CN109297921B - 一种修复土壤石油污染中过硫酸钠利用效率的预测方法 - Google Patents

一种修复土壤石油污染中过硫酸钠利用效率的预测方法 Download PDF

Info

Publication number
CN109297921B
CN109297921B CN201810815526.3A CN201810815526A CN109297921B CN 109297921 B CN109297921 B CN 109297921B CN 201810815526 A CN201810815526 A CN 201810815526A CN 109297921 B CN109297921 B CN 109297921B
Authority
CN
China
Prior art keywords
soil
sodium persulfate
petroleum hydrocarbon
remediation
utilization efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810815526.3A
Other languages
English (en)
Other versions
CN109297921A (zh
Inventor
蔡喜运
黄毅
赵小学
席普宇
乔显亮
陈景文
郑永权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810815526.3A priority Critical patent/CN109297921B/zh
Publication of CN109297921A publication Critical patent/CN109297921A/zh
Application granted granted Critical
Publication of CN109297921B publication Critical patent/CN109297921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/241Earth materials for hydrocarbon content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

本发明属于土壤修复技术领域,提供一种过硫酸钠修复土壤石油污染中过硫酸钠利用效率的预测方法。本发明针对过硫酸钠在不同土壤石油烃污染修复中利用效率存在较大差异的问题,考虑到其修复效果受土壤矿质元素含量、土壤有机质含量、石油烃总量及有效态、修复条件等因素影响。开展了系列土壤修复实验,采用多元二次回归的方法,构建了过硫酸钠利用效率与各因素的相关关系模型。并对模型进行验证,证实了模型具有很好的预测能力,可有效预测不同土壤中过硫酸钠的利用效率,对过硫酸钠在土壤石油污染修复中的应用具有指导意义。

Description

一种修复土壤石油污染中过硫酸钠利用效率的预测方法
技术领域
本发明属于土壤污染修复技术领域,具体涉及一种过硫酸钠修复土壤石油污染中过硫酸钠利用效率的预测方法。
背景技术
石油开采和石油化工过程中会由于原油泄漏、落地原油、废水灌溉及含油污泥的不当处置等原因导致土壤石油污染日益严重,造成土壤中微生物群落结构破坏,农产品品质和产量下降,对人体健康造成严重威胁。土壤石油污染是亟需解决的环境问题之一。
石油类污染物组成复杂,浓度分布不均匀,且含有大量的难降解和易吸附的物质(如长链烷烃、多环芳烃等),去除难较大。目前处理土壤石油烃污染普遍使用化学氧化技术,常用的氧化剂有芬顿试剂、高锰酸钾、过氧化钙、过硫酸钠等,其中过硫酸钠以其稳定性好、溶解度高、易传质、活化方式多而被频繁地被用作化学氧化修复技术的氧化剂。专利CN105149338A公开了一种过硫酸钠修复石油污染土壤的方法,利用亚铁盐与紫外光复合活化过硫酸钠,石油去除率高、修复时间短。专利CN106811205A公开了一种过硫酸盐耦合土著微生物刺激修复石油烃污染土壤的方法,利用过硫酸盐对污染土壤氧化处理后,加入土著微生物营养源刺激剂进行修复,该技术修复效率高、费用低、可操作性强。可见,过硫酸钠在土壤石油污染修复中具有良好的环境效益和经济效益。
然而,土壤类型繁多,组成复杂,不同类型污染土壤中石油烃的形态存在较大差异,这些因素会对过硫酸钠的利用效率产生影响,过硫酸钠的利用效率直接影响着土壤污染修复的成本。通过开展土壤修复实验评估过硫酸钠利用效率,操作周期长,且成本较高,因此建立一种预测过硫酸钠修复土壤石油污染中过硫酸钠利用效率的预测方法显得尤为重要。由于土壤组成及性质、土壤中石油烃赋存形态、修复条件这三类因素对修复土壤石油污染过程中过硫酸钠利用有显著影响,基于土壤组成及性质、土壤中石油烃的赋存形态、修复条件,构建过硫酸钠修复土壤石油污染中过硫酸钠利用效率的预测模型,对于过硫酸钠在土壤石油污染修复中的应用具有很好的指导意义。
发明内容
本发明建立了一种通过土壤组分及石油烃赋存形态和修复条件预测过硫酸钠修复土壤石油污染中过硫酸钠利用效率的方法。该方法通过测定土壤组分、石油烃赋存形态,建立过硫酸钠利用效率与土壤组分、石油烃总量、修复条件之间的相关关系模型,进而预测过硫酸钠修复土壤石油污染中过硫酸钠利用效率。
本发明的技术方案:
一种过硫酸钠修复土壤石油污染中过硫酸钠利用效率的预测方法,步骤如下:
(1)土壤组分、性质及污染物赋存形态的测定
获取土壤过渡金属元素含量、土壤有机质含量、土壤pH值、土壤石油烃总浓度及有效态浓度;土壤的过渡金属元素含量通过X射线荧光分析仪测定,过渡金属元素包括钛、铁、锰中的一种或两种以上混合;土壤有机质含量通过重铬酸钾容量法测定;土壤pH值依据标准(NY/T 1377-2007)采用2.5:1的水土比进行测定;土壤石油烃总浓度通过四氯化碳震荡提取,红外分光测油仪测定;土壤石油烃有效态浓度通过羟丙基-β-环糊精提取,红外分光测油仪测定;
(2)不同修复条件下的过硫酸钠利用效率的测定
采用均匀设计方法开展土壤石油烃修复,过硫酸钠用量为土壤质量的 5%~30%,水土比为0.5~3,在25℃恒温震荡条件下进行修复;48h后将修复的土壤离心脱水、阴干,阴干后土壤通过四氯化碳震荡提取,经红外分光测油仪测定石油烃残留量,并通过土壤含水率校正土壤石油烃残留量,计算过硫酸钠的利用效率;
(3)过硫酸钠利用效率预测模型的建立
以土壤石油烃降解率为因变量,将土壤过渡金属元素含量、土壤有机质含量、土壤石油烃总浓度、土壤石油烃有效态浓度、土壤石油烃有效态浓度占土壤石油烃总浓度的百分比、过硫酸钠用量和水土比纳入自变量进行回归分析,考虑到各变量可能存在交互作用,采用多元二次回归进行建模,剔除p>0.05的不显著项,得到最优模型,依据回归分析结果计算出过硫酸钠的利用效率,并分析计算值与实测值的线性拟合结果;
过硫酸钠修复石油烃污染土壤中过硫酸钠利用效率的预测模型:
y=-475.34+1.16X1X6-0.58X1X3+15.70X5 2-1.33X1X5+14.29X1-0.19X1 2+115.52X4-21.43X4X5,R2=0.784,n=115;
其中:X1为土壤石油烃总浓度;X3为土壤有机质含量;X4为土壤pH值; X5为过硫酸钠用量取Ln值,X6为土壤Ti含量。
本发明的有益效果:本发明考虑土壤组分及石油烃赋存形态对土壤石油污染修复过程中过硫酸钠利用效率的影响,采用多元二次回归的方法建立土壤组分、石油烃赋存形态、修复条件与土壤石油烃降解率之间的相关关系模型,采用石油烃总浓度、石油烃有效态浓度、土壤有机质含量、土壤pH、土壤钛、锰元素含量、过硫酸钠用量来预测过硫酸钠利用效率。本发明是一种操作简单、预测性好且适用性强的预测技术,对过硫酸钠在土壤石油烃污染修复中的应用具有很好的指导意义。
附图说明
图1为模型的实验值与预测值对比图。
图2为模型验证图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的实施方式。
实施例1多种土壤石油烃污染土壤的组成及性质
土壤的矿质组成通过X射线荧光分析仪进行测定,土壤pH根据标准NY/T 1377-2007测定,土壤有机质含量通过重铬酸钾容量法测定。土壤石油烃总量经四氯化碳震荡提取,硅酸镁除杂、无水硫酸钠干燥后,通过红外分光测油仪测定样品中石油烃。石油烃有效态浓度经环糊精溶液提取、四氯化碳萃取、硅酸镁除杂、无水硫酸钠干燥后,通过红外分光测油仪测定。实验土壤性质如表1 所示。
表1实验所用土壤的组成及性质
Figure BDA0001740221070000041
Figure BDA0001740221070000051
实施例2不同修复条件下的过硫酸钠利用效率的测定
将污染土壤至于玻璃离心管中,其中加入5%-30%的过硫酸钠,水土比为 0.5~3,于25℃恒温震荡摇床内培养48h,土壤阴干后,通过实施例1所述方法测定样品中石油烃残留,同时测定土壤含水率P,计算过硫酸钠利用效率Y,以每千克过硫酸钠降解的石油烃的质量计算,其计算公式如下。
Figure BDA0001740221070000052
Figure BDA0001740221070000053
其中,M1为称取土壤的铝盒质量,M2为铝盒和土壤的总重量,M3为烘干后土壤和铝盒的总重量,C0为未修复土壤中石油烃总量,Ct为修复后土壤中石油烃残留,P0为未修复土壤阴干后的含水率,Pt为修复后土壤阴干后的含水率,D0为土壤中过硫酸钠加入浓度,Dt为土壤中过硫酸钠残留浓度,M为修复实验土壤质量。
通过实验测得的过硫酸钠利用效率如表2所示。
表2修复实验参数及过硫酸钠利用效率
Figure BDA0001740221070000054
Figure BDA0001740221070000061
Figure BDA0001740221070000071
Figure BDA0001740221070000081
Figure BDA0001740221070000091
Figure BDA0001740221070000101
实施例3过硫酸钠利用效率预测模型的建立
将土壤组成和性质、石油烃赋存形态、修复条件作为自变量,土壤石油烃降解率作为因变量构建多元二次回归模型,剔除不显著的项(p>0.05),以研究土壤组成和性质及修复条件对过硫酸钠利用效率的影响。具体构建模型代表符号如表3所示。
表3方程中各项相关信息
Figure BDA0001740221070000111
构建的预测模型方程如下,依据回归分析结果计算得到的过硫酸钠利用效率,并分析该预测值与实际值之间的拟合结果(图1),建立基于土壤组成性质及修复条件预测土壤石油污染修复中过硫酸钠利用效率的方法。
过硫酸钠利用效率预测模型:
y=-475.34+1.16X1X6-0.58X1X3+15.70X5 2-1.33X1X5+14.29X1-0.19X1 2+115.52X4-21.43X4X5,R2=0.784,n=115;
其中:X1为土壤石油烃总浓度;X3为土壤有机质含量;X4为土壤pH值; X5为过硫酸钠用量取Ln值,X6为土壤Ti含量。
实施例4过硫酸钠利用效率预测模型验证
实验土壤通过异于表2中修复条件的修复实验,得到过硫酸钠利用效率,同时将实验参数代入建立的模型中得到预测值,将过硫酸钠利用效率的实验值与预测值进行线性拟合(图2),拟合结果:y=0.89x-2.76,(R2=0.83,n=23)证明本模型对土壤石油污染修复中过硫酸钠利用效率具有很好的预测效果。

Claims (1)

1.一种过硫酸钠修复土壤石油污染中过硫酸钠利用效率的预测方法,其特征在于,步骤如下:
(1)土壤组分、性质及污染物赋存形态的测定
获取土壤过渡金属元素含量、土壤有机质含量、土壤pH值、土壤石油烃总浓度及有效态浓度;土壤的过渡金属元素含量通过X射线荧光分析仪测定,过渡金属元素包括钛、铁、锰中的一种或两种以上混合;土壤有机质含量通过重铬酸钾容量法测定;土壤pH值依据标准采用2.5:1的水土比进行测定;土壤石油烃总浓度通过四氯化碳震荡提取,红外分光测油仪测定;土壤石油烃有效态浓度通过羟丙基-β-环糊精提取,红外分光测油仪测定;
(2)不同修复条件下的过硫酸钠利用效率的测定
采用均匀设计方法开展土壤石油烃修复,过硫酸钠用量为土壤质量的5%~30%,水土比为0.5~3,在25℃恒温震荡条件下进行修复;48h后将修复的土壤离心脱水、阴干,阴干后土壤通过四氯化碳震荡提取,经红外分光测油仪测定石油烃残留量,并通过土壤含水率校正土壤石油烃残留量,计算过硫酸钠的利用效率,其计算公式如下:
Figure FDA0002657185700000011
Figure FDA0002657185700000012
其中,M1为称取土壤的铝盒质量,M2为铝盒和土壤的总重量,M3为烘干后土壤和铝盒的总重量,C0为未修复土壤中石油烃总量,Ct为修复后土壤中石油烃残留,P0为未修复土壤阴干后的含水率,Pt为修复后土壤阴干后的含水率,D0为土壤中过硫酸钠加入浓度,Dt为土壤中过硫酸钠残留浓度,M为修复实验土壤质量;
(3)过硫酸钠利用效率预测模型的建立
以土壤石油烃降解率为因变量,将土壤过渡金属元素含量、土壤有机质含量、土壤石油烃总浓度、土壤石油烃有效态浓度、土壤石油烃有效态浓度占土壤石油烃总浓度的百分比、过硫酸钠用量和水土比纳入自变量进行回归分析,考虑到各变量可能存在交互作用,采用多元二次回归进行建模,剔除p>0.05的不显著项,得到最优模型,依据回归分析结果计算出过硫酸钠的利用效率,并分析计算值与实测值的线性拟合结果;
过硫酸钠修复石油烃污染土壤中过硫酸钠利用效率的预测模型:
y=-475.34+1.16X1X6-0.58X1X3+15.70X5 2-1.33X1X5+14.29X1-0.19X1 2+115.52X4-21.43X4X5,R2=0.784,n=115;
其中:X1为土壤石油烃总浓度;X3为土壤有机质含量;X4为土壤pH值;X5为过硫酸钠用量取Ln值,X6为土壤Ti含量。
CN201810815526.3A 2018-07-24 2018-07-24 一种修复土壤石油污染中过硫酸钠利用效率的预测方法 Active CN109297921B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810815526.3A CN109297921B (zh) 2018-07-24 2018-07-24 一种修复土壤石油污染中过硫酸钠利用效率的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810815526.3A CN109297921B (zh) 2018-07-24 2018-07-24 一种修复土壤石油污染中过硫酸钠利用效率的预测方法

Publications (2)

Publication Number Publication Date
CN109297921A CN109297921A (zh) 2019-02-01
CN109297921B true CN109297921B (zh) 2020-11-13

Family

ID=65167836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810815526.3A Active CN109297921B (zh) 2018-07-24 2018-07-24 一种修复土壤石油污染中过硫酸钠利用效率的预测方法

Country Status (1)

Country Link
CN (1) CN109297921B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173089A (ja) * 2010-02-25 2011-09-08 Kurita Water Ind Ltd 汚染土壌及び/又は地下水の浄化方法
CN102798605A (zh) * 2012-06-29 2012-11-28 苏州国环环境检测有限公司 红外分光光度法测定水样中油类物质的方法
CN104267056A (zh) * 2014-10-15 2015-01-07 苏州工业职业技术学院 用于测试土壤重金属污染的x荧光测试仪
CN106811205A (zh) * 2016-12-21 2017-06-09 中国石油天然气集团公司 过硫酸盐耦合土著微生物刺激修复石油烃污染土壤的方法
CN108160694A (zh) * 2017-12-26 2018-06-15 北京宜为凯姆环境技术有限公司 用于环境修复的过硫酸盐的复合活化方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173089A (ja) * 2010-02-25 2011-09-08 Kurita Water Ind Ltd 汚染土壌及び/又は地下水の浄化方法
CN102798605A (zh) * 2012-06-29 2012-11-28 苏州国环环境检测有限公司 红外分光光度法测定水样中油类物质的方法
CN104267056A (zh) * 2014-10-15 2015-01-07 苏州工业职业技术学院 用于测试土壤重金属污染的x荧光测试仪
CN106811205A (zh) * 2016-12-21 2017-06-09 中国石油天然气集团公司 过硫酸盐耦合土著微生物刺激修复石油烃污染土壤的方法
CN108160694A (zh) * 2017-12-26 2018-06-15 北京宜为凯姆环境技术有限公司 用于环境修复的过硫酸盐的复合活化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
石油污染土壤修复技术研究现状与展望;李佳等;《石油学报(石油加工)》;20170930;第33卷(第5期);第811-833页 *

Also Published As

Publication number Publication date
CN109297921A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN109298002B (zh) 一种过硫酸钠修复石油烃污染土壤降解率的预测方法
Wu et al. Fluorescent characteristics and metal binding properties of individual molecular weight fractions in municipal solid waste leachate
Bianco et al. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method
Cuypers et al. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments
Rosales et al. Application of central composite face-centered design and response surface methodology for the optimization of electro-Fenton decolorization of Azure B dye
Lv et al. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site
Sanroman et al. Decolourisation of textile indigo dye by DC electric current
Imbierowicz et al. Kinetic model of excess activated sludge thermohydrolysis
Kwak et al. Estimation of biochemical oxygen demand based on dissolved organic carbon, UV absorption, and fluorescence measurements
Uhmann et al. Potential benefit of surfactants in a hydrocarbon contaminated soil washing process: Fluorescence spectroscopy based assessment
Jednak et al. Transformation and synthesis of humic substances during bioremediation of petroleum hydrocarbons
Dal Mas et al. Quantifying material flow of oily sludge in China and its implications
CN109297921B (zh) 一种修复土壤石油污染中过硫酸钠利用效率的预测方法
Sikander et al. Sustainable practices for reduction of environmental footprint in tanneries of Pakistan
Luo et al. Advanced oxidation processes and selection of industrial water source: A new sight from natural organic matter
Fernandes et al. Effluents from anaerobic digestion of organic wastes: treatment by chemical and electrochemical processes
Wang et al. Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network
Alenezi et al. Prediction of adsorption parameters for hydrogen sulfide removal from synthetic wastewater using Box-Behnken design
Cutright et al. Remediation of PAH-contaminated soil using Achromobacter sp.
Sun et al. Elemental sulfur corrosion and inhibition in the presence of sulfur solvent
CN114589197A (zh) 一种低温加热强化土壤中有机污染物增溶脱附的方法
Falciglia et al. Chemically assisted 2.45 GHz microwave irradiation for the simultaneous removal of mercury and organics from contaminated marine sediments
Qaderi et al. Cost estimation for application of ultrasonication–ozonation hybrid process in remediation of PAH-contaminated soil
Yang et al. Hydrocarbons removal and microbial community succession in petroleum-contaminated soil under hydrogen peroxide treatment
Chesnaux Analytical closed-form solutions for assessing pumping cycles, times, and costs required for NAPL remediation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant