CN109297874B - 一种用于测量运动颗粒粒径的全息实时测量方法及装置 - Google Patents

一种用于测量运动颗粒粒径的全息实时测量方法及装置 Download PDF

Info

Publication number
CN109297874B
CN109297874B CN201811454688.5A CN201811454688A CN109297874B CN 109297874 B CN109297874 B CN 109297874B CN 201811454688 A CN201811454688 A CN 201811454688A CN 109297874 B CN109297874 B CN 109297874B
Authority
CN
China
Prior art keywords
particles
cylindrical lens
holographic
particle size
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811454688.5A
Other languages
English (en)
Other versions
CN109297874A (zh
Inventor
吴迎春
吴学成
高翔
陈玲红
邱坤赞
骆仲泱
岑可法
管文洁
金其文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811454688.5A priority Critical patent/CN109297874B/zh
Publication of CN109297874A publication Critical patent/CN109297874A/zh
Application granted granted Critical
Publication of CN109297874B publication Critical patent/CN109297874B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N15/0227Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging using imaging, e.g. a projected image of suspension; using holography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • G01N2015/0233Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging using holography

Abstract

本发明公开了一种用于测量运动颗粒粒径的全息实时测量方法,包括:片激光扩束系统产生片激光,并照射到运动颗粒;片激光经过颗粒的散射光形成物光,未经颗粒的片激光作为参考光,物光与参考光发生干涉形成一维全息条纹,进行记录;对记录的一维全息条纹形成的全息图进行重建,得到颗粒图像,根据颗粒图像中的像素数量和大小计算得到颗粒粒径。本发明还公开了一种用于测量运动颗粒粒径的全息实时测量装置,所述全息实时测量装置包括:片激光扩束系统,线阵相机和全息数据处理单元,所述片激光扩束系统包括激光光源和柱面透镜。本发明提供的全息实时测量方法及装置通过降低采集与重建数据维度减少数据量可以实现对颗粒粒径的实时和快速监测。

Description

一种用于测量运动颗粒粒径的全息实时测量方法及装置
技术领域
本发明涉及颗粒粒度在线测量领域,具体涉及一种用于测量运动颗粒粒径的全息实时测量方法及装置。
背景技术
在火力发电、冶金、水泥等行业中,对颗粒的粒度以及粒度分布的测量是必不可少的环节,对于高效安全生产具有十分重要的意义。
颗粒粒度测量方法可分为两大类:离线方法和在线方法。离线方法主要有筛分法、沉降法和显微镜法,目前工业上使用最广泛的是筛分法。在线方法主要有电学方法、声学方法和光学方法,以激光粒度仪为主要代表。
筛分法的基本原理是利用一系列筛孔大小不同的筛子对颗粒样品进行筛分,将颗粒筛分为若干粒级,从而获得样品的粒径分布。筛分法的操作过程比较简单,根据被测颗粒的大小和粒度分布,一般用6至10个目数不同的筛子,根据目数从大到小依次从下往上叠放。经振动作用使被测样品从最顶部筛子下落。筛分法测量结果容易受到物料形状、操作人员操作手法、筛分时间等因素的影响,而且噪音大,取样量大。由于使用的筛数有限,导致精度不高。
激光粒度仪测量速度快,结果准确,已经得到了广泛的应用。但是激光粒度仪价格昂贵,对环境的要求比较高,仪器光学元件容易受到污染,而且由于安装比较复杂,工业现场适应性较差,限制了其在线测量能力。电学方法主要有静电法和电容法。静电法原理为带电颗粒通过静电传感器时会产生感应电流,将感应电流作为测量信号进行频谱分析可以得到颗粒粒径等参数。电容法则是以两相流流体作为电容介质,电容信息包含了固相颗粒的粒径信息。这两种电学方法容易受复杂电磁场等外界环境干扰,应用难度较大。声学方法主要是超声波法,典型应用是超声衰减粒度仪,其检测原理是由发生端发出一定频率和强度的超声波,经过测试区域,到达信号接收端,根据超声波的衰减强度反演颗粒粒径分布。超声波的精确测量是一个难点问题,误差难以控制,而且易受温度等因素影响。以上介绍的几种电学方法和声学方法是对颗粒群整体的测量,得出的结果为平均粒径。
数字全息技术是一种三维测量技术,采用数字记录与数字重建,能够方便地对全息图进行记录保存。不同于前面介绍的电学、声学等方法,数字全息技术对颗粒场的测量是对颗粒场中每个颗粒进行测量,可以得到每个颗粒的几何信息与位置信息。目前使用数字全息技术测量颗粒粒径广泛使用的是激光束和面阵相机,这样记录的全息图包含的是三维数据,数据量大,重建时处理速度慢,难度大,造成测量的实时性不好。
发明内容
本发明的目的在于提供一种用于测量运动颗粒粒径的全息实时测量方法及装置,解决了目前颗粒粒径全息测量方法无法实时测量或者实时性差的问题,通过降低采集与重建数据维度减少数据量可以实现对颗粒粒径的实时和快速监测。
本发明提供如下技术方案:
一种用于测量运动颗粒粒径的全息实时测量方法,包括以下步骤:
(1)片激光扩束系统产生片激光,并照射到运动颗粒;
(2)片激光经过颗粒的散射光形成物光,未经颗粒的片激光作为参考光,物光与参考光发生干涉形成一维全息条纹,进行记录;
(3)对记录的一维全息条纹形成的全息图进行重建,得到颗粒图像,根据颗粒图像中的像素数量和大小计算得到颗粒粒径。
在步骤(2)中,所述的一维全息条纹的亮度为:
其中d为颗粒粒径,x为条纹距颗粒中心距离,λ为波长,z为记录平面与颗粒所在平面之间距离,J1(x)为第一类贝塞尔函数。
根据颗粒散射理论,在同轴全息中,作为物光散射光主要为颗粒衍射光,当入射波激光远远大于颗粒尺度时,可以近似为平面波时,从而得到上述一维全息条纹的亮度的计算公式。
在本发明中,全息图重建过程的基本原理是利用参考光照射颗粒全息条纹,衍射得到重建颗粒场的二维光场。
在步骤(3)中,所述的重建的过程包括颗粒定位过程、颗粒识别过程,所述的重建的方法选自角谱重建算法、菲涅尔积分重建、卷积重建或小波重建。
所述的重建的方法为角谱重建算法,重建后的颗粒图像的光强分布为:
其中,λ为波长,fx为空间频率,F-1为傅里叶逆变换。
所述的颗粒粒径的计算方法为:
其中,n为颗粒图像的像素数量,像素大小为δpix,d为测量粒径;
实际粒径:颗粒距离柱面透镜焦点距离为X0,距离相机芯片为X。
本发明还提供一种用于测量运动颗粒粒径的全息实时测量装置,所述全息实时测量装置包括:片激光扩束系统,线阵相机和全息数据处理单元,所述片激光扩束系统包括激光光源和柱面透镜;激光光源发出的激光经柱面透镜后形成片激光,并照射到运动颗粒,形成一维全息条纹;线阵相机记录一维全息条纹并传输给全息数据处理单元进行处理,得到颗粒粒径。
所述的柱面透镜为单柱面透镜,所述柱面透镜选自平凸柱面透镜或平凹柱面透镜,激光光束由柱面透镜的平面屈光力子午线进入,由柱面射出形成扩散片激光。
所述的柱面透镜包括柱面透镜焦点重合的柱面透镜A和柱面透镜B,所述柱面透镜A和柱面透镜B选自平凸柱面透镜或平凹柱面透镜;激光光束由柱面透镜A的平面屈光力子午线进入,由柱面透镜B的平面射出形成平行片激光。
所述的片激光扩束系统与线阵相机的距离在2厘米到60厘米之间。
所述的线阵相机为CCD相机或CMOS相机,线阵相机的像素大小为5微米到30微米,像素数量为256n×1或256n×2,其中n为正整数,最短曝光时间在10微秒以下,采样频率大于20帧每秒。
所述激光光源为单色激光器,激光波长范围为350纳米到700纳米。所述全息数据处理单元由带有数字全息重建程序的计算机组成,程序算法包括定位部分、识别部分和粒径计算部分。
当被测颗粒尺寸较大时,线阵相机的记录模式可由单帧记录切换为扫描记录,通过连续采集全息条纹的形式获得多张全息条纹图,将这些全息条纹图进行合成,可以得到颗粒的完整全息图,对完整全息图进行重建得到颗粒粒度信息。若颗粒运动速度为1米每秒,颗粒粒度在100微米左右,颗粒间平均距离200微米,线阵相机的像素大小为10微米,像素数量为2048×1,则扫描速率应不低于5000帧每秒。
本发明主要解决的问题是目前颗粒粒径全息测量方法无法实时测量或者实时性差的问题,通过降低采集与重建数据维度减少数据量可以实现对颗粒粒径的快速监测。通过采用单色激光器作为光源,并由片激光扩束系统将激光光束变为片激光,片激光照射测量区的运动颗粒后由线阵相机记录全息条纹,最后由计算机的全息重建程序处理得到颗粒粒径而实现。
本发明的优点在于:1.本发明通过使用片激光和线阵相机,将记录的颗粒全息信号数据由二维全息图降为一维全息条纹,将重建数据由三维降为二维,所需要处理的数据量大大减少,降低了重建时的处理难度,提高了重建效率,能够实时测量出颗粒粒度信息,作为粒度快速检测装置具有很好的应用前景;2.本发明的光路系统主要由柱面透镜组成,结构简单,价格低廉。3.本发明应用性强,适合于多种工业过程中颗粒粒度在线测量,且能有效解决由被测颗粒带来的光学元件沾污而影响拍摄、增大测量误差等问题。
附图说明
图1为本发明提供的一种全息实时测量装置的结构示意图;
图2为本发明提供的另一种全息实时测量装置的结构示意图;
图3为实施例提供的线阵相机记录的全息条纹图;
图4为实施例中全息条纹图的重建结果;
图5为实施例中计算得到的颗粒粒径;
其中,1、激光光源,2、柱面透镜A,3、柱面透镜B,4、线阵相机,5、颗粒,6、激光光束,7、片激光。
具体实施方式
下面结合附图对本发明具体实施方式做进一步说明。
实施例1
如图1所示的全息实时测量装置,激光光源1、平凹柱面透镜A 2、平凸柱面透镜B3、线阵相机4按照排列顺序位于同一轴线上,为同轴全息形式。平凹柱面透镜A 2与平凸柱面透镜B 3的焦点重合。
具体地,在本实施例中,激光光源1采用波长为532纳米的半导体连续激光器。平凹柱面透镜A 2的焦距为30毫米,长度20毫米,宽度10毫米;平凸柱面透镜B 3的焦距为60毫米,长度40毫米,宽度25毫米。线阵相机4的像素大小为10微米,像素数量为4096×1,线阵相机4的有效测量区域可达4厘米,采样频率可达52千赫兹。平凸柱面透镜B 3距线阵相机20厘米,被测运动颗粒5位于与线阵相机4的距离在5厘米至10厘米的区域内。
用上述全息实时测量装置测量运动颗粒粒径的方法包括以下步骤:
步骤1:开启激光光源1,产生激光光束6。
步骤2:调整平凹柱面透镜A 2使激光光束6通过平凹柱面透镜A 2中心,且平面作为入射面,柱面作为出射面;同样地,调整平凸柱面透镜B 3使之与平凹柱面透镜A 2对称轴在x方向上对齐,且平凹柱面透镜A 2与平凸柱面透镜B 3的焦点重合,柱面作入射面,平面作出射面。从而形成片激光7。
步骤3:对线阵相机4进行对光,调整位置使相机芯片与片激光7重合。调整完成后拍下背景全息图。
步骤4:将被测颗粒5通过测量区,同时操控线阵相机4进行拍照,拍摄颗粒全息条纹,如图3所示。全息条纹为一维的全息条纹。同时将一维全息条纹数据传至计算机。
一维全息条纹的亮度为:
其中d为颗粒粒径,x为条纹距颗粒中心距离,λ为波长,z为记录平面与颗粒所在平面之间距离,J1(x)为第一类贝塞尔函数。
步骤5:利用重建程序快速分析得到粒径信息。处理过程包括:先将全息条纹图像去背景;再进行颗粒定位;再进行颗粒识别;最后获得颗粒粒径信息。
颗粒全息图预处理主要是通过对全息图进行一系列图像处理操作,如去噪,去除背景,选定ROI窗口等,以提高颗粒全息图的信噪比,使得重建的三维颗粒广场具有较高的信噪比,以便后续的颗粒识别、定位与粒径分析。
具体地方法为,用角谱重建算法对一维全息条纹进行重建,重建后的颗粒图像如图4所示,重建后的颗粒图像的光强分布为:
其中,λ为波长,fx为空间频率,F-1为傅里叶逆变换。
再根据重建后的颗粒图像计算粒径,粒径的计算方法为:
其中,n为颗粒图像的像素数量,像素大小为δpix
如图5所示,颗粒粒径的测量值为90微米。
由于片激光的扩散性,处理得到的颗粒是经过放大的,除以放大倍率后得到实际颗粒粒径。若被测颗粒距离柱面透镜焦点距离为X0,距离相机芯片为X,则实际颗粒粒径d’与测量值d的关系为
平凸柱面透镜B 3距线阵相机4的距离为20厘米,被测运动颗粒5与线阵相机4的距离为10厘米,则实际颗粒粒径为60微米。
实施例2
如图2所示的全息实时测量装置,激光光源1、平凹柱面透镜A2、线阵相机4按照排列顺序位于同一轴线上,为同轴全息形式。
使用本实施例的全息实时测量装置测量粒径的方法如实施例1。

Claims (7)

1.一种用于测量运动颗粒粒径的全息实时测量方法,其特征在于,所述方法包括以下步骤:
(1)片激光扩束系统产生片激光,并照射到运动颗粒;
(2)片激光经过颗粒的散射光形成物光,未经颗粒的片激光作为参考光,物光与参考光发生干涉形成一维全息条纹,进行记录;
(3)对记录的一维全息条纹形成的全息图进行重建,得到颗粒图像,根据颗粒图像中的像素数量和大小计算得到颗粒粒径;
在步骤(2)中,所述的一维全息条纹的亮度为:
其中,d为颗粒粒径,x为条纹距颗粒中心距离,λ为波长,z为记录平面与颗粒所在平面之间距离,J1(x)为第一类贝塞尔函数;
在步骤(3)中,所述的重建的过程包括颗粒定位过程、颗粒识别过程,所述的重建的方法选自角谱重建算法、菲涅尔积分重建、卷积重建或小波重建;
所述的重建的方法为角谱重建算法,重建后的颗粒图像的光强分布为:
其中,λ为波长,fx为空间频率,F-1为傅里叶逆变换。
2.根据权利要求1所述的用于测量运动颗粒粒径的全息实时测量方法,其特征在于,所述的颗粒粒径的计算方法为:
测量粒径:
其中,n为颗粒图像的像素数量,像素大小为δpix
实际粒径:
其中,X0为颗粒与片激光扩束系统中柱面透镜焦点的距离,X为颗粒与相机芯片的距离。
3.一种采用权利要求1-2任一所述方法的用于测量运动颗粒粒径的全息实时测量装置,其特征在于,所述全息实时测量装置包括:片激光扩束系统,线阵相机和全息数据处理单元,所述片激光扩束系统包括激光光源和柱面透镜;激光光源发出的激光经柱面透镜后形成片激光,并照射到运动颗粒,形成一维全息条纹;线阵相机记录一维全息条纹并传输给全息数据处理单元进行处理,得到颗粒粒径。
4.根据权利要求3所述的用于测量运动颗粒粒径的全息实时测量装置,其特征在于,所述的柱面透镜为单柱面透镜,所述柱面透镜选自平凸柱面透镜或平凹柱面透镜,激光光束由柱面透镜的平面屈光力子午线进入,由柱面射出形成扩散片激光。
5.根据权利要求3所述的用于测量运动颗粒粒径的全息实时测量装置,其特征在于,所述的柱面透镜包括柱面透镜焦点重合的柱面透镜A和柱面透镜B,所述柱面透镜A和柱面透镜B选自平凸柱面透镜或平凹柱面透镜;激光光束由柱面透镜A的平面屈光力子午线进入,由柱面透镜B的平面射出形成平行片激光。
6.根据权利要求3所述的用于测量运动颗粒粒径的全息实时测量装置,其特征在于,所述的柱面透镜与线阵相机的距离在2厘米到60厘米之间。
7.根据权利要求3所述的用于测量运动颗粒粒径的全息实时测量装置,其特征在于,所述的线阵相机为CCD相机或CMOS相机,线阵相机的像素大小为5微米到30微米,像素数量为256n×1或256n×2,其中n为正整数,最短曝光时间在10微秒以下,采样频率大于20帧每秒。
CN201811454688.5A 2018-11-30 2018-11-30 一种用于测量运动颗粒粒径的全息实时测量方法及装置 Active CN109297874B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811454688.5A CN109297874B (zh) 2018-11-30 2018-11-30 一种用于测量运动颗粒粒径的全息实时测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811454688.5A CN109297874B (zh) 2018-11-30 2018-11-30 一种用于测量运动颗粒粒径的全息实时测量方法及装置

Publications (2)

Publication Number Publication Date
CN109297874A CN109297874A (zh) 2019-02-01
CN109297874B true CN109297874B (zh) 2023-09-22

Family

ID=65142185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811454688.5A Active CN109297874B (zh) 2018-11-30 2018-11-30 一种用于测量运动颗粒粒径的全息实时测量方法及装置

Country Status (1)

Country Link
CN (1) CN109297874B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709007B (zh) * 2019-03-05 2024-04-26 广东工业大学 高精度气溶胶粒径浓度测量系统及方法
CN109990834A (zh) * 2019-03-27 2019-07-09 东南大学 高温飞行颗粒温度、速度、粒径的原位测量方法
CN111289408A (zh) * 2020-02-25 2020-06-16 天津大学 激光辅助识别赫尔-肖氏薄板中颗粒分布的装置及方法
CN112749507B (zh) * 2020-12-29 2022-07-12 浙江大学 一种全息在线计量煤和生物质耦合发电掺混比例的方法
CN113310924A (zh) * 2021-05-12 2021-08-27 浙江大学 一种多方法融合的流动飞灰含碳量在线测量系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102121817A (zh) * 2010-12-22 2011-07-13 浙江大学 颗粒场紧凑式数字全息装置及方法
CN102365543A (zh) * 2009-01-16 2012-02-29 纽约大学 用全息视频显微术的自动实时粒子表征和三维速度计量
WO2017048960A1 (en) * 2015-09-18 2017-03-23 New York University Holographic detection and characterization of large impurity particles in precision slurries
CN107003228A (zh) * 2014-10-09 2017-08-01 巴黎城市物理化工高等学院 用于光学检测流体样品中的纳米粒子的方法和设备
CN108444877A (zh) * 2018-06-11 2018-08-24 浙江大学 一种用于测量液滴的相位粒子干涉成像方法及装置
CN209247581U (zh) * 2018-11-30 2019-08-13 浙江大学 一种用于测量运动颗粒粒径的全息实时测量装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20040100A1 (it) * 2004-02-20 2004-05-20 Univ Degli Studi Milano Procedimento per la misurazione di proprieta' di particelle mediante analisi di frange di interferenza, e relativa apparecchiatura

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102365543A (zh) * 2009-01-16 2012-02-29 纽约大学 用全息视频显微术的自动实时粒子表征和三维速度计量
CN102121817A (zh) * 2010-12-22 2011-07-13 浙江大学 颗粒场紧凑式数字全息装置及方法
CN107003228A (zh) * 2014-10-09 2017-08-01 巴黎城市物理化工高等学院 用于光学检测流体样品中的纳米粒子的方法和设备
WO2017048960A1 (en) * 2015-09-18 2017-03-23 New York University Holographic detection and characterization of large impurity particles in precision slurries
CN108444877A (zh) * 2018-06-11 2018-08-24 浙江大学 一种用于测量液滴的相位粒子干涉成像方法及装置
CN209247581U (zh) * 2018-11-30 2019-08-13 浙江大学 一种用于测量运动颗粒粒径的全息实时测量装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
同轴数字全息术在大气可吸入颗粒物PM_(2.5)测量中的应用;王萍;;光学仪器(第04期);全文 *
数字全息在固体推进剂铝燃烧三维测量中的应用研究;金秉宁;刘佩进;王志新;;推进技术(第09期);全文 *
数字全息在线测量煤粉粒度分布;赵亮;吴晨月;林小丹;吴迎春;吴学成;周永刚;邱坤赞;岑可法;;化工学报(第02期);全文 *
数字全息测量颗粒场研究进展;吴迎春等;《中国激光》;第41卷(第6期);文献第2页第3段,第4页第5段,第5页第3段,第6页第4段 *

Also Published As

Publication number Publication date
CN109297874A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN109297874B (zh) 一种用于测量运动颗粒粒径的全息实时测量方法及装置
JP3248910B2 (ja) 粒子特性の分析
KR101226210B1 (ko) 고해상도 이미징
US10467764B2 (en) Method for counting and characterization of particles in a fluid in movement
US20130242301A1 (en) Methods and Apparatuses for Contact-Free Holographic Imaging of Aerosol Particles
US6587208B2 (en) Optical system for measuring diameter, distribution and so forth of micro bubbles and micro liquid drop
US11307086B2 (en) Measuring device and methods for characterization of a radiation field
CN110568080A (zh) 一种晶圆激光超声场的数字全息检测系统及其方法
US20220262087A1 (en) Method and apparatus for super-resolution optical imaging
JPH10267636A (ja) 表面検査方法および表面検査装置
US20070047836A1 (en) Analysis of signal oscillation patterns
JP5134178B2 (ja) 空間フィルタを有する光学的検査方法及び装置
CN111579441A (zh) 一种基于光阑空间调制的数字全息颗粒测量装置及方法
CN209247581U (zh) 一种用于测量运动颗粒粒径的全息实时测量装置
JP7026853B2 (ja) 画像処理装置、評価システム、画像処理プログラム及び画像処理方法
Kaikkonen et al. A holographic in-line imaging system for meteorological applications
CN111122397B (zh) 一种光学材料性能检测装置
CN112505057A (zh) 一种滚动面缺陷检测系统和方法
CN108562522B (zh) 一种粒子尺寸和折射率同时测量方法
Ma et al. On‐line Measurement of Particle Size and Shape using Laser Diffraction
RU165155U1 (ru) Устройство для диагностики качества изготовления кристаллов
CN213903339U (zh) 一种滚动面缺陷检测系统
CN116840260B (zh) 晶圆表面缺陷检测方法及装置
CN116046818A (zh) 一种高分辨x射线散射空间关联成像系统和方法
Malyak et al. Obtaining particle velocity and displacement distributions from double-exposure holograms using optical and digital processing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant