资源优化的研究都是基于认知无线电在电域上进行的,但 是面对未来宽带高频信号,由于相关高频电子器件的带宽和速率的限制,电 域上的处理技术就显得有些力不从心。在光域上实现全波段资源可重构优化 在国际上仍处于空白,目前还没有相关文献涉及到该领域的研究,光域上的 频谱资源优化研究将有效的克服因“电子瓶颈”所带来的不足,更加高速度、 低成本地实现频谱的感知及优化。
基于电域的频谱感知技术由于受到高频电路响应时间的“电子瓶颈”的 限制,在对这些宽带信号的频谱进行感知时必然会产生延时,从而直接影响 到卫星导航系统的传输速率;其次,基于电域的频谱感知技术在处理如此宽 带宽、高频率的信号时,需要具有匹配各种频带的高灵敏度接收机等一系列 极高频电器件,这无疑在大大增加了难度与成本的同时增加了频谱感知模块 的体积与重量,而卫星系统中对于星上模块的体积、重量和功耗极度敏感。 因此,寻求一种新的技术来取代电域中的频谱感知技术从而实现高带宽、高集成的频谱感知及优化就显得极为迫切。
发明内容
本发明解决的技术问题为:克服现有技术不足,提供一种基于等幅值等 间隔多波长光源的卫星频谱感知方法及系统,本发明将光子技术引入到卫星 导航电域的频谱感知技术中,提出采用等幅值、等间隔、多频率波长作为光 源,在每个光波长上均实现一个微波频率信道感知,同时结合I/Q解调技术, 以实现射频信号的高精度感知和处理,本专利方法可在一个光路上完成并行 多通道微波频率感知,极大地降低了系统的体积和复杂度,适用于卫星导航 系统中对于星上系统模块的体积、重量和功耗的严格要求。在导航卫星上系统模块的体积、重量和功耗受限的条件下,采用光子辅助的卫星频谱感知方 法在光域上对微波信号进行包括滤波或者下变频在内的处理,突破传统电域 感知器件对导航系统附近频段损耗的限制,解决卫星导航系统超宽带多信号 感知处理的问题。
本发明解决的技术方案为:一种基于等幅值等间隔多波长光源的卫星频 谱感知方法,如图10所示,步骤如下:
(1)构建相位调制器与强度调制器的级联模型和偏振调制器与检偏器 输出光谱的模型,根据相位调制器与强度调制器的级联模型和偏振调制器与 检偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率模型,光信号进 入实现平坦等幅值等间隔多频率模型,依次进行偏振调制、强度调制、相位 调制,使输入光信号的频谱被周期性展开,最后进行强度调制,得到等幅值、 等间隔的多频率光载波信号;
(2)将微波信号调制到步骤(1)得到的等幅值、等间隔的多频率光载 波信号上;
(3)进行I/Q解调,实现对步骤(2)调制后的信号进行幅度和相位的 线性解调,从而在一个光路上完成并行多通道微波频率高精度感知。
步骤(1)构建相位调制器与强度调制器的级联模型,具体如下:
相位调制器与强度调制器的级联模型,包括:依次连接的第一相位调制 器PM1、第二强度调制器PM2、第一强度调制器IM1、第二强度调制器IM2, 还包括:与PM1连接的第一微波移相器PS1、与PM2连接的第二微波移相器 PS2,与IM1连接的第三微波移相器,与IM2连接的PS4移相器,CW光分别 经过两个相位调制器PM和两个强度调制器IM;经过相位调制器,将时域信 号的波形映射到频域上,经过强度调制器实现对脉冲的顶部平坦。
步骤(1)构建偏振调制器与检偏器输出光谱的模型,具体如下:
偏振调制器与检偏器输出光谱的模型,包括:依次连接的第一偏振控制 器PC1、偏振调制器PolM、第二偏振控制器PC2、检偏器Pol;直流光通过 第一偏振控制器PC1,进入偏振调制器PolM,将该光信号通过第二个偏振控 制器PC2输入到一个检偏器Pol中,通过检偏器,实现偏振调制后的光信号 由偏振调制到强度调制的转换,最终在光谱上生成有平坦的光谱波长。
步骤(1)根据相位调制器与强度调制器的级联模型和偏振调制器与检 偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率模型,具体如下:
根据相位调制器和偏振调制器级联对光谱的影响,将偏振调制器与相位 调制器将偏振调制器作为一个整体,得出实现平坦等幅值、等间隔、多频率 模型,该模型包括:依次连接的第一偏振控制器PC1、偏振调制器PolM、第 二偏振控制器PC2、检偏器Pol、第三偏振控制器PC3、第一强度调制器PM1 和第一相位控制器IM1;还包括:与第一强度调制器连接的第一微波移相器PS1,与第一相位调制器链接的第二微波移相器PS2;
光信号通过第一个偏振控制器进入到偏振调制器PolM,偏振调制器通过 射频RF信号调制,输出光通过第二个偏振控制器,在通过检偏器Pol时, 检偏器使信号由偏振调制转化为强度调制,检偏器的输出光通过第三个偏振 控制器输入到相位调制器PM中,使输入光的频谱被周期性的展开,从而形 成等间隔的多频率,相位调制器的输出信号输入到强度调制器中,对产生的 多频率进行整形,得到等幅值、等间隔的多频率光信号。
步骤(2)将微波信号调制到步骤(1)得到的等幅值、等间隔的多频率 光载波信号上,具体如下:
通过外置的电光调制器将微波信号调制到光载波信号上,选用马赫一曾 德尔调制器MZM进行调制。
马赫一曾德尔调制器MZM是由一个铌酸锂的衬底和共面型相位调制器 组成,在调制器中,两个分支的相位调制和基材的电光特性有关,每一个分 支的相位变化转为输出光功率的相位变化,假设Y型分支具有理想的3dB特 性,则输出光信号为:
式中,Φ1和Φ2分别为上、下两臂所引入的光信号总相移;分别为 两条臂引入的固定相移;Eout(t)表示输出光信号相位,Ein表示输入光信号相 位,输出光信号功率为:
式中,Iout表示输出光信号功率,Iin表示输入光信号功率;
故MZM的强度传输响应函数为:
步骤(3)通过基于同一连续光源的载波光谱和本振光谱的信号正交解 调模型进行I/Q解调,实现对步骤(2)调制后的信号进行幅度和相位的线 性解调,从而在一个光路上完成并行多通道微波频率高精度感知,具体如下:
先进行相干接收,即在接收端通过光电探测器将步骤(2)调制后的信 号接收下来,接收到的光载波信号首先通过一个光耦合器与一个相干本振信 号进行相干耦合,然后光耦合器的两个输出端与平衡探测器连接,将相干耦 合后的光信号送入平衡探测器进行探测;
经过探测以后的电信号没有直流分量,通过相干接收抑制共模噪声,同 时转换后的光电流强度与信号光幅度和本振光幅度成正比,通过增加本振光 的光功率来提高接收端的中频信号的强度,实现对更低功率的信号光的检 测;在相干接收的基础上,通过使用90°光混合耦合器以及两套平衡探测 器,实现对光载信号的完全解调,本振光和信号光都输入到90°光混合耦 合器中,得到理想的光耦合器的输出光场;通过I/Q解调的方式,在数字域 对信号进行灵活的处理,实现对幅度调制和相位调制的信号进行线性解调。
相干接收时,根据本振信号与接收信号载波的频率是否相同,将相干接 收分为零差检测和外差检测两种接收方式。
零差检测的本振光频率与信号光频率相同,通过光电转换后光载信号会 直接转换到基带上,但是这种检测方式要求本振光与信号光相位锁定,同时 该方式对平衡探测器的平衡度也有着很高的要求。
外差检测的本振光频率与信号光频率不同,通过光电转换后光载信号会 首先下变频到中频上,此时需要对中频信号进行二次基带解调。
一种基于等幅值等间隔多波长光源的卫星频谱感知系统,包括:光载波 信号获得模块、调制模块和线性解调模块;
光载波信号获得模块,构建相位调制器与强度调制器的级联模型和偏振 调制器与检偏器输出光谱的模型,根据相位调制器与强度调制器的级联模型 和偏振调制器与检偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率 模型,光信号进入实现平坦等幅值等间隔多频率模型,依次进行偏振调制、 强度调制、相位调制,使输入光信号的频谱被周期性展开,最后进行强度调 制,得到等幅值、等间隔的多频率光载波信号;
调制模块,将微波信号调制到步骤(1)得到的等幅值、等间隔的多频 率光载波信号上;
线性解调模块,进行I/Q解调,实现对步骤(2)调制后的信号进行幅 度和相位的线性解调,从而在一个光路上完成并行多通道微波频率高精度感 知。
本发明与现有技术相比的优点在于:
(1)本发明由于采用光子技术进行卫星导航电域的频谱感知,将等幅 值、等间隔、多频率波长作为光源,结合I/Q解调技术,在一个光路上完成 并行多通道微波频率高精度感知和处理,可极大降低系统的体积和复杂度, 适用于卫星导航系统。
(2)本发明基于相位调制器、强度调制器与偏振调制器的级联模式,构 建混合调制器级联模式输出光谱信号模型,对产生的多频率进行整形,得到 等幅值、等间隔的多频率光信号。通过相干接收与IQ正交解调进行多通道并 行感知处理。
(3)本发明基于相位调制器、强度调制器与偏振调制器的级联模式,构 建混合调制器级联模式输出光谱信号模型,主要分为基于相位调制器与强度 调制器的级联模式与偏振调制器与检偏器输出光谱的模式两种进行分析。
(4)本发明基于相干接收与IQ正交解调进行多通道并行感知处理,在相 干接收系统中,接收到的光载信号首先通过一个光耦合器与一个相干本振信 号进行相干耦合。然后光耦合器的两个输出端与平衡探测器连接,将相干耦 合后的光信号送入平衡探测器进行探测。经过平衡探测器的光电转换后,得 到I路和Q路下变频到中频的电信号。
(5)本发明基于相位调制器与强度调制器的级联模式,依次连接PM1、PM2、IM1、IM2。CW光分别经过两个相位调制器(PM)和两个强度调制 器(IM)。经过相位调制器,将时域信号的波形映射到频域上,经过强度调 制器实现对脉冲的顶部平坦。
(6)本发明通过偏振调制器与检偏器输出光谱的模型依次连接PC1、 PoMI、PC2、检偏器Pol。直流光通过PC1,进入(PolM),将该光信号通 过PC2输入到检偏器Pol中,实现偏振调制后的光信号由偏振调制到强度调 制的转换,最终在光谱上生成有平坦的光谱波长。
附图说明
图1为本发明的系统示意图;
图2为本发明的相位调制器和强度调制器的级联模式;
图3为本发明的偏振调制器级联模式;
图4为本发明的混合调制器级联模式;
图5为本发明的MZM传输特性;
图6为本发明的抑制载波单边带调制原理图;
图7为本发明的相干接收原理图;
图8为本发明的IQ正交检测原理图;
图9为本发明的方法验证输出信号的频谱图;
图10为本发明的方法流程图。
具体实施方式
本发明一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统, 基于等幅值等间隔多波长的卫星频谱感知方法将光子技术引入到卫星导航 电域的频谱感知技术中,采用等幅值、等间隔、多频率波长作为光源,在每 个光波长上均实现一个微波频率信道感知,同时结合I/Q解调技术,以实现 射频信号的高精度感知和处理,本发明在一个光路上完成并行多通道微波频 率感知,极大地降低了系统的体积和复杂度,适用于卫星导航系统中对于星 上系统模块的体积、重量和功耗的严格要求,突破传统电域感知器件对导航 系统附近频段损耗的限制,解决卫星导航系统超宽带多信号感知处理的问 题。
本发明解决了目前针对频谱资源优化的研究都是基于认知无线电在电 域上进行的,但是面对未来宽带高频信号,由于相关高频电子器件的带宽和 速率的限制,电域上的处理技术就显得有些力不从心的问题。在光域上实现 全波段资源可重构优化在国际上仍处于空白,目前还没有相关文献涉及到该 领域的研究,光域上的频谱资源优化研究将有效的克服因“电子瓶颈”所带 来的不足,更加高速度、低成本地实现频谱的感知及优化。
基于电域的频谱感知技术由于受到高频电路响应时间的“电子瓶颈”的 限制,在对这些宽带信号的频谱进行感知时必然会产生延时,从而直接影响 到卫星导航系统的传输速率;其次,基于电域的频谱感知技术在处理如此宽 带宽、高频率的信号时,需要具有匹配各种频带的高灵敏度接收机等一系列 极高频电器件,这无疑在大大增加了难度与成本的同时增加了频谱感知模块 的体积与重量,而卫星系统中对于星上模块的体积、重量和功耗极度敏感。 因此,寻求一种新的技术来取代电域中的频谱感知技术从而实现高带宽、高集成的频谱感知及优化就显得极为迫切。
本发明解决的技术问题为:克服现有技术不足,提供一种基于等幅值等 间隔多波长光源的卫星频谱感知方法。如图1所示,本发明由等幅值、等间 隔、多频率波长光源与多通道I/Q正交解调组成。其中,等幅值、等间隔、 多频率波长光源采用基于相位调制器、强度调制器与偏振调制器的混合级联 模式,构建混合调制器级联模式输出光谱信号模型,通过对产生的多频率进 行整形,得到等幅值、等间隔的多频率光信号。
基于相位调制器和强度调制器的级联模式如图2所示,图2中CWL为连 续波长激光器,PS为微波移相器,PM为相位调制器,IM为强度调制器, MS为正弦波发生器。依次连接PM1、PM2、IM1、IM2,还包括与PM1连接的 S1与PM2连接的PS2,与IM1连接的PS3与IM2连接的PS4移相器。CW光 分别经过两个相位调制器(PM)和两个强度调制器(IM)。经过相位调制器,将时域信号的波形映射到频域上,经过强度调制器实现对脉冲的顶部平坦。
式(2)可以利用贝塞尔函数展开,展开后可以表示为:
该式进一步简化为:
由此公式可以清楚的看出,由正弦射频信号驱动的相位调制器能够产生 多波长光信号。当级联多个相位调制器时可以得到:
RN=R1+R2+…+Rn,因此n个相位调制器级联的效果可以视为单个相位调 制器,但是相位调制系数增大了,因此可以产生更多的光边带,解决单个射 频输入幅度不够大的问题。但是只是级联多个相位调制器,不能产生平坦的 光子载波,因此需要一个级联强度调制器,通过调节强度调制器的直流偏置 和射频调制系数使得产生的光子载波平坦。生成的多载波表达式如下所示:
基于偏振调制器的级联模式如图3所示,直流光通过第一偏振控制器 PC1,进入偏振调制器(PolM),将该光信号通过第二个偏振控制器(PC2) 输入到一个检偏器(Pol)中,通过检偏器,可以实现偏振调制后的光信号 由偏振调制到强度调制的转换,最终在光谱上生成有平坦的光谱波长。经过 偏振分束器的光信号可以表达为式(3)。由于直流电源稳定性的差异会造 成实验结果的恶化,所以一般采用通过控制PC2来控制在偏振调制器的两臂上引入的固定相位差加上相位差后的表达式为:
将该光信号通过第二个偏振控制器(PC2)输入到一个检偏器(Pol)中, 通过检偏器,可以实现偏振调制后的光信号由偏振调制到强度调制的转换, 转换后的光场强表达式可以表示为:
其中,θ1为偏振调制器(PolM)一个轴与检偏器主轴的夹角,θ1可以通 过控制后面的偏振控制器(PC2)来改变其大小。
根据贝塞尔公式,可以将式(10)展开为下式:
Jk(·)为贝塞尔展开式的第k项系数;
将式(13)输出光强的载波、±1阶项和±2阶项的表达式:
J01)=J21) (18)
|J0(A)[cosα1+sinα1exp(jφ1)]|=|J1(A)[cosα1_sinα1exp(jφ1)]| (19)
即可使得一阶分量和二阶分量、载波分量幅度相等,若令
可以得到下式:
当式(14)与式(19)同时满足时,便可得到下式:
|Eo0|=|Eo1|=|Eo-1|=|Eo2|=|Eo-2| (23)
式(23)即为输出光信号的载波项、±1阶项和±2阶项功率相等的表 达式,光谱上则表现为有平坦的光谱波长出现。
基于相位调制器、强度调制器与偏振调制器的混合级联模式如图4所 示,图中PC1、PC2、PC3为偏振控制器,PolM为偏振调制器,RF为射频信 号发生器,PS为移相器,Pol为检偏器,PM为相位调制器,IM为强度调制 器
由于射频信号对光载波的两个垂直偏振态进行了相位相反的相位调制, 并引入一个相位差,其输出可以由下式表示
式中Ex1、Ex2为两个正交轴上的光场强分量,为输入偏振光两个正交 轴之间的相位差,ω0为光载波的频率,ωw为射频调制信号的频率,α1=πVp/Vπ 为调制系数,Vp为正弦调制信号的幅度,Vπ为偏振调制器的半波电压。
当偏振调制器输出的已调制光信号经过第二个偏振控制器(PC2)通过 检偏器(Pol)时,检偏器会使信号发生由偏振调制向强度调制的转化,检 偏器的输出表达式为:
式中,θ为检偏器的主轴与输入偏振光的一个轴之间的夹角。
将检偏器输出的光信号经过第三个偏振控制器(PC3)和相位调制器 (PM1),并由经过一定相移后的射频(RF)信号进行相位调制,相位调制 的公式为:
Eout=Einexp(jαcosω0t) (26)
其中Ein为输入光载波信号,ω0为正弦信号的频率,β=πV/Vπ为调制系 数,V为正弦信号的幅度,Vπ为相位调制器的半波电压。
由式(26)可知,经过相位调制器后的输出为:
Eo2=Eo1exp(jα2cosω0t) (27)
式中α2为相位调制器的调制系数,将式(27)进行贝塞尔展开,可以 得到下式:
式中Jn(·)为贝塞尔展开式的第n项系数,由式(28)可以看出,最终表 达式中有四个可调参数通过合理控制这四个参数便可以得到平 坦等幅值、等间隔、多频率。
MZM调制器是由一个铌酸锂的衬底和共面型相位调制器组成。在这种调 制器中,两个分支的相位调制和基材的电光特性有关,每一个分支的相位变 化转为输出光功率的相位变化。假设Y型分支具有理想的3dB特性,则输出 光信号为:
式中:
Φ1和Φ2为上下两臂所引入的光信号总相移;为两条臂 引入的固定相移;ΔΦ1和ΔΦ2表示两条臂上分别由射频电信号V1(t)和V2(t)引起 的相位变化;Vπ为相位调制器产生相位为π时的电压,假设两个臂的Vπ相同。
输出光信号功率为:
故MZM的强度传输响应函数为:
为了得到所需的调制方式,MZM一般会加载直流偏置到两条臂上。直流 偏置同样可以改变调制器内光波导部分的折射率,从而在两条臂上分别引入 额外的固定相移。为了表示方便,将这部分额外的固定相移包含在两 个量中,并设表示在加载直流偏置但不加载任何射频信号的 条件下两条臂之间的固定相移差。式(31)可写为:
在两臂分别加载两个独立调制信号V1(t)和V2(t)的情况下,为强度传输函 数的通用表达式.
MZM传输曲线如图5所示。MZM典型的强度传输响应相对于电压值表现为 升余弦函数特性,并且决定了MZM的调制区域,又由直流偏置电压决定, 因此设置不同的直流偏置点,信号处于不同的调制区域。方案为了抑制MZM 的非线性现象,通过调节信号的峰值电压和MZM的直流偏置电压,使加载的 信号落在MZM功率传输函数的正交位置,即-Vπ/2处,并控制调制深度在一定 的范围内,使得MZM工作在线性度高的区域,实现非线性效应的抑制。
抑制载波单边带调制原理如图6所示。从分布式反馈(DFB)激光器产 生的连续波(CW)分成两路,每一路输入到双驱MZM调制器中。产生的连续 波表示为:
其中,P表示CW的平均功率,ωc=2πfc为光载波的中心频率。射频驱 动信号为:
V(t)=VRFsinωRFt·S(t) (34)
其中VRF为射频信号的幅度,ωRF为射频信号频率,S(t)表示要传输 的基带信号。两个MZM都偏置在最大输出工作点,两个调制器相位偏移为 45°。每一个MZM由两个互补信号驱动,上下两支路MZM的输出光信号表 示为:
其中β=πVRF/Vπ为调制因子,β′=πVRFS(t)/Vπ=βS(t).基于贝塞尔展开, 方程(35)与方程(36)可表示为:
其中Jn(n=0,1,2,....)为第一类贝塞尔函数的n阶项,我们可以通 过优化β来获得最佳性能。当β取π/2时,两个输入信号可表示为:
输出信号可表示为:
相干接收的原理如图7所示。单模光纤的传输模式是基模HE11模,接收 机接收到的信号光可由下式表示:
式中Arr和φr分别是信号光的幅度、频率和相位。而本振光的光场可 由下式表达:
Elo=Alo exp(jωlot) (43)
其中Alolo和φlo分别是本振光的幅度、频率和相位。通过偏振控制器 保证信号光和本振光偏振态相同。本振光和信号光都输入到3dB 180°光耦 合器中,那么耦合器的输出光场可以表达为:
由公式(41)我们可以得到耦合器的输出光场分别为:
平衡探测器的上下两臂的光电流信号可以表示为:
那么经过平衡探测器的光电转换后,我们可以得到下变频到中频或者基 带的电信号为:
从上式我们可以看到经过平衡探测以后的电信号没有直流分量,因此通 过相干接收可以抑制共模噪声。同时转换后的光电流强度与信号光幅度和本 振光幅度成正比,因此可以通过增加本振光的光功率来提高接收端的中频信 号的强度,从而实现对更低功率的信号光的检测,因此相干接收具有更高的 灵敏度。
IQ正交检测的原理如图8所示。信号光和本振光的表达式如公式40和 41所示。本振光和信号光都输入到90°光混合耦合器中,理想的光耦合器 的输出光场为:
我们可以得到光混合耦合器的输出光场为:
那么经过平衡探测器的光电转换后,我们可以得到I路和Q路下变频到 中频的电信号为:
然后将两路信号分别进行数字化,然后在数字域上将两路信号进行处 理,首先将两路信号整合成复数形式:
接着通过提取相位角的方式对相位信息进行严格线性解调:
L=Im[ln[i(t)]] (52)
通过I/Q解调的方式,可以在数字域对信号进行灵活的处理,实现对幅 度调制和相位调制的信号进行线性解调。
一种基于等幅值等间隔多波长光源的卫星频谱感知系统,包括:光载波 信号获得模块、调制模块和线性解调模块;
光载波信号获得模块,构建相位调制器与强度调制器的级联模型和偏振 调制器与检偏器输出光谱的模型,根据相位调制器与强度调制器的级联模型 和偏振调制器与检偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率 模型,光信号进入实现平坦等幅值等间隔多频率模型,依次进行偏振调制、 强度调制、相位调制,使输入光信号的频谱被周期性展开,最后进行强度调 制,得到等幅值、等间隔的多频率光载波信号;
调制模块,将微波信号调制到步骤(1)得到的等幅值、等间隔的多频 率光载波信号上;
线性解调模块,进行I/Q解调,实现对步骤(2)调制后的信号进行幅 度和相位的线性解调,从而在一个光路上完成并行多通道微波频率高精度感 知。
优选实施例如下:
一个连续光(优选中心波长为1550.83nm,优选线宽小于1kHz,输出光 功率为15dBm)通过马赫曾德尔调制器调制上一个优选频率为17GHz的正弦 信号(fc=17GHz)。然后通过可编程光滤波器来分开两个频率间隔34GHz的边 带,为后面调制提供相干的种子光。然后每个种子光注入两个级联相位调制 器上。相位调制器上分别调制上优选频率为39.5GHz或者40GHz的射频信号。 如图9所示,验证了基于等幅值等间隔多波长光源的卫星频谱感知方法的相 干下变频和I/Q解调,实现了优选的7信道,500MHz信道间隔,优选频率覆盖范围3.75GHz到7.25GHz的信道化接收机,测频精度高达125kHz,并 且可以实现对多个频点信号的测量。
本发明由于采用光子技术进行卫星导航电域的频谱感知,将等幅值、等 间隔、多频率波长作为光源,结合I/Q解调技术,在一个光路上完成并行多 通道微波频率高精度感知和处理,可极大降低系统的体积和复杂度,适用于 卫星导航系统。
本发明基于相位调制器、强度调制器与偏振调制器的级联模式,构建混 合调制器级联模式输出光谱信号模型,主要分为基于相位调制器与强度调制 器的级联模式与偏振调制器与检偏器输出光谱的模式两种进行分析。
基于相干接收与IQ正交解调进行多通道并行感知处理,在相干接收系统 中,接收到的光载信号首先通过一个光耦合器与一个相干本振信号进行相干 耦合。然后光耦合器的两个输出端与平衡探测器连接,将相干耦合后的光信 号送入平衡探测器进行探测。经过平衡探测器的光电转换后,得到I路和Q路 下变频到中频的电信号。
本发明基于相位调制器与强度调制器的级联模式,依次连接PM1、PM2、 IM1、IM2。CW光分别经过两个相位调制器(PM)和两个强度调制器(IM)。 经过相位调制器,将时域信号的波形映射到频域上,经过强度调制器实现对 脉冲的顶部平坦。通过偏振调制器与检偏器输出光谱的模型依次连接PC1、 PoMI、PC2、检偏器Pol。直流光通过PC1,进入(PolM),将该光信号通 过PC2输入到检偏器Pol中,实现偏振调制后的光信号由偏振调制到强度调 制的转换,最终在光谱上生成有平坦的光谱波长。
基于相位调制器、强度调制器与偏振调制器的级联模式,构建混合调制 器级联模式输出光谱信号模型,对产生的多频率进行整形,得到等幅值、等 间隔的多频率光信号。通过相干接收与IQ正交解调进行多通道并行感知处 理。

Claims (10)

1.一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于步骤如下:
(1)构建相位调制器与强度调制器的级联模型和偏振调制器与检偏器输出光谱的模型,根据相位调制器与强度调制器的级联模型和偏振调制器与检偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率模型,光信号进入实现平坦等幅值等间隔多频率模型,依次进行偏振调制、强度调制、相位调制,使输入光信号的频谱被周期性展开,最后进行强度调制,得到等幅值、等间隔的多频率光载波信号;
(2)将微波信号调制到步骤(1)得到的等幅值、等间隔的多频率光载波信号上;
(3)进行I/Q解调,实现对步骤(2)调制后的信号进行幅度和相位的线性解调,从而在一个光路上完成并行多通道微波频率高精度感知。
2.根据权利要求1所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:步骤(1)构建相位调制器与强度调制器的级联模型,具体如下:
相位调制器与强度调制器的级联模型,包括:依次连接的第一相位调制器PM1、第二强度调制器PM2、第一强度调制器IM1、第二强度调制器IM2,还包括:与PM1连接的第一微波移相器PS1、与PM2连接的第二微波移相器PS2,与IM1连接的第三微波移相器,与IM2连接的PS4移相器,CW光分别经过两个相位调制器PM和两个强度调制器IM;经过相位调制器,将时域信号的波形映射到频域上,经过强度调制器实现对脉冲的顶部平坦。
3.根据权利要求1所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:步骤(1)构建偏振调制器与检偏器输出光谱的模型,具体如下:
偏振调制器与检偏器输出光谱的模型,包括:依次连接的第一偏振控制器PC1、偏振调制器PolM、第二偏振控制器PC2、检偏器Pol;直流光通过第一偏振控制器PC1,进入偏振调制器PolM,将该光信号通过第二个偏振控制器PC2输入到一个检偏器Pol中,通过检偏器,实现偏振调制后的光信号由偏振调制到强度调制的转换,最终在光谱上生成有平坦的光谱波长。
4.根据权利要求1所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:步骤(1)根据相位调制器与强度调制器的级联模型和偏振调制器与检偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率模型,具体如下:
根据相位调制器和偏振调制器级联对光谱的影响,将偏振调制器与相位调制器将偏振调制器作为一个整体,得出实现平坦等幅值、等间隔、多频率模型,该模型包括:依次连接的第一偏振控制器PC1、偏振调制器PolM、第二偏振控制器PC2、检偏器Pol、第三偏振控制器PC3、第一强度调制器PM1和第一相位控制器IM1;还包括:与第一强度调制器连接的第一微波移相器PS1,与第一相位调制器链接的第二微波移相器PS2;
光信号通过第一个偏振控制器进入到偏振调制器PolM,偏振调制器通过射频RF信号调制,输出光通过第二个偏振控制器,在通过检偏器Pol时,检偏器使信号由偏振调制转化为强度调制,检偏器的输出光通过第三个偏振控制器输入到相位调制器PM中,使输入光的频谱被周期性的展开,从而形成等间隔的多频率,相位调制器的输出信号输入到强度调制器中,对产生的多频率进行整形,得到等幅值、等间隔的多频率光信号。
5.根据权利要求1所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:步骤(2)将微波信号调制到步骤(1)得到的等幅值、等间隔的多频率光载波信号上,具体如下:
通过外置的电光调制器将微波信号调制到光载波信号上,选用马赫一曾德尔调制器MZM进行调制。
6.根据权利要求5所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:马赫一曾德尔调制器MZM是由一个铌酸锂的衬底和共面型相位调制器组成,在调制器中,两个分支的相位调制和基材的电光特性有关,每一个分支的相位变化转为输出光功率的相位变化,假设Y型分支具有理想的3dB特性,则输出光信号为:
式中,Φ1和Φ2分别为上、下两臂所引入的光信号总相移;分别为两条臂引入的固定相移;Eout(t)表示输出光信号相位,Ein表示输入光信号相位,输出光信号功率为:
式中,Iout表示输出光信号功率,Iin表示输入光信号功率;
故MZM的强度传输响应函数为:
7.根据权利要求1所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:步骤(3)通过基于同一连续光源的载波光谱和本振光谱的信号正交解调模型进行I/Q解调,实现对步骤(2)调制后的信号进行幅度和相位的线性解调,从而在一个光路上完成并行多通道微波频率高精度感知,具体如下:
先进行相干接收,即在接收端通过光电探测器将步骤(2)调制后的信号接收下来,接收到的光载波信号首先通过一个光耦合器与一个相干本振信号进行相干耦合,然后光耦合器的两个输出端与平衡探测器连接,将相干耦合后的光信号送入平衡探测器进行探测;
经过探测以后的电信号没有直流分量,通过相干接收抑制共模噪声,同时转换后的光电流强度与信号光幅度和本振光幅度成正比,通过增加本振光的光功率来提高接收端的中频信号的强度,实现对更低功率的信号光的检测;在相干接收的基础上,通过使用90°光混合耦合器以及两套平衡探测器,实现对光载信号的完全解调,本振光和信号光都输入到90°光混合耦合器中,得到理想的光耦合器的输出光场;通过I/Q解调的方式,在数字域对信号进行灵活的处理,实现对幅度调制和相位调制的信号进行线性解调。
8.根据权利要求1所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:相干接收时,根据本振信号与接收信号载波的频率是否相同,将相干接收分为零差检测和外差检测两种接收方式。
9.根据权利要求8所述的一种基于等幅值等间隔多波长光源的卫星频谱感知方法,其特征在于:零差检测的本振光频率与信号光频率相同,通过光电转换后光载信号会直接转换到基带上,但是这种检测方式要求本振光与信号光相位锁定,同时该方式对平衡探测器的平衡度也有着很高的要求。
外差检测的本振光频率与信号光频率不同,通过光电转换后光载信号会首先下变频到中频上,此时需要对中频信号进行二次基带解调。
10.一种基于等幅值等间隔多波长光源的卫星频谱感知系统,其特征在于包括:光载波信号获得模块、调制模块和线性解调模块;
光载波信号获得模块,构建相位调制器与强度调制器的级联模型和偏振调制器与检偏器输出光谱的模型,根据相位调制器与强度调制器的级联模型和偏振调制器与检偏器输出光谱的模型,得出实现平坦等幅值等间隔多频率模型,光信号进入实现平坦等幅值等间隔多频率模型,依次进行偏振调制、强度调制、相位调制,使输入光信号的频谱被周期性展开,最后进行强度调制,得到等幅值、等间隔的多频率光载波信号;
调制模块,将微波信号调制到步骤(1)得到的等幅值、等间隔的多频率光载波信号上;
线性解调模块,进行I/Q解调,实现对步骤(2)调制后的信号进行幅度和相位的线性解调,从而在一个光路上完成并行多通道微波频率高精度感知。
CN201810798148.2A 2018-07-19 2018-07-19 一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统 Active CN109302251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810798148.2A CN109302251B (zh) 2018-07-19 2018-07-19 一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810798148.2A CN109302251B (zh) 2018-07-19 2018-07-19 一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统

Publications (2)

Publication Number Publication Date
CN109302251A true CN109302251A (zh) 2019-02-01
CN109302251B CN109302251B (zh) 2021-09-07

Family

ID=65172615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810798148.2A Active CN109302251B (zh) 2018-07-19 2018-07-19 一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统

Country Status (1)

Country Link
CN (1) CN109302251B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932684A (zh) * 2019-03-28 2019-06-25 招商局重庆交通科研设计院有限公司 基于超宽带距离交汇算法的隧道平面定位方法
CN110601755A (zh) * 2019-09-11 2019-12-20 南京航空航天大学 微波光子射频认知系统
CN113612556A (zh) * 2021-07-28 2021-11-05 清华大学 集成多节点频谱感知方法及装置
CN115314063A (zh) * 2021-05-04 2022-11-08 神基投资控股股份有限公司 一种信号整合电路及电子装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638302A (zh) * 2012-03-20 2012-08-15 北京邮电大学 基于相干光频率梳的信道化宽带多频测量系统
JP2014183369A (ja) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp 光送信機、光通信システム、偏波変調方法及びプログラム
CN106341182A (zh) * 2016-09-20 2017-01-18 浙江大学 一种基于光载射频链路的微波源相位噪声测量装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638302A (zh) * 2012-03-20 2012-08-15 北京邮电大学 基于相干光频率梳的信道化宽带多频测量系统
JP2014183369A (ja) * 2013-03-18 2014-09-29 Mitsubishi Electric Corp 光送信機、光通信システム、偏波変調方法及びプログラム
CN106341182A (zh) * 2016-09-20 2017-01-18 浙江大学 一种基于光载射频链路的微波源相位噪声测量装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANNI LIU,ET AL.: "High-rate and low-jitter optical pulse generation based on an optoelectronic oscillator using a cascaded polarization modulator and phase modulator", 《2017 16TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)》 *
JIANJUN ZHANG,ET AL.: "Research on multi-Wavelength optical frequency comb technology based on satellite spectrum sensing", 《2017 IEEE 17TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT)》 *
张建军等: "认知无线电对通信对抗装备建设的启示", 《无线电通信技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932684A (zh) * 2019-03-28 2019-06-25 招商局重庆交通科研设计院有限公司 基于超宽带距离交汇算法的隧道平面定位方法
CN110601755A (zh) * 2019-09-11 2019-12-20 南京航空航天大学 微波光子射频认知系统
CN110601755B (zh) * 2019-09-11 2020-07-31 南京航空航天大学 微波光子射频认知系统
CN115314063A (zh) * 2021-05-04 2022-11-08 神基投资控股股份有限公司 一种信号整合电路及电子装置
CN115314063B (zh) * 2021-05-04 2023-08-29 神基投资控股股份有限公司 一种信号整合电路及电子装置
CN113612556A (zh) * 2021-07-28 2021-11-05 清华大学 集成多节点频谱感知方法及装置

Also Published As

Publication number Publication date
CN109302251B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN109302251A (zh) 一种基于等幅值等间隔多波长光源的卫星频谱感知方法及系统
US9735886B2 (en) Self-coherent robust spectrally efficient optical transmission systems
JP2718677B2 (ja) 光ヘテロダイン受信機
US8295712B2 (en) Optical device and method for optical frequency modulation to optical amplitude modulation conversion
CN104333422B (zh) 一种微波光子混频方法及多功能微波光子混频器
US7697846B2 (en) Method for changing frequency and base station in radio optical fusion communication system
US20120288286A1 (en) Optical receiver for amplitude-modulated signals
US20050175357A1 (en) UWB signal generator using optical FSK modulator
CN110572215B (zh) 光子辅助射频信号接收方法、装置及同时同频全双工系统
CN113162693B (zh) 一种射频自干扰消除的全双工通信系统及方法
CN109150314A (zh) 变频移相一体化光子微波混频装置
Zhai et al. A multichannel phase tunable microwave photonic mixer with high conversion gain and elimination of dispersion-induced power fading
Muthu et al. Optical generation of millimeter waves through frequency decupling using DP-MZM with RoF transmission
CN110149151A (zh) 一种微波信号的二次变频光正交解调方法及系统
Zhu et al. Simultaneously frequency down-conversion, independent multichannel phase shifting and zero-IF receiving using a phase modulator in a sagnac loop and balanced detection
CN112929087B (zh) 镜频抑制混频传输方法及装置
Cao et al. Filter-free photonic microwave I/Q modulator for reconfigurable frequency mixing
US7526209B2 (en) Optical frequency shift keying modulator
GB2131567A (en) Integrated optic arrangement
US7421209B2 (en) Optical wavelength multiplexing FSK modulation method
Lin et al. Photonic microwave multi-band frequency conversion based on a DP-QPSK modulator for satellite communication
JPH0324528A (ja) 光ヘテロダイン受信方法および装置
Kawanishi et al. Ultra-wide-band signal generation using high-speed optical frequency-shift-keying technique
CN112904584A (zh) 可重构微波光子混频装置
CN105591698A (zh) 一种光载无线通信方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant