CN109292821B - 一种单晶TT-Nb2O5纳米柱的制备方法 - Google Patents

一种单晶TT-Nb2O5纳米柱的制备方法 Download PDF

Info

Publication number
CN109292821B
CN109292821B CN201811218063.9A CN201811218063A CN109292821B CN 109292821 B CN109292821 B CN 109292821B CN 201811218063 A CN201811218063 A CN 201811218063A CN 109292821 B CN109292821 B CN 109292821B
Authority
CN
China
Prior art keywords
monocrystal
nano
colloidal solution
product
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811218063.9A
Other languages
English (en)
Other versions
CN109292821A (zh
Inventor
梁德伟
梁长浩
刘伶俐
胡磊
王黎丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University
Original Assignee
Hefei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University filed Critical Hefei University
Priority to CN201811218063.9A priority Critical patent/CN109292821B/zh
Publication of CN109292821A publication Critical patent/CN109292821A/zh
Application granted granted Critical
Publication of CN109292821B publication Critical patent/CN109292821B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种单晶TT‑Nb2O5的制备方法,包括将铌靶材置于去离子水中进行激光溶蚀处理制得Nb胶体溶液,然后对Nb胶体溶液进行热处理,热处理后分离回收沉淀物并进行干燥处理即可得单晶TT‑Nb2O5。上述制备方法避免了离子源的引入和干扰,制备的产物具有形貌规整、结构稳定等优点;通过XRD物相分析、SEM和TEM电镜结构分析,证明了合成的产物具有均一的纳米柱状形貌,长度约为350nm、直径约为310nm,并且展现了规整的单晶结构。

Description

一种单晶TT-Nb2O5纳米柱的制备方法
技术领域
本发明涉及铌金属氧化物制备领域,具体涉及一种单晶TT-Nb2O5纳米柱的制备方法。
背景技术
Nb2O5是铌金属氧化物中热力学最稳定的相态,它是一种白色结晶金属氧化物粉末,难溶于水,难溶于除氢氟酸以外的无机酸,可溶于碱性溶液。从晶体学上来说,Nb2O5是重要的n型宽禁带半导体材料,其室温下禁带宽度为3.4eV,具有许多优异的性质,如无毒性、高介电常数、低介质损耗、化学惰性以及在光辐射下的高稳定性等,因此在气敏、催化、光学、电学以及电能存储等领域具有巨大的应用潜力;尽管如此,合成具有规则形貌Nb2O5微结构的文献鲜有报道,对其结晶行为的研究也缺乏深入的了解;究其原因,主要是由于Nb2O5表现出了良好的化学惰性,不利于其动力学控制的结晶生长研究。现有技术中,为了合成Nb2O5纳米材料,通常会使用铌醇、HF、NH4F、NBF5等昂贵或者有毒药品;而化学试剂的使用,会影响在水热条件下生成亚稳态的TT相(赝六方晶相)Nb2O5纳米结构。TT相Nb2O5是目前研究锂电快充的负极材料。因而有必要寻找简便、便捷的合成路线使Nb2O5晶体结构多样化,并制得高活性、高比表面、高稳定性的规则形貌Nb2O5微纳结构。
发明内容
本发明的目的是提供一种单晶TT-Nb2O5的制备方法,其制备的产物形貌规整、结构稳定。
本发明采用的技术方案是:
一种单晶TT-Nb2O5的制备方法,其特征在于,包括如下操作:
将铌靶材置于去离子水中进行激光溶蚀处理制得Nb胶体溶液,然后对Nb胶体溶液进行热处理,热处理后分离回收沉淀物并进行干燥处理即可得单晶TT-Nb2O5
反应原理为:
激光熔蚀过程Nb+O2dissolved→Nb2O5-x
水热处理过程Nb2O5-x+O2dissolved→Nb2O5,其中x∈[0,3]。
具体的方案为:所述单晶TT-Nb2O5为纳米柱状,长度约为330~370nm,直径约为280~320nm。
激光溶蚀处理的时间为20~50min。
激光溶蚀处理的激光波长为1064nm或532nm或355nm、能量为120~150mJ。
激光溶蚀所采用的激光为Nd:YAG脉冲激光。
热处理的温度为180~200℃。
热处理的时间为10~24h。
热处理在聚四氟乙烯内衬高温反应釜中进行。
激光溶蚀处理制得的Nb胶体溶液立即进行热处理。
干燥处理的温度为40~60℃。
与现有技术相比,本发明具备的技术效果为:
上述制备方法避免了离子源的引入和干扰,制备的产物具有形貌规整、结构稳定等优点;通过XRD物相分析、SEM和TEM电镜结构分析,证明了合成的产物具有纳米柱状形貌,长度约为350nm、直径约为310nm,并且展现了规整的单晶结构。
附图说明
图1为单晶TT-Nb2O5合成过程示意图;
图2为单晶TT-Nb2O5的XRD物相分析图,其中:图a为水热后产物的X射线粉末衍射图谱及其去离子水分散实物照片,图b为TT-Nb2O5的原子模型示意图;
图3为单晶TT-Nb2O5的电子显微镜结构分析图,其中:图a为单晶TT-Nb2O5纳米柱的扫描电子显微镜照片,图b为产物的透射电子显微镜照片及相应选区电子衍射照片,图c为纳米柱顶角放大后的高分辨透射电子显微镜照片;图d为纳米柱侧面放大后的高分辨透射电子显微镜照片及其相应的选区电子衍射照片;
图4为单晶TT-Nb2O5的紫外-可见吸收光谱图;
图5为单晶TT-Nb2O5的TEM电镜结构分析图,其中:图a为Nb胶体未陈化,水热处理后的产物,图 b为Nb胶体陈化10天后,水热处理得到的产物。
具体实施方式
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行具体明。应当理解,以下文字仅仅用以描述本发明的一种或几种具体的实施方式,并不对本发明具体请求的保护范围进行严格限定。
实施例1
把铌单质靶材浸沒在去离子水中,采用Nd:YAG脉冲激光,波长为1064nm,能量为120mJ,熔蚀铌靶材30 分钟,得到Nb胶体溶液;将得到的Nb胶体溶液立即置于50mL聚四氟乙烯内衬高温反应釜中,190℃处理10 小时;冷却后,离心收集样品,60℃干燥得到产物单晶TT-Nb2O5,合成过程如图1所示。
对实施例1中制取的单晶TT-Nb2O5进行检测分析,结果如图2~5所示。
图2是水热处理后样品的XRD图,其中a图中展示了产物的X射线粉末衍射图谱及其去离子水分散液实物照片;从图中可以看出,所有的衍射峰可以很好地与TT-Nb2O5(JCPDSNO 07-0061)标准峰吻合,没有出现其它杂质峰;其中,在22.67°,28.59°,36.71°,46.23°,50.67°,55.19°,56.14°,58.97°和72.10°出现的衍射峰分别对应TT-Nb2O5的(001),(100),(101),(002),(110),(102),(111),(200) 和(003)面。另外,图中的衍射峰都较窄,说明产物具有很好的结晶性;(001)面的衍射峰最强,则说明产物很有可能是沿着(001)取向择优生长。从图a右边的实物图可以看出,产物的去离子水分散液呈乳白色,这是因为Nb2O5的禁带较宽。图b为TT-Nb2O5的原子模型示意图,对于一个TT-Nb2O5单胞来说,ab平面上每一个Nb原子处在6个O原子的中心,c轴上为Nb-O-Nb-O链结构。
图3为单晶TT-Nb2O5的电子显微镜结构分析图,其中:图a展示了水热处理10h后产物的扫描电子显微镜照片,从中可以看出产物主体呈现圆柱状,长度约为350nm、直径约为310nm。图b为不同视角的两个 TT-Nb2O5纳米柱的透射电子显微镜照片,其中偏左下方的产物图像为圆柱体底面视角,由于圆柱体太厚,未能拍到晶格条纹,但其选区电子衍射照片证实了其在a-b平面上是赝六方相结构(图3b左上角);偏右上方的产物图像为圆柱体侧面视角透射电子显微镜照片,我们对其拐角和边缘分别进行了放大,如图c和d 所示;其中,图c显示的是拐角处的高分辨透射电子显微镜照片,从中可以看出柱体侧面的晶格间距为0.392 nm,对应TT-Nb2O5的(001)面间距;另外,蓝色区域物质的无序状态则说明其是一种非晶结构,结合水热的高温高压条件及合成过程没有添加其它任何元素,所以判断它是非晶的Nb2O5;关于其依附在纳米柱周围的原因,分析认为这是和TT-Nb2O5单晶纳米柱的生长有关:相比退火等高温处理方式,190℃水热环境则处于较低温度中,Nb2O5的结晶行为遵从奥斯瓦尔德熟化生长机制,所以在这里非晶Nb2O5依附在TT-Nb2O5纳米柱的周围,作为纳米柱的生长源,随着时间的延长慢慢外延生长转变成TT-Nb2O5的一部分。图d展示的是圆柱体侧面边缘的高分辨透射电子显微镜照片,经测量,其晶格间距为0.392nm,对应TT-Nb2O5的(040)面间距,进一步说明TT-Nb2O5纳米柱是按(001)取向择优生长,这与上述XRD结果吻合;仔细观察,还可以依稀地看到边缘非晶Nb2O5在向TT-Nb2O5晶格外延生长的状态;结合图中晶格的一致性与其选区电子衍射斑点独立、清晰的特征(图d左上角),可以判断通过该方法获得的TT-Nb2O5纳米柱为非常规整的单晶结构。
图4为单晶TT-Nb2O5纳米柱的紫外-可见吸收光谱图,从图中可以看出,单晶TT-Nb2O5纳米柱表现出两段光吸收区域,在360~900nm区域有较强的吸收,最强吸收峰位于515nm处,而在310nm区域,吸收强度较弱。由此可见,本发明制备的单晶TT-Nb2O5纳米柱具有强烈的可见光吸收能力,因而在可见光催化和染料敏化太阳能电池领域具有重要应用前景。
为了研究胶体活性对产物形貌的影响,对实施例1中Nb胶体溶液进行10天的陈化处理,然后再进行190 ℃温度下水热处理10小时。对比该产物与实施例1中产物的扫描电子显微镜照片(图5)可以看出,激光熔蚀即时得到的产物,在一定的时间内保持了较高的活性,能够在水热处理过程中自组装成规整的单晶纳米柱形貌(图a);而经过10天陈化后的Nb胶体失去了高活性,水热处理后呈现球状和细棒状混合体(图b)。由此可见,胶体活性对于产物的最终形貌具有重要的影响。
实施例2
把铌单质靶材浸沒在去离子水中,采用Nd:YAG脉冲激光,波长为532nm,能量为150mJ,熔蚀铌靶材20 分钟,得到Nb胶体溶液;将得到的Nb胶体溶液立即置于50mL聚四氟乙烯内衬高温反应釜中,180℃处理24 小时;冷却后,离心收集样品,40℃干燥得到产物单晶TT-Nb2O5
实施例3
把铌单质靶材浸沒在去离子水中,采用Nd:YAG脉冲激光,波长为355nm,能量为130mJ,熔蚀铌靶材50 分钟,得到Nb胶体溶液;将得到的Nb胶体溶液立即置于50mL聚四氟乙烯内衬高温反应釜中,200℃处理18 小时;冷却后,离心收集样品,50℃干燥得到产物单晶TT-Nb2O5
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。本发明中未具体描述和解释说明的结构、装置以及操作方法,如无特别说明和限定,均按照本领域的常规手段进行实施。

Claims (1)

1.一种单晶TT-Nb2O5的制备方法,其特征在于,把铌单质靶材浸沒在去离子水中,采用Nd:YAG脉冲激光,波长为1064nm,能量为120mJ,熔蚀铌靶材30分钟,得到Nb胶体溶液;将得到的Nb胶体溶液立即置于50mL聚四氟乙烯内衬高温反应釜中,190℃处理10小时;冷却后,离心收集样品,60℃干燥得到产物单晶TT-Nb2O5
CN201811218063.9A 2018-10-18 2018-10-18 一种单晶TT-Nb2O5纳米柱的制备方法 Active CN109292821B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811218063.9A CN109292821B (zh) 2018-10-18 2018-10-18 一种单晶TT-Nb2O5纳米柱的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811218063.9A CN109292821B (zh) 2018-10-18 2018-10-18 一种单晶TT-Nb2O5纳米柱的制备方法

Publications (2)

Publication Number Publication Date
CN109292821A CN109292821A (zh) 2019-02-01
CN109292821B true CN109292821B (zh) 2021-01-26

Family

ID=65157170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811218063.9A Active CN109292821B (zh) 2018-10-18 2018-10-18 一种单晶TT-Nb2O5纳米柱的制备方法

Country Status (1)

Country Link
CN (1) CN109292821B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882400A (en) * 1993-11-18 1999-03-16 Forschungszentrum Julich Gmbh Method of producing a layer structure and the use of the method
CN102211789A (zh) * 2010-04-08 2011-10-12 中国科学院合肥物质科学研究院 三氧化钨纳米材料的制备方法
CN104528807A (zh) * 2015-01-05 2015-04-22 南京航空航天大学 多元氧化物纳米材料的制备方法
CN106938857A (zh) * 2017-03-01 2017-07-11 南京理工大学 一种二氧化钼纳米光热转换材料及其制备方法和应用
CN108423709A (zh) * 2018-01-19 2018-08-21 南京理工大学 一种基于双脉冲激光液相烧蚀合成纳米晶的装置的烧蚀方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882400A (en) * 1993-11-18 1999-03-16 Forschungszentrum Julich Gmbh Method of producing a layer structure and the use of the method
CN102211789A (zh) * 2010-04-08 2011-10-12 中国科学院合肥物质科学研究院 三氧化钨纳米材料的制备方法
CN104528807A (zh) * 2015-01-05 2015-04-22 南京航空航天大学 多元氧化物纳米材料的制备方法
CN106938857A (zh) * 2017-03-01 2017-07-11 南京理工大学 一种二氧化钼纳米光热转换材料及其制备方法和应用
CN108423709A (zh) * 2018-01-19 2018-08-21 南京理工大学 一种基于双脉冲激光液相烧蚀合成纳米晶的装置的烧蚀方法

Also Published As

Publication number Publication date
CN109292821A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
US8709304B2 (en) Hydrothermal synthesis of nanocubes of sillenite type compounds for photovoltaic applications and solar energy conversion of carbon dioxide to fuels
Yuan et al. One-step solvothermal synthesis of nickel selenide series: composition and morphology control
Liang et al. Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance
Mulinari et al. Microwave-hydrothermal synthesis of single-crystalline Co 3 O 4 spinel nanocubes
Xu et al. Aligned ZnO nanorods synthesized by a simple hydrothermal reaction
WO2006137915A2 (en) Biologically inspired synthesis of thin films and materials
CN106395885A (zh) 一种高纯三元金属氧化物Zn2SnO4纳米晶的制备方法
Moulahi et al. Controlled synthesis of nano-ZnO via hydro/solvothermal process and study of their optical properties
Londoño-Calderón et al. Desorption influence of water on structural, electrical properties and molecular order of vanadium pentoxide xerogel films
Shi et al. Fabrication of single-crystalline CuInS 2 nanowires array via a diethylenetriamine-thermal route
Wang et al. Synthesis of ultra-thin ZnO nanosheets: photocatalytic and superhydrophilic properties
Toufiq et al. Synthesis, characterization and optical property of shrimps-like nanostructures of MnO2 by hydrothermal route
Wu et al. The role of grain growth in controlling the crystal orientation of Sb 2 S 3 films for efficient solar cells
Shi et al. Synthesis, formation mechanism and photoelectric properties of GeS nanosheets and nanowires
Chang et al. Two-dimensional ZnO nanowalls for gas sensor and photoelectrochemical applications
CN109292821B (zh) 一种单晶TT-Nb2O5纳米柱的制备方法
Shi et al. Preparation and photoelectric property of a Cu 2 FeSnS 4 nanowire array
KR101509332B1 (ko) 입자 크기 및 조성을 제어할 수 있는 구리 셀레나이드의 제조방법
Wang et al. Synthesis of gram-scale germanium nanocrystals by a low-temperature inverse micelle solvothermal route
CN105236472A (zh) 一种SnO2纳米线阵列的制备方法
Albetran et al. Parameters controlling the crystallization kinetics of nanostructured TiO2–An overview
Yin et al. Single crystal trigonal selenium nanoplates converted from selenium nanoparticles
Hu et al. Synthesis of rod and lath-shaped CuSe and tremella-shaped Cu 2− x Se nanostructures at room temperature, and their optical properties
Jing et al. Aqueous germanate ion solution promoted synthesis of worm-like crystallized Ge nanostructures under ambient conditions
CN110937636A (zh) 一种黑色三氧化钨纳米片的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant