CN109283855B - 一种基于局地天空模型的建筑室内眩光沉浸式仿真方法 - Google Patents

一种基于局地天空模型的建筑室内眩光沉浸式仿真方法 Download PDF

Info

Publication number
CN109283855B
CN109283855B CN201811307655.8A CN201811307655A CN109283855B CN 109283855 B CN109283855 B CN 109283855B CN 201811307655 A CN201811307655 A CN 201811307655A CN 109283855 B CN109283855 B CN 109283855B
Authority
CN
China
Prior art keywords
building
sky
model
data
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811307655.8A
Other languages
English (en)
Other versions
CN109283855A (zh
Inventor
孙澄
韩昀松
齐轩宁
杨阳
董琪
黄欣鹏
贾永恒
黄茜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201811307655.8A priority Critical patent/CN109283855B/zh
Publication of CN109283855A publication Critical patent/CN109283855A/zh
Application granted granted Critical
Publication of CN109283855B publication Critical patent/CN109283855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Abstract

本发明提出了一种基于局地天空模型的建筑室内眩光沉浸式仿真方法。通过局地光气候数据采集,应用虚拟现实建模技术建立局地天空模型;基于局地天空模型展开眩光仿真提高建筑室内眩光仿真精度;通过虚拟现实建模与增强现实建模,根据光线追踪计算数据生成三维室内光环境虚拟现实模型,结合虚拟现实头盔展开沉浸式仿真,强化眩光仿真数据对设计决策的支持作用。

Description

一种基于局地天空模型的建筑室内眩光沉浸式仿真方法
技术领域
本发明属于建筑室内眩光舒适性能仿真评价技术领域,特别是涉及一种基于局地天空模型的建筑室内眩光沉浸式仿真方法。
背景技术
建筑眩光不仅会导致使用者视觉上的不舒适感,还可能损害视觉神经,甚至引起失明。建筑师在设计过程中需展开建筑室内眩光仿真分析,根据仿真结果调整建筑形体、空间、材料设计决策,从而减少眩光发生的可能性。因此,建筑室内眩光性能的准确仿真具有重要意义。
既有建筑室内眩光仿真方法多基于标准天空模型和日照辐射统计数据展开眩光仿真模拟,缺乏对雾、霾、粉尘颗粒和云量变化等大气环境因素的考虑,也不能客观反映周边建筑立面、水体植被纹理对拟仿真建筑室内光环境的影响,降低了建筑室内眩光仿真精度。同时,建筑眩光仿真不仅需量化计算室内眩光指数DGI和统一眩光指数UGR等眩光性能指标,还需渲染出室内光环境来协助建筑师进行室内眩光的主观评价。既有建筑眩光仿真方法仅能通过光线追踪计算,渲染出二维室内光环境图,以此来辅助建筑师进行三维建筑空间眩光评价,增大了眩光评价难度,制约了眩光仿真数据对设计决策的支持作用。
发明内容
本发明目的是为了解决既有建筑室内眩光仿真方法的仿真精度低和设计决策支持不足两方面瓶颈问题,提出一种基于局地天空模型的建筑室内眩光沉浸式仿真方法。通过局地光气候数据采集,应用虚拟现实建模技术建立局地天空模型;基于局地天空模型展开眩光仿真提高建筑室内眩光仿真精度;通过虚拟现实建模与增强现实建模,根据光线追踪计算数据生成三维室内光环境虚拟现实模型,结合虚拟现实头盔展开沉浸式仿真,强化眩光仿真数据对设计决策的支持作用。
本发明的目的通过以下技术方案实现:一种基于局地天空模型的建筑室内眩光沉浸式仿真方法,包括以下步骤:
步骤1、应用全天空亮度扫描仪和全天空成像仪,采集拟仿真建筑局地天空的辐照度、天空亮度和云量分布光环境气候数据;
步骤2、综合应用虚拟现实建模和建筑信息建模技术,基于实测采集的局地光环境气候数据,建立局地天空模型;
步骤3、应用建筑信息建模技术,集成拟仿真建筑的空间形态和界面材质信息,通过参数化编程,建立上述信息之间的参数化关联,建立拟仿真建筑空间信息模型;
步骤4、应用建筑性能模拟技术读取局地天空模型和拟仿真建筑空间信息模型数据,计算拟仿真建筑空间光环境数据;
步骤5、应用虚拟现实建模技术,在虚拟现实建模平台中整合局地天空数据、仿真建筑空间信息和拟仿真建筑空间光环境数据,建立拟仿真建筑空间光环境虚拟现实模型;
步骤6、应用参数化编程技术,建立头戴式显示器、控制手柄、定位器与拟仿真建筑空间光环境虚拟现实模型之间的数据关联,实现基于局地天空模型的建筑室内眩光沉浸式仿真。
进一步地,所述步骤1具体为:根据建筑室内眩光舒适性能仿真目的、拟仿真建筑地理位置和空间周边环境特征;应用全天空亮度扫描仪,每隔4分钟采集一组拟仿真建筑所处区域的局地辐照度和天空亮度数据;利用全天空成像仪,通过仪器上方的相机垂直向下拍摄带有加热装置的半球镜面,每隔5秒采集一组全天空可见光的波段图像和拟仿真建筑周边的日间全天空云量图像数据。
进一步地,所述步骤2具体为:基于采集到的局地天空亮度和辐照度数据,应用建筑信息建模技术建立局地天空模型的天穹网格,并将采集到的局地天空亮度和辐照度数据对位输入至天穹网格中;应用虚拟现实建模技术,将采集的全天空可见光波段图和全天空云量图数据对位融合于天穹网格,完成局地天空模型建构。
进一步地,所述步骤3具体为:应用建筑信息建模技术,建立拟仿真建筑空间形态模型,进而对空间中各界面进行材料与构造建模,建立拟仿真建筑空间信息模型,并应用参数化编程技术建立模型中门窗、墙体、屋面和楼板构件的参数化关联,建立各界面材质参数与构建几何参数的关联,完成拟仿真建筑空间信息模型建构。
进一步地,所述步骤4具体为:应用建筑性能模拟技术读取局地天空模型中的天空亮度和辐照度数据,读取拟仿真建筑空间信息模型中的拟仿真建筑空间形态与材质数据,基于反向光线追踪算法,计算拟仿真建筑空间工作面照度、全天然采光百分比、有效天然采光百分比、室内眩光指数DGI和统一眩光指数UGR光环境数据。
进一步地,所述步骤5具体为:通过关联数据端口,将局地天空数据、仿真建筑空间信息和拟仿真建筑空间光环境数据导入虚拟现实建模平台;应用虚拟现实建模技术工具对导入数据信息进行三维空间匹配和光环境数据渲染,建立拟仿真建筑空间光环境虚拟现实模型。
进一步地,所述步骤6具体为:通过参数化编程技术,建立头戴式显示器、控制手柄、定位器与拟仿真建筑空间光环境虚拟现实模型之间的数据关联;测试者通过使用头戴式显示器、操作具有手势追踪功能的控制手柄,以及借助激光和光敏传感器的实时定位系统,能够真实的感受到拟仿真建筑室内的环境状况,从而实现基于局地天空模型的建筑室内眩光沉浸式仿真。
附图说明
图1为本发明基于局地天空模型的建筑室内眩光沉浸式仿真方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
结合图1说明本实施例,本发明提出一种基于局地天空模型的建筑室内眩光沉浸式仿真方法,包括以下步骤:
步骤1、应用全天空亮度扫描仪和全天空成像仪,采集拟仿真建筑局地天空的辐照度、天空亮度和云量分布光环境气候数据;所述步骤1具体为:根据建筑室内眩光舒适性能仿真目的、拟仿真建筑地理位置和空间周边环境特征;应用全天空亮度扫描仪,每隔4分钟采集一组拟仿真建筑所处区域的局地辐照度和天空亮度数据;利用全天空成像仪,通过仪器上方的相机垂直向下拍摄带有加热装置的半球镜面,每隔5秒采集一组全天空可见光的波段图像和拟仿真建筑周边的日间全天空云量图像数据。
步骤2、综合应用虚拟现实建模和建筑信息建模技术,基于实测采集的局地光环境气候数据,建立局地天空模型;所述步骤2具体为:基于采集到的局地天空亮度和辐照度数据,应用建筑信息建模技术建立局地天空模型的天穹网格,并将采集到的局地天空亮度和辐照度数据对位输入至天穹网格中;应用虚拟现实建模技术,将采集的全天空可见光波段图和全天空云量图数据对位融合于天穹网格,完成局地天空模型建构。
步骤3、应用建筑信息建模技术,集成拟仿真建筑的空间形态和界面材质信息,通过参数化编程,建立上述信息之间的参数化关联,建立拟仿真建筑空间信息模型;所述步骤3具体为:应用建筑信息建模技术,建立拟仿真建筑空间形态模型,进而对空间中各界面进行材料与构造建模,建立拟仿真建筑空间信息模型,并应用参数化编程技术建立模型中门窗、墙体、屋面和楼板构件的参数化关联,建立各界面材质参数与构建几何参数的关联,完成拟仿真建筑空间信息模型建构。
步骤4、应用建筑性能模拟技术读取局地天空模型和拟仿真建筑空间信息模型数据,计算拟仿真建筑空间光环境数据;所述步骤4具体为:应用建筑性能模拟技术读取局地天空模型中的天空亮度和辐照度数据,读取拟仿真建筑空间信息模型中的拟仿真建筑空间形态与材质数据,基于反向光线追踪算法,计算拟仿真建筑空间工作面照度、全天然采光百分比、有效天然采光百分比、室内眩光指数DGI和统一眩光指数UGR光环境数据。
步骤5、应用虚拟现实建模技术,在虚拟现实建模平台中整合局地天空数据、仿真建筑空间信息和拟仿真建筑空间光环境数据,建立拟仿真建筑空间光环境虚拟现实模型;所述步骤5具体为:通过关联数据端口,将局地天空数据、仿真建筑空间信息和拟仿真建筑空间光环境数据导入虚拟现实建模平台;应用虚拟现实建模技术工具对导入数据信息进行三维空间匹配和光环境数据渲染,建立拟仿真建筑空间光环境虚拟现实模型。
步骤6、应用参数化编程技术,建立头戴式显示器、控制手柄、定位器与拟仿真建筑空间光环境虚拟现实模型之间的数据关联,实现基于局地天空模型的建筑室内眩光沉浸式仿真。所述步骤6具体为:通过参数化编程技术,建立头戴式显示器、控制手柄、定位器与拟仿真建筑空间光环境虚拟现实模型之间的数据关联;测试者通过使用头戴式显示器、操作具有手势追踪功能的控制手柄,以及借助激光和光敏传感器的实时定位系统,能够真实的感受到拟仿真建筑室内的环境状况,从而实现基于局地天空模型的建筑室内眩光沉浸式仿真。
本发明通过使用全天空亮度扫描仪和全天空成像仪采集局地天空图像与亮度信息,高度准确地反映了拟仿真建筑周边的天空环境,显著提高了建筑室内眩光仿真分析精度;通过综合应用建筑信息建模工具、建筑性能模拟技术、参数化编程技术和虚拟现实建模技术,将建筑材料物理属性、局地天空光气候数据、拟仿真建筑空间形态参数整合入虚拟现实模型,结合物联网技术实现建筑空间眩光沉浸式仿真,是设计者在获得建筑空间眩光计算指标的同时,可直观、沉浸地感受拟仿真建筑空间光环境,显著提高了眩光仿真结果对建筑设计决策过程的支持作用。
以上对本发明所提供的一种基于局地天空模型的建筑室内眩光沉浸式仿真方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (7)

1.一种基于局地天空模型的建筑室内眩光沉浸式仿真方法,其特征在于:包括以下步骤:
步骤1、应用全天空亮度扫描仪和全天空成像仪,采集拟仿真建筑局地天空的辐照度、天空亮度和云量分布光环境气候数据;
步骤2、综合应用虚拟现实建模和建筑信息建模技术,基于实测采集的局地光环境气候数据,建立局地天空模型;
步骤3、应用建筑信息建模技术,集成拟仿真建筑的空间形态和界面材质信息,通过参数化编程,建立上述信息之间的参数化关联,建立拟仿真建筑空间信息模型;
步骤4、应用建筑性能模拟技术读取局地天空模型和拟仿真建筑空间信息模型数据,计算拟仿真建筑空间光环境数据;
步骤5、应用虚拟现实建模技术,在虚拟现实建模平台中整合局地天空数据、仿真建筑空间信息和拟仿真建筑空间光环境数据,建立拟仿真建筑空间光环境虚拟现实模型;
步骤6、应用参数化编程技术,建立头戴式显示器、控制手柄、定位器与拟仿真建筑空间光环境虚拟现实模型之间的数据关联,实现基于局地天空模型的建筑室内眩光沉浸式仿真。
2.根据权利要求1所述的仿真方法,其特征在于:所述步骤1具体为:根据建筑室内眩光舒适性能仿真目的、拟仿真建筑地理位置和空间周边环境特征;应用全天空亮度扫描仪,每隔4分钟采集一组拟仿真建筑所处区域的局地辐照度和天空亮度数据;利用全天空成像仪,通过仪器上方的相机垂直向下拍摄带有加热装置的半球镜面,每隔5秒采集一组全天空可见光的波段图像和拟仿真建筑周边的日间全天空云量图像数据。
3.根据权利要求2所述的仿真方法,其特征在于:所述步骤2具体为:基于采集到的局地天空亮度和辐照度数据,应用建筑信息建模技术建立局地天空模型的天穹网格,并将采集到的局地天空亮度和辐照度数据对位输入至天穹网格中;应用虚拟现实建模技术,将采集的全天空可见光波段图和全天空云量图数据对位融合于天穹网格,完成局地天空模型建构。
4.根据权利要求3所述的仿真方法,其特征在于:所述步骤3具体为:应用建筑信息建模技术,建立拟仿真建筑空间形态模型,进而对空间中各界面进行材料与构造建模,建立拟仿真建筑空间信息模型,并应用参数化编程技术建立模型中门窗、墙体、屋面和楼板构件的参数化关联,建立各界面材质参数与构建几何参数的关联,完成拟仿真建筑空间信息模型建构。
5.根据权利要求4所述的仿真方法,其特征在于:所述步骤4具体为:应用建筑性能模拟技术读取局地天空模型中的天空亮度和辐照度数据,读取拟仿真建筑空间信息模型中的拟仿真建筑空间形态与材质数据,基于反向光线追踪算法,计算拟仿真建筑空间工作面照度、全天然采光百分比、有效天然采光百分比、室内眩光指数DGI和统一眩光指数UGR光环境数据。
6.根据权利要求5所述的仿真方法,其特征在于:所述步骤5具体为:通过关联数据端口,将局地天空数据、仿真建筑空间信息和拟仿真建筑空间光环境数据导入虚拟现实建模平台;应用虚拟现实建模技术工具对导入数据信息进行三维空间匹配和光环境数据渲染,建立拟仿真建筑空间光环境虚拟现实模型。
7.根据权利要求6所述的仿真方法,其特征在于:所述步骤6具体为:通过参数化编程技术,建立头戴式显示器、控制手柄、定位器与拟仿真建筑空间光环境虚拟现实模型之间的数据关联;测试者通过使用头戴式显示器、操作具有手势追踪功能的控制手柄,以及借助激光和光敏传感器的实时定位系统,能够真实的感受到拟仿真建筑室内的环境状况,从而实现基于局地天空模型的建筑室内眩光沉浸式仿真。
CN201811307655.8A 2018-11-05 2018-11-05 一种基于局地天空模型的建筑室内眩光沉浸式仿真方法 Active CN109283855B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811307655.8A CN109283855B (zh) 2018-11-05 2018-11-05 一种基于局地天空模型的建筑室内眩光沉浸式仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811307655.8A CN109283855B (zh) 2018-11-05 2018-11-05 一种基于局地天空模型的建筑室内眩光沉浸式仿真方法

Publications (2)

Publication Number Publication Date
CN109283855A CN109283855A (zh) 2019-01-29
CN109283855B true CN109283855B (zh) 2020-05-15

Family

ID=65175456

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811307655.8A Active CN109283855B (zh) 2018-11-05 2018-11-05 一种基于局地天空模型的建筑室内眩光沉浸式仿真方法

Country Status (1)

Country Link
CN (1) CN109283855B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3886051A1 (en) 2020-03-23 2021-09-29 Saint-Gobain Glass France Method for physically based rendering of coated sheet of glass

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253564B2 (en) * 2004-05-06 2019-04-09 Mechoshade Systems, Llc Sky camera system for intelligent building control
CN201198991Y (zh) * 2008-02-04 2009-02-25 华侨大学 一种全阴天光照模拟装置
CN102151120B (zh) * 2011-02-24 2012-12-12 复旦大学 眩光动态评估系统
CN104933241A (zh) * 2015-06-11 2015-09-23 北京交通大学 一种列车驾驶界面照明的不舒适眩光评价方法
DE102017204435A1 (de) * 2017-03-16 2018-09-20 Dr. Ing. H.C. F. Porsche Ag Anordnung zur fahrsituativen Simulation von Blendungseffekten oder blendungsähnlichen Effekten
CN107036652B (zh) * 2017-04-12 2019-07-09 林波荣 一种结合建筑环境模拟的室内环境监测系统及方法
CN107491590B (zh) * 2017-07-20 2020-12-25 中国建筑第八工程局有限公司 一种基于bim技术模拟室内灯光灯具预排布方法
CN108052762B (zh) * 2017-12-26 2018-11-13 哈尔滨工业大学 一种基于局地光气候的严寒地区建筑自然采光性能仿真方法

Also Published As

Publication number Publication date
CN109283855A (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
JP6246757B2 (ja) 現実環境の視野におけるバーチャルオブジェクトを表現方法及びシステム
US20150302637A1 (en) Lighting performance simulation and analysis in architectural modeling environments
CN108010118A (zh) 虚拟对象处理方法、虚拟对象处理装置、介质和计算设备
Yi et al. Universal Visible Sky Factor: A method for calculating the three-dimensional visible sky ratio
Rohil et al. Visualization of urban development 3D layout plans with augmented reality
Keshavarzi et al. RadVR: a 6DOF virtual reality daylighting analysis tool
de Almeida Rocha et al. A pixel counting technique for sun patch assessment within building enclosures
Willenborg et al. Integration of semantic 3D city models and 3D mesh models for accuracy improvements of solar potential analyses
Wang et al. Comparison of daylight simulation methods for reflected sunlight from curtain walls
CN109283855B (zh) 一种基于局地天空模型的建筑室内眩光沉浸式仿真方法
Wang et al. Virtual reality-based digital restoration methods and applications for ancient buildings
CN114663786A (zh) 基于点云数据和计算机图形学的林分辐射通量计算方法
Ochoa et al. Current perspectives on lighting simulation for building science
Veldhuis et al. Real-time irradiance simulation for pv products and building integrated pv in a virtual reality environment
EP3794910B1 (en) A method of measuring illumination, corresponding system, computer program product and use
Ostwald et al. Isovist analysis, theories and methods
CN111008419B (zh) 一种基于三维模型的建筑空间开放感的信息处理方法
Subramaniam et al. A tool for assessing visual comfort through an immersive environment
WO2022135942A1 (en) Method for assessing the physically based simulation quality of a glazed object
Bulatov et al. Increasing level of detail of buildings for improved simulation of 4D urban digital twin
JP2007164667A (ja) 輻射シミュレーション方法および輻射シミュレーション装置
Sheng Interactive daylighting visualization in spatially augmented reality environments
da Silva Garcia et al. Integrating daylight simulation in the design process: comparative analysis between two computational platforms
KR102352692B1 (ko) 가상현실 환경 기반 일조 평가 시스템 및 방법
Masuda et al. Sunlight illumination simulation for archaeological investigation-case study of the fugoppe cave

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant