CN109297917A - 一种以双蠕动泵体系为核心的微流控氨氮监测流路体系 - Google Patents

一种以双蠕动泵体系为核心的微流控氨氮监测流路体系 Download PDF

Info

Publication number
CN109297917A
CN109297917A CN201811422955.0A CN201811422955A CN109297917A CN 109297917 A CN109297917 A CN 109297917A CN 201811422955 A CN201811422955 A CN 201811422955A CN 109297917 A CN109297917 A CN 109297917A
Authority
CN
China
Prior art keywords
tube side
peristaltic pump
micro
chip
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811422955.0A
Other languages
English (en)
Other versions
CN109297917B (zh
Inventor
朱坚磊
曾令春
孙世烨
张健旗
王康伟
林志群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Veelang Environment Technology Co Ltd
Original Assignee
Zhejiang Veelang Environment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Veelang Environment Technology Co Ltd filed Critical Zhejiang Veelang Environment Technology Co Ltd
Priority to CN201811422955.0A priority Critical patent/CN109297917B/zh
Publication of CN109297917A publication Critical patent/CN109297917A/zh
Application granted granted Critical
Publication of CN109297917B publication Critical patent/CN109297917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本发明涉及水质监测领域。一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,包括输液系统、微流控芯片和氨氮监测装置;输液系统包括清水管程、水样管程、试剂管程、主蠕动泵和次蠕动泵;主蠕动泵分别与水样管程和试剂管程连接,次蠕动泵的进液端分别与清水管程和水样管程连接,次蠕动泵的出液端与水样管程连接;微流控芯片包括玻璃芯片本体,玻璃芯片本体的内部设有芯片流道,芯片流道分别与第一水样管程和试剂管程连接,芯片流道包括进液段、混合段和出液段;混合段内设有曲线管程;出液段与氨氮监测装置相连接。本发明的有益效果是:以达到小型化,微型化,便捷化,微量进样,快速检测的目的对水质氨氮进行全自动在线监测。

Description

一种以双蠕动泵体系为核心的微流控氨氮监测流路体系
技术领域
本发明涉及水质监测领域,尤其涉及一种以双蠕动泵体系为核心的微流控氨氮监测流路体系。
背景技术
环境水质在线监测已经成为我国环保领域的重点工作。氨氮作为常规水质监测中的营养盐类的重要指标之一,更是得到了广泛的应用。但现阶段设备均以大机箱顺序进样监测为主,试剂消耗量均在1-2mL/次。 试剂消耗量较大,运维成本高,并且对运行站房条件要求较高,难以用于如海上,湖面,河滩等复杂工况。并且在现有的小型便携式水质在线监测设备中,以水质氨氮为例。已有电化学离子选择电极设备、试剂盒类检测器。但均有不同程度弱点。其中电化学设备抗干扰能力及平行稳定性较差,数据置信度不高。试剂盒类测试手段精度不足,且以肉眼观察显色产生误差很大,更需要手动操作,无法进行无人在线监测。所以需要更加精确,稳定,小型化的水质在线监测仪器。
微流控芯片技术是用微机电技术在一张微芯片上通过一定的加工手段,实现包括采样,稀释,加试剂,反应,分离,检测等功能。具有广泛的适用性及应用前景。微流控分析系统具有极高的效率,芯片可以在数秒至数十秒时间内自动完成测定,分离或其他更复杂的操作。分析和分离速度常高于宏观分析方法一至两个数量级。以氨氮测试为例,常规在线监测氨氮仪器测试时间通常需要20min,而微流控分析系统可以在2分钟之内即可完成检测。并且微流控分析试样与试剂消耗极小。常规仪器消耗试剂通常为1-2mL每次,而微流控技术每次进样不超过100μL。 由于芯片进样,结构可缩小至可便捷携带的水平。现有在线监测技术通常为蠕动泵动力-多通阀进样-石英检测池检测技术手段作为全自动在线检测的技术核心。该技术成熟稳定,且应用广泛。但依然存在体积过大,试剂消耗量高,废液量大,测试时间长等缺陷。
发明内容
为了解决上述问题,本发明的目的在于提供一种以双蠕动泵体系为核心的微流控氨氮监测流路体系:以微流控芯片技术为核心,构建一套微型全分析系统对水质氨氮进行全自动在线监测。以达到小型化,微型化,便捷化,微量进样,快速检测的目的。
为了实现上述的目的,本发明采用了以下的技术方案:
一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,包括输液系统、微流控芯片和氨氮监测装置;微流控芯片设置在输液系统和氨氮监测装置之间,其特征在于,所述的输液系统包括清水管程、第一水样管程、第二水样管程、试剂管程、主蠕动泵和次蠕动泵;主蠕动泵分别与第一水样管程和试剂管程连接,次蠕动泵的进液端通过三通阀分别与清水管程和第二水样管程连接,次蠕动泵的出液端与主蠕动泵出液端中的第一水样管程连接;所述的微流控芯片包括玻璃芯片本体,玻璃芯片本体的内部设有芯片流道,芯片流道分别与第一水样管程和试剂管程连接,芯片流道包括沿流体输送方向依次连接的进液段、混合段和出液段;所述的混合段内设有曲线管程,所述的出液段与氨氮监测装置相连接。以微流控芯片技术为核心,构建一套微型全分析系统对水质氨氮进行全自动在线监测。以达到小型化,微型化,便捷化,微量进样,快速检测的目的。
作为优选,所述的试剂管程包括第一试剂管程和第二试剂管程;第一试剂管程与主蠕动泵连接,第二试剂管程与主蠕动泵连接。
作为优选,所述的第一试剂管程和第二试剂管程与芯片流道的进液段的管程交汇于同一点;所述的第一水样管程与芯片流道的混合段管程的中前部相连接。第一试剂和第二试剂先行混合后再与水样混合,水样单独替换过程中由于长距离隔绝不会反向污染第一试剂和第二试剂的管路,增加流路系统稳定性。
作为优选,所述的输液系统还包括清水源、水样液源、第一试剂液源和第二试剂液源;所述的清水源与清水管程相连接;所述的水样液源一端与第一水样管程相连接,水样液源另一端与第二水样管程相连接;所述的第一试剂液源与第一试剂管程相连接;所述的第二试剂液源与第二试剂管程相连接。
作为优选,所述的芯片流道的孔径为0.5~1mm。用于更好的连接输送。
作为优选,所述的氨氮监测装置包括基座,以及设置在基座上的流通池、进水管路、出水管路、LED灯源和光电检测组件;所述的流通池包括由黑色不透光有机玻璃构成的主体,主体内部设有流道,流道包括输入段、检测段和输出段;输入段、检测段和输出段的两端部均开设在主体侧壁上,输入段的末端部及输出段的起始端部分别与检测段的两端部相连通,且连通部位的主体侧壁通过透明玻璃片封闭;所述的检测段呈直线形设置,输入段、输出段与检测段所构成的夹角为锐角;进水管路的始端连接在微流控芯片的输出端上,末端连接在流通池的输入段始端部上,出水管路连接在输出段的末端部;所述的LED灯源和光电检测组件分别对应于检测段的两端部,并且LED灯源的投射方向沿检测段指向光电检测组件。可以保证试剂可以在流动中快速替换,快速检测得出所测数据。
作为优选,所述的流通池的主体为长方体,流道的输入段、检测段和输出段处于同一平面上;检测段的两端部分别开设在相对两侧壁中心处,输入段的始端部及输出段的末端部开设在另外两相对侧壁的中心处。采用了Z型流通进样设计,可以有效的避免气泡产生和液体滞留的现象。
作为优选,所述的流通池四周的基座上还设有两个管接头固定座和两个光纤固定座,进水管路和出水管路通过管接头固定座固定,LED灯源和光电检测组件通过光纤固定座固定。有利于固定光纤及水路接头,防止液体泄漏。
作为优选,所述的述氨氮监测装置还包括上盖,上盖覆盖在流通池、管接头固定座和光纤固定座上方。更好的起到固定作用。
与现有技术相比较,本发明的有益效果是:
(1)检测速度快,现有产品需要20min,本产品仅需4min;
(2)试剂消耗量小,试剂使用量约100微升,常规仪器耗量为1mL。约在十分之一左右。试剂耗量小,成本降低,污染减小;
(3)结构小巧且可便携携带。由于体积及重量的整体减小。可以实现便携携带。并且可适用于海洋、湖泊浮漂等恶劣工况;
(4)双蠕动泵在保证整体结构尽可能小的情况下,实现了水样中氨氮指标的测试,水样的实时替换,水样数据的空白检测。扣除水样色浊度对测试数据的影响。提高了测试精度,稳定性,重复性及,减小了测试过程中的记忆效应;
(5)以多联蠕动泵为核心的流路体系,使对多通阀的要求大幅降低,微流控芯片的使用大幅减少对三通阀等多通阀数量上的需求。使得整体流路大为简洁,不仅降低成本,而且精简流路可以减小结构,便于海洋,湖泊等恶劣工况使用。
附图说明
图1为本发明的结构示意图。
图2为微流控芯片的结构示意图。
图3为氨氮监测装置(无上盖)的结构示意图。
图4为氨氮监测装置(有上盖)的结构示意图。
图5为流通池的结构示意图。
具体实施方式
为使本发明更明显易懂,配合附图作详细说明如下。
如图1所示,一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,包括输液系统1、微流控芯片2和氨氮监测装置3,微流控芯片2设置在输液系统1和氨氮监测装置3之间。输液系统1包括清水管程11、第一水样管程12、第二水样管程121、试剂管程13、主蠕动泵14和次蠕动泵15,试剂管程13包括第一试剂管程131和第二试剂管程132。主蠕动泵14为三联蠕动泵,大幅减少对三通阀151等多通阀数量上的需求,使得整体流路大为简洁,不仅降低成本,而且精简流路可以减小结构。主蠕动泵14与第一水样管程12、第一试剂管程131、第二试剂管程132分别连接,次蠕动泵15的进液端通过三通阀151分别与清水管程11和第二水样管程121连接,次蠕动泵15的出液端与主蠕动泵14出液端中的第一水样管程12连接。输液系统1还包括清水源111、水样液源120、第一试剂液源133和第二试剂液源134;清水源111与清水管程11相连接;水样液源120一端与第一水样管程12相连接,水样液源120另一端与第二水样管程121相连接;第一试剂液源133与第一试剂管程131相连接;第二试剂液源134与第二试剂管程132相连接。
如图2所示,微流控芯片2包括玻璃芯片本体21,玻璃芯片本体21的内部设有芯片流道22,芯片流道22的孔径为0.5~1mm。芯片流道22包括沿流体输送方向依次连接的进液段23、混合段24和出液段25,进料段23分别与第一试剂管程131和第二试剂管程132相连通且交汇于同一点。混合段24内设有曲线管程,第一水样试剂管程12与曲线管程的中前端部相连接。第一试剂和第二试剂先行混合后再与水样混合,水样单独替换过程中由于长距离隔绝不会反向污染第一试剂和第二试剂的管路,增加流路系统稳定性。混合段24为曲线型是可以让第一试剂、第二试剂和水样充分混合。出液段25与氨氮监测装置3相连接。
如图3、图4和图5所示,氨氮监测装置3包括基座31,以及设置在基座31上的流通池32、进水管路33、出水管路34、LED灯源35和光电检测组件36。流通池32包括由黑色不透光有机玻璃构成的主体321。主体321内部设有流道,流道包括输入段322、检测段323和输出段324。输入段322、检测段323和输出段324的两端部均开设在主体321侧壁上,输入段322的末端部及输出段324的始端部分别与检测段323的两端部相连通,且连通部位的主体321侧壁通过透明玻璃片325封闭。检测段323呈直线形设置,输入段322、输出段324与检测段323所构成的夹角为锐角;在其中一种具体实施方式中,流通池32的主体321为10mm*10mm*20mm的长方体,流道的输入段322、检测段323和输出段324处于同一平面上。检测段323的两端部分别开设在相对两侧壁中心处,输入段322的始端部及输出段324的末端部开设在另外两相对侧壁的中心处;检测段323的长度为10 mm,包括输入段322、检测段323和输出段324的流道内径均为0.5mm。上述方案中的流通池32包括由黑色不透光有机玻璃构成的主体321,黑色有机玻璃PMMA遮光效果好。主体321内部设有流道,检测时光纤发出的光会仅通过流道部分透光,依照朗伯比尔定率,光程的长度可以符合高精度氨氮浓度检测需求。流道包括输入段322、检测段323和输出段324,且检测段323呈直线形设置,输入段322、输出段324与检测段323所构成的夹角为锐角。采用独特的Z型流通进样设计,相比于传统直角流道,可以有效防止检测池主通路两端位置滞留气泡,影响测试信号,并且加强了流通池32的清洗效果,减小测试的记忆效应。而主体321侧壁上的透明玻璃片325可以保证光透过率及高稳定性。石英材质稳定,不变形变色,保证了流通池32可以稳定运行长时间不发生漏液或失效的情况。
流通池32四周的基座31上还设有两个管接头固定座37和两个光纤固定座38,进水管路33和出水管路34通过管接头固定座37固定,LED灯源35和光电检测组件36通过光纤固定座38固定。氨氮监测装置3还包括上盖39,上盖39覆盖在流通池32、管接头固定座37和光纤固定座38上方。其中,进水管路33的始端连接在微流控芯片2的输出端上,末端连接在流通池32的输入段322始端部上,出水管路34连接在输出段324的末端部。LED灯源35和光电检测组件36分别对应于检测段323的两端部,并且LED灯源35的投射方向沿检测段323指向光电检测组件36。在该技术方案涉及一种氨氮监测装置3,该氨氮监测装置3中的进水管路33引入检测液体,并流入流通池32的流道内,而出水管路34用于引出废液。LED灯源35发出的光会通过流道的检测段323,并经由光电检测组件36接收后计算得出吸光度,得出水中氨氮的浓度。
该方案以两组蠕动泵为动力源。主蠕动泵14将第一试剂、第二试剂与水样引导值微流控芯片中进行混合,再通入流通池32中进行检测,最终通过废液管导出废液。主蠕动泵14分别与第一试剂管程131,第二试剂管程132,第一水样管程12以0.8mm内径的PFA管相连。当三通阀151闭合及次蠕动泵15停转,主蠕动泵14正向转动。第一试剂、第二试剂及水样通过主蠕动泵14蠕动进样,分三路同时进入微流控芯片2中,后通过流通池32进行检测,通过废液管排出,实现水样测试。次蠕动泵15的出液端与第一水样管程12相连,次蠕动泵15与主蠕动泵14的水源一致,通过两个三联通水路接头连通,当三通阀151闭合,主蠕动泵14停转。次蠕动泵15转动情况下,水样会单独通过次蠕动泵15进入微流控芯片2中,经过流通池32后通过废液管排出,实现水样替换。在水样进样后,通过切换三通阀151,开启次蠕动泵15,进行清洗水替换,可以实现芯片清洗。
氨氮监测的工作流程:
1水样替换
开启次蠕动泵15,主蠕动泵14及三通阀151保持关闭状态。水样通过次蠕动泵15进入微流控芯片2流路体系。1min润洗芯片流路,流速控制在300μL/min。
2空白检测
停止次蠕动泵15。整个流路处于静止状态,LED检测处于静止状态下的流通池32中水样吸光度,稳定30s后得到空白吸光度。空白吸光度可实现扣除水样色浊度对总体数据影响的功能。
3进样测试
开启主蠕动泵14,次蠕动泵15与三通阀151保持关闭状态。水样、第一试剂、第二试剂通过主蠕动泵14进入微流控芯片2流路体系。在微流控芯片2作用下完成实时混合,控制流速为每条单路50μL/min。进样1min。进样体系稳定,三组试剂可以稳定混合后实现实时显色。
4显色检测
停止主蠕动泵14,整个流路处于静止状态,LED检测处于静止状态下的流通池32中水样吸光度,稳定30s后得到显色吸光度。
5清洗
开启三通阀15,开启次蠕动泵15,主蠕动泵14保持关闭。流速控制在300μL/min,将清洗水引入至微流控芯片2中,保持1min。清洗芯片的水样流路部分。
上述步骤(3)中的显色采用常规水杨酸法进行测试,试剂配方如下以1L量配制标准:
第一试剂:按照130g/L,重量读数精确到±2g分别称取水杨酸钠和柠檬酸三钠,倒入1L的烧杯中,加入烧杯满刻度值约80%的水量,接着用玻璃棒搅拌,直到完全溶解为止。再加入1.0g/L的硝普钠重量精确到±0.02g,由于硝普钠是坚硬的固体,称量时,应控制碎块的大小;溶解时,使用玻璃棒在烧杯中央一边搅拌,一边轻微捣碎硝普钠固体,直到烧杯底部看不到能闪光的细小颗粒物之后,再加入蒸馏水到满刻度值,最后再用玻璃棒搅拌三分钟后,静置,待用。
第二试剂:称取32g/L,重量度数精确至±0.2g的氢氧化钠,缓慢倒入1L的烧杯中,缓慢加入烧杯满刻度值50%的蒸馏水,不断用玻璃棒搅拌,直至氢氧化钠完全溶解氢氧化钠如有结块现象,可用玻璃棒轻微捣碎,加速溶解。溶解结束后,等待溶液冷却至室温,然后再加入约30%烧杯满刻度值的蒸馏水,一边搅拌一边加入2.0g/L二氯异氰尿酸钠重量读数精确至±0.1g。待完全溶解后,再加蒸馏水至烧杯满刻度值处。搅拌三分钟,静置,待用。
综上所述,该方案检测速度快,现有产品需要20min,本产品仅需4min。试剂消耗量小,试剂使用量约100微升,常规仪器耗量为1mL。约在十分之一左右。试剂耗量小,成本降低,污染减小。结构小巧且可便携携带。由于体积及重量的整体减小。可以实现便携携带。扣除水样色浊度对测试数据的影响。提高了测试精度,稳定性,重复性及,减小了测试过程中的记忆效应。大幅减少对三通阀151等多通阀数量上的需求。使得整体流路大为简洁,不仅降低成本,而且精简流路可以减小结构,便于海洋,湖泊等恶劣工况使用。

Claims (9)

1.一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,包括输液系统(1)、微流控芯片(2)和氨氮监测装置(3);微流控芯片(2)设置在输液系统(1)和氨氮监测装置(3)之间,其特征在于,所述的输液系统(1)包括清水管程(11)、第一水样管程(12)、第二水样管程(121)、试剂管程(13)、主蠕动泵(14)和次蠕动泵(15);主蠕动泵(14)分别与第一水样管程(12)和试剂管程(13)连接,次蠕动泵(15)的进液端通过三通阀(151)分别与清水管程(11)和第二水样管程(121)连接,次蠕动泵(15)的出液端与主蠕动泵(14)出液端中的第一水样管程(12)连接;所述的微流控芯片(2)包括玻璃芯片本体(21),玻璃芯片本体(21)的内部设有芯片流道(22),芯片流道(22)分别与第一水样管程(12)和试剂管程(13)连接,芯片流道(22)包括沿流体输送方向依次连接的进液段(23)、混合段(24)和出液段(25);所述的混合段(24)内设有曲线管程,所述的出液段(25)与氨氮监测装置(3)相连接。
2.根据权利要求1所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的试剂管程(13)包括第一试剂管程(131)和第二试剂管程(132);第一试剂管程(131)与主蠕动泵(14)连接,第二试剂管程(132)与主蠕动泵(14)连接。
3.根据权利要求2所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的第一试剂管程(131)和第二试剂管程(132)与芯片流道(22)的进液段(23)的管程交汇于同一点;所述的第一水样管程(12)与芯片流道(22)的混合段(23)管程的中前部相连接。
4.根据权利要求2或3所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的输液系统(1)还包括清水源(111)、水样液源(120)、第一试剂液源(133)和第二试剂液源(134);所述的清水源(111)与清水管程(11)相连接;所述的水样液源(120)一端与第一水样管程(12)相连接,水样液源(122)另一端与第二水样管程(121)相连接;所述的第一试剂液源(133)与第一试剂管程(131)相连接;所述的第二试剂液源(134)与第二试剂管程(132)相连接。
5.根据权利要求1所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的芯片流道(22)的孔径为0.5~1mm。
6.根据权利要求1所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的氨氮监测装置包括基座(31),以及设置在基座(31)上的流通池(32)、进水管路(33)、出水管路(34)、LED灯源(35)和光电检测组件(36);所述的流通池(32)包括由黑色不透光有机玻璃构成的主体(321),主体(321)内部设有流道,流道包括输入段(322)、检测段(323)和输出段(324);输入段(322)、检测段(323)和输出段(324)的两端部均开设在主体(321)侧壁上,输入段(322)的末端部及输出段(324)的起始端部分别与检测段(323)的两端部相连通,且连通部位的主体(321)侧壁通过透明玻璃片(325)封闭;所述的检测段(323)呈直线形设置,输入段(322)、输出段(324)与检测段(323)所构成的夹角为锐角;进水管路(33)的始端连接在微流控芯片(2)的输出端上,末端连接在流通池(32)的输入段(322)始端部上,出水管路(34)连接在输出段(324)的末端部;所述的LED灯源(35)和光电检测组件(36)分别对应于检测段(323)的两端部,并且LED灯源(35)的投射方向沿检测段(323)指向光电检测组件(36)。
7.根据权利要求6所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的流通池(32)的主体(321)为长方体,流道的输入段(322)、检测段(323)和输出段(324)处于同一平面上;检测段(323)的两端部分别开设在相对两侧壁中心处,输入段(322)的始端部及输出段(324)的末端部开设在另外两相对侧壁的中心处。
8.根据权利要求6所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的流通池(32)四周的基座(31)上还设有两个管接头固定座(37)和两个光纤固定座(38),进水管路(33)和出水管路(34)通过管接头固定座(37)固定,LED灯源(35)和光电检测组件(36)通过光纤固定座(38)固定。
9.根据权利要求6所述的一种以双蠕动泵体系为核心的微流控氨氮监测流路体系,其特征在于,所述的述氨氮监测装置(3)还包括上盖(39),上盖(39)覆盖在流通池(32)、管接头固定座(37)和光纤固定座(38)上方。
CN201811422955.0A 2018-11-27 2018-11-27 一种以双蠕动泵体系为核心的微流控氨氮监测流路体系 Active CN109297917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811422955.0A CN109297917B (zh) 2018-11-27 2018-11-27 一种以双蠕动泵体系为核心的微流控氨氮监测流路体系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811422955.0A CN109297917B (zh) 2018-11-27 2018-11-27 一种以双蠕动泵体系为核心的微流控氨氮监测流路体系

Publications (2)

Publication Number Publication Date
CN109297917A true CN109297917A (zh) 2019-02-01
CN109297917B CN109297917B (zh) 2024-07-02

Family

ID=65144086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811422955.0A Active CN109297917B (zh) 2018-11-27 2018-11-27 一种以双蠕动泵体系为核心的微流控氨氮监测流路体系

Country Status (1)

Country Link
CN (1) CN109297917B (zh)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047323A (ja) * 2000-05-26 2006-02-16 Shimadzu Corp 分析用水溶液の計量・送液機構及びそれを用いた水質分析装置
CN101294907A (zh) * 2008-06-17 2008-10-29 聚光科技(杭州)有限公司 一种水质在线监测方法及系统
CN101793902A (zh) * 2010-03-29 2010-08-04 河海大学 一种流动注射快速分析水质余氯的装置及其分析方法
CN201740756U (zh) * 2010-03-08 2011-02-09 华北电力科学研究院有限责任公司 一种氨氮在线监测系统
CN102861623A (zh) * 2012-09-27 2013-01-09 大连大学 一种用于水体营养元素测定的数字微流控芯片系统
CN102980860A (zh) * 2012-11-21 2013-03-20 中国科学院烟台海岸带研究所 水质六价铬全自动快速测量系统及其测量方法
CN102980858A (zh) * 2012-11-21 2013-03-20 中国科学院烟台海岸带研究所 小型顺序注射亚硝酸盐分析系统
CN204536209U (zh) * 2015-04-24 2015-08-05 厦门大学 营养盐现场自动分析仪
CN104849422A (zh) * 2015-03-11 2015-08-19 中国农业大学 一种氨氮在线监测系统及方法
CN105954489A (zh) * 2016-07-12 2016-09-21 何莉 一种水质氨氮在线监测系统
CN106769938A (zh) * 2016-12-30 2017-05-31 中兴仪器(深圳)有限公司 一种总氮在线分析仪和其检测方法
CN106896192A (zh) * 2017-03-24 2017-06-27 厦门大学 一种河流入海营养盐通量测定系统
CN206431040U (zh) * 2017-02-14 2017-08-22 马鞍山市桓泰环保设备有限公司 一种水质氨氮在线监测仪
CN206618713U (zh) * 2017-03-24 2017-11-07 中兴仪器(深圳)有限公司 一种水质氨氮在线监测装置
CN108072648A (zh) * 2016-11-15 2018-05-25 杭州绿洁水务科技股份有限公司 一种用于检测总氮总磷的微流控芯片集成系统
CN108801959A (zh) * 2018-08-14 2018-11-13 浙江微兰环境科技有限公司 一种基于微流控技术原位氨氮在线监测仪
CN209247625U (zh) * 2018-11-27 2019-08-13 浙江微兰环境科技有限公司 一种微流控氨氮监测流路体系

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047323A (ja) * 2000-05-26 2006-02-16 Shimadzu Corp 分析用水溶液の計量・送液機構及びそれを用いた水質分析装置
CN101294907A (zh) * 2008-06-17 2008-10-29 聚光科技(杭州)有限公司 一种水质在线监测方法及系统
CN201740756U (zh) * 2010-03-08 2011-02-09 华北电力科学研究院有限责任公司 一种氨氮在线监测系统
CN101793902A (zh) * 2010-03-29 2010-08-04 河海大学 一种流动注射快速分析水质余氯的装置及其分析方法
CN102861623A (zh) * 2012-09-27 2013-01-09 大连大学 一种用于水体营养元素测定的数字微流控芯片系统
CN102980860A (zh) * 2012-11-21 2013-03-20 中国科学院烟台海岸带研究所 水质六价铬全自动快速测量系统及其测量方法
CN102980858A (zh) * 2012-11-21 2013-03-20 中国科学院烟台海岸带研究所 小型顺序注射亚硝酸盐分析系统
CN104849422A (zh) * 2015-03-11 2015-08-19 中国农业大学 一种氨氮在线监测系统及方法
CN204536209U (zh) * 2015-04-24 2015-08-05 厦门大学 营养盐现场自动分析仪
CN105954489A (zh) * 2016-07-12 2016-09-21 何莉 一种水质氨氮在线监测系统
CN108072648A (zh) * 2016-11-15 2018-05-25 杭州绿洁水务科技股份有限公司 一种用于检测总氮总磷的微流控芯片集成系统
CN106769938A (zh) * 2016-12-30 2017-05-31 中兴仪器(深圳)有限公司 一种总氮在线分析仪和其检测方法
CN206431040U (zh) * 2017-02-14 2017-08-22 马鞍山市桓泰环保设备有限公司 一种水质氨氮在线监测仪
CN106896192A (zh) * 2017-03-24 2017-06-27 厦门大学 一种河流入海营养盐通量测定系统
CN206618713U (zh) * 2017-03-24 2017-11-07 中兴仪器(深圳)有限公司 一种水质氨氮在线监测装置
CN108801959A (zh) * 2018-08-14 2018-11-13 浙江微兰环境科技有限公司 一种基于微流控技术原位氨氮在线监测仪
CN209247625U (zh) * 2018-11-27 2019-08-13 浙江微兰环境科技有限公司 一种微流控氨氮监测流路体系

Also Published As

Publication number Publication date
CN109297917B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
CN209247625U (zh) 一种微流控氨氮监测流路体系
CN108801959A (zh) 一种基于微流控技术原位氨氮在线监测仪
CN201780281U (zh) 高锰酸盐指数水质在线分析仪
CN103033499B (zh) 一种水质分析系统
CN103353513A (zh) 一种基于单元计量的液路系统及其使用方法
CN101793902A (zh) 一种流动注射快速分析水质余氯的装置及其分析方法
CN105738287B (zh) 水质分析仪
CN103439258B (zh) 一种基于集成阀岛装置的水体营养盐原位检测仪与检测方法
CN106556598B (zh) 用于海水监测的原位营养盐自动分析装置
CN203299129U (zh) 一种基于微流控芯片的自流式甲醛检测装置
CN107884535A (zh) 一种水质在线分析仪自动校准装置及校准方法
CN108144511A (zh) 一种溶液混合装置及混合方法
CN203178290U (zh) 一种全自动生化离子分析液路系统
CN100478678C (zh) 分析海水、河口水中磷酸盐的方法
CN209485838U (zh) 一种自动进样的稀释装置
CN206161540U (zh) 一种用于检测总氮总磷的微流控芯片集成系统
CN110118717A (zh) 流式细胞仪的液路系统及其使用方法与流式细胞仪
CN207516351U (zh) 一种液体管路
CN208537406U (zh) 一种基于微流控技术原位氨氮在线监测仪
CN108181243A (zh) 一种水质在线分析仪自动校准装置的误差降低方法
CN101634816A (zh) 显影液控制系统
CN208795642U (zh) 一种微流控技术原位氨氮监测装置及其流通池
CN211424010U (zh) 多量程水质分析仪流路系统
CN106645609B (zh) 一种六价铬水质在线监测仪用计量装置及其使用方法
CN108106917A (zh) 一种溶液混合池清洗干燥方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant