CN109273602A - 2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用 - Google Patents

2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用 Download PDF

Info

Publication number
CN109273602A
CN109273602A CN201811047790.3A CN201811047790A CN109273602A CN 109273602 A CN109273602 A CN 109273602A CN 201811047790 A CN201811047790 A CN 201811047790A CN 109273602 A CN109273602 A CN 109273602A
Authority
CN
China
Prior art keywords
photoelectric
metal organic
organic hybrid
application
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811047790.3A
Other languages
English (en)
Inventor
王守宇
雷蕴麟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Tianjin Normal University
Original Assignee
Tianjin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Normal University filed Critical Tianjin Normal University
Priority to CN201811047790.3A priority Critical patent/CN109273602A/zh
Publication of CN109273602A publication Critical patent/CN109273602A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明公开了2,2’‑联吡啶配体金属有机杂化材料在光电领域中的应用;所述的光电领域指的是:太阳能电池、光电管、光控继电器、光电探测器。该材料具有对紫外光和部分可见光响应的特点,并表现出很好的光电特性,因此能够提供一种更加优异的光电器件的材料。

Description

2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用
技术领域
本发明属于光电材料领域,尤其是涉及一种新型不含铅的金属有机杂化材料(C12H14N2)2[Bi2Cl10I]在光伏产业和光电器件方面的应用,将在太阳能电池、光电管、光控继电器、光电探测器具有很强的应用潜力。
背景技术
光电效应是指能够将光能转化为电能的效应,具备光电效应的材料称为光电材料。光电效应包括内光电效应和外光电效应,而内光电效应又可分为光生伏特效应和光电导效应。光生伏特效应是指在光照作用下材料产生电压的特性,被应用在太阳能电池方面,光电导效应是指在光照作用下材料的电阻率发生了改变,从而引起电流的变化,常被用来制作光电探测器。传统光电材料以硅等无机材料为主,制备工艺复杂,成本较贵,并且往往对环境具有破坏性,因此探索制备工艺简单、成本低廉、环境友好型的新型光电材料将具有很高的应用意义。
金属有机杂化材料的研究在于可以有效地将有机和无机材料的优良特性结合在一起,同时制备工艺简单,对环境污染较小,有助于降低工业生产成本和简化工艺流程。目前基于金属有机杂化材料的太阳能电池效率已经达到23.3%,在对研究广泛的三维有机杂化钙钛矿材料的探索下,人们也在探索着其他具有优良性质的材料,以便解决三维铅卤钙钛矿材料对环境有毒,对湿度不稳定性的特点。同时在其他光电器件方面也在进行的探索,以实现更广泛的应用。
(C12H14N2)2[Bi2Cl10I]材料已经在热致变色领域有所报道,作为一种具有中温变色能力的材料将在热致变色窗等方面有着潜在的价值。同时我们发现该材料在光电领域也是具有一定的应用价值,将在太阳能电池、光电管、光控继电器、光电探测器具有很强的应用潜力。
发明内容
本发明的目的在于提供一种2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用;所述的光电领域指的是:太阳能电池、光电管、光控继电器、光电探测器。实验结果显示将该材料应用于太阳能电池、光电管、光控继电器、光电探测器,将有助于降低对于环境的污染,同时,有趣的随着光照强度呈现出的电阻率先增大后减小的特性将对于新的具有特殊用途的光电探测器或者其他光电器件起到特别的用途。
本发明进一步公开了一种应用物理气相沉积法制备(C12H14N2)2[Bi2Cl10I]薄膜的方法,其特征在于通过以下操作制备:
(1)将纯化的(C12H14N2)2[Bi2Cl10I]放在50×20×20(mm)石英方舟中;
(2)将放有(C12H14N2)2[Bi2Cl10I]样品的石英方舟放入管式炉玻璃管中,方舟位置位于加热丝正上方,同时材料也正对加热丝;
(3)将放有导电玻璃的50×20×15(mm)石英方舟放入管式炉玻璃管中,距离放有(C12H14N2)2[Bi2Cl10I]样品的方舟2cm至15cm。
(4)密封管式炉玻璃管,通入氮气5分钟,排出管式炉玻璃管中空气;
(5)打开管式炉,将温度参数设置为10分钟从室温加热至350℃,在350℃保温半小时,之后关闭管式炉,使管式炉玻璃管内温度自然降低至室温,在此过程中需同时打开氮气。
(6)等管式炉玻璃管温度降低至室温后拿出两个方舟,在导电玻璃上即生长出(C12H14N2)2[Bi2Cl10I]薄膜。
本发明更进一步公开了一种水热法制备大尺寸(C12H14N2)2[Bi2Cl10I]单晶的方法,其特征在于通过以下操作制备:
(1)预先挑选出1mm大小,形状规整的(C12H14N2)2[Bi2Cl10I]晶体作为晶种,并放置在23mL反应釜内衬底部;
(2)将0.1mL氢碘酸 57%(w/w),0.0624g 2’2-联吡啶,1.7mL35%-36%盐酸(w/w),0.1261g BiCl3,10mL甲醇依次加入反应釜内衬里,将反应釜内衬放入反应釜中,密封,以上所述化学药品均可在化学药品店购买到;
(3)将反应釜放于电热鼓风干燥箱中,设置温度参数为从室温用60℃/小时升温速率升温至120℃至150℃,在120℃至150℃保持5小时至13小时,最后用10℃/小时的速率降至室温;
(4)将反应釜打开,挑选出尺寸大,质量好的(C12H14N2)2[Bi2Cl10I]单晶;
本发明进一步公开了用(C12H14N2)2[Bi2Cl10I]制作光电探测器的方法,其特征在于按照以下步骤进行:
(1)选择晶体形状规整,尺度大,缺陷少的晶体放置在不导电的玻璃基板上,在(C12H14N2)2[Bi2Cl10I]晶体的两端点上两个银电极,并在自然条件下使其变干导电,形成一个简易的光电探测器,如图2所示;
(2)将上述探测器置于电流表探针台,将电极连接到电流表上,在黑暗条件下测试出15V电压下通过材料的电流曲线;
(3)将375nm波长的激光照射在样品表面,分别在10mw,30mw,40mw,50mw,60mw功率下,在15V电压下测出通过材料的电流;
本发明所述(C12H14N2)2[Bi2Cl10I]通过紫外可见漫反射谱测试,显示在紫外波段至部分可见光波段对光有响应。这将使得(C12H14N2)2[Bi2Cl10I]可以制备成该波段内对光响应的光电器件。
本发明所述(C12H14N2)2[Bi2Cl10I]在375nm 波长激光照射下表现出显著的光电效应,为金属有机杂化光电材料的理论研究和实际应用提供了一种备选材料。
本发明公开了制备(C12H14N2)2[Bi2Cl10I]薄膜的方法、制备大块(C12H14N2)2[Bi2Cl10I]单晶的方法,重点考察了这种材料具有的光电效应的性质,研究显示(C12H14N2)2[Bi2Cl10I]具备优异的光电性质,基于这些特性,将传统光电器件中的光电材料替换为(C12H14N2)2[Bi2Cl10I]材料,将会使得光电器件(如光电管、光控继电器、光电探测器)在减少环境污染,简化工艺流程,提高转换效率方面具有显著效果。
附图说明
图1为(C12H14N2)2[Bi2Cl10I]材料的紫外可见漫反射吸收光谱,显示出在紫外到部分可见光区域的吸收;
图2为应用于(C12H14N2)2[Bi2Cl10I]材料的光电探测器示意图;
图3为(C12H14N2)2[Bi2Cl10I]在黑暗和375nm60mw激光照射下的电流曲线。
具体实施方式
下面通过具体的实施方案叙述本发明。除非特别说明,本发明中所用的技术手段均为本领域技术人员所公知的方法。另外,实施方案应理解为说明性的,而非限制本发明的范围,本发明的实质和范围仅由权利要求书所限定。对于本领域技术人员而言,在不背离本发明实质和范围的前提下,对这些实施方案中的物料成分和用量进行的各种改变或改动也属于本发明的保护范围。本发明所用原料及试剂均有市售。
实施例1
一种应用物理气相沉积法制备(C12H14N2)2[Bi2Cl10I]薄膜的方法,其特征在于通过以下操作制备:
(1)将纯化的(C12H14N2)2[Bi2Cl10I]放在50×20×20(mm)石英方舟中;
(2)将放有(C12H14N2)2[Bi2Cl10I]样品的石英方舟放入管式炉玻璃管中,方舟位置位于加热丝正上方,同时材料也正对加热丝;
(3)将放有导电玻璃的50×20×15(mm)石英方舟放入管式炉玻璃管中,距离放有(C12H14N2)2[Bi2Cl10I]样品的方舟2cm至15cm。
(4)密封管式炉玻璃管,通入氮气5分钟,排出管式炉玻璃管中空气;
(5)打开管式炉,将温度参数设置为10分钟从室温加热至350℃,在350℃保温半小时,之后关闭管式炉,使管式炉玻璃管内温度自然降低至室温,在此过程中需同时打开氮气。
(6)等管式炉玻璃管温度降低至室温后拿出两个方舟,在导电玻璃上即生长出(C12H14N2)2[Bi2Cl10I]薄膜。
用这一种物理气相沉积方法制备的薄膜具有操作简单,成膜效果好,薄膜厚度可通过沉积时间以及样品与基片之间的距离调节的优点。
实施例2
一种水热法制备大尺寸(C12H14N2)2[Bi2Cl10I]单晶的方法,其特征在于通过以下操作制备:
(1)预先挑选出1mm大小,形状规整的(C12H14N2)2[Bi2Cl10I]晶体作为晶种,并放置在23mL反应釜内衬底部;
(2)将0.1mL氢碘酸 57%(w/w),0.0624g 2’2-联吡啶,1.7mL35%-36%盐酸(w/w),0.1261g BiCl3,10mL甲醇依次加入反应釜内衬里,将反应釜内衬放入反应釜中,密封,以上所述化学药品均可在化学药品店购买到;
(3)将反应釜放于电热鼓风干燥箱中,设置温度参数为从室温用60℃/小时升温速率升温至120℃至150℃,在120℃至150℃保持5小时至13小时,最后用10℃/小时的速率降至室温;
(4)将反应釜打开,挑选出尺寸大,质量好的(C12H14N2)2[Bi2Cl10I]单晶;通过水热法制备的(C12H14N2)2[Bi2Cl10I]单晶具有操作简单,晶体规整的特点,利于光电器件的应用。
实施例3
为了更好的了解本发明具有的应用于光伏产业、光电器件方面的潜力,以下是对材料进行的光电流测试:
实验设计及操作如下:
(1)选择晶体形状规整,尺度大,缺陷少的晶体放置在不导电的玻璃基板上,在(C12H14N2)2[Bi2Cl10I]晶体的两端点上两个银电极,并在自然条件下使其变干导电,形成一个简易的光电探测器,如图2所示;
(2)将上述探测器置于电流表探针台,将电极连接到电流表上,在黑暗条件下测试出15V电压下通过材料的电流曲线;
(3)将375nm波长的激光照射在样品表面,分别在10mw,30mw,40mw,50mw,60mw功率下,在15V电压下测出通过材料的电流;
(4)相比黑暗条件下的电流,在加10mw,30mw,40mw功率激光时电流一直呈现下降趋势,在加50mw功率时电流虽然比暗电流小,但相比40mw功率时呈现上升趋势,因此在40mw功率左右电阻率达到最大值,同时在激光功率达到60mw时,光电流急速上升,并大于暗电流,电阻率最小。
在光照条件下该材料表现出了光电效应,使得(C12H14N2)2[Bi2Cl10I]的电阻率随着光照强度发生改变,这使得(C12H14N2)2[Bi2Cl10I]具备了应用于光电器件的性质,同时结合图2,即(C12H14N2)2[Bi2Cl10I]的紫外可见漫反射谱可知,该材料在紫外波段至部分可见光波段对光有很强的吸收。这使得该材料可以应用于此波段内光的探测器的制备。
(C12H14N2)2[Bi2Cl10I]材料通过水热法在较低温度即可合成,同时又不含铅等有毒元素,在光照作用下呈现出随着光照强度增加电阻率先增大后减小的有趣特点,这种特点区别于很多材料随着光照强度增加电阻率一直变小的特点,将在特殊的光电探测器方面表现出优异的性质,将同时具有对特定波段光的探测和对光功率双重响应的特点。

Claims (1)

1.2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用;所述的光电领域指的是:太阳能电池、光电管、光控继电器、光电探测器。
CN201811047790.3A 2018-09-10 2018-09-10 2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用 Pending CN109273602A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811047790.3A CN109273602A (zh) 2018-09-10 2018-09-10 2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811047790.3A CN109273602A (zh) 2018-09-10 2018-09-10 2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用

Publications (1)

Publication Number Publication Date
CN109273602A true CN109273602A (zh) 2019-01-25

Family

ID=65187521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811047790.3A Pending CN109273602A (zh) 2018-09-10 2018-09-10 2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用

Country Status (1)

Country Link
CN (1) CN109273602A (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036433A2 (en) * 1997-02-17 1998-08-20 Monsanto Company Photovoltaic cell
US20010021514A1 (en) * 1999-02-12 2001-09-13 Ljl Biosystems, Inc. Luminescent metal-ligand complexes
US20030148142A1 (en) * 2000-10-10 2003-08-07 Michael Fryd Polymers having attached luminescent metal complexes and devices made with such polymers
US20040267018A1 (en) * 2001-10-30 2004-12-30 Elliott Michael C. Metal complex-based electron-transfer mediators in dye-sensitized solar cells
WO2009020098A1 (ja) * 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009078823A1 (en) * 2007-12-17 2009-06-25 Turkiye Sise Ve Cam Fabrikalari A.S. Novel ruthenium complex photo-sensitizers for dye sensitized solar cells
US20100200051A1 (en) * 2007-07-25 2010-08-12 Polymers Crc Ltd. Solar cell and method for preparation thereof
US20110083732A1 (en) * 2009-10-08 2011-04-14 Everlight Usa, Inc. Novel ruthenium complex and photoelectric component using the same
WO2012121192A1 (ja) * 2011-03-10 2012-09-13 パナソニック株式会社 光吸収材料及び光電変換素子
EP2883881A1 (en) * 2013-12-12 2015-06-17 Merck Patent GmbH Cobaltcomplex salts and mixtures of Cobaltcomplex salts for use in DSSC
CN106008327A (zh) * 2016-05-05 2016-10-12 中国计量大学 一种有机无机杂化铋碘阴离子簇基半导体材料

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998036433A2 (en) * 1997-02-17 1998-08-20 Monsanto Company Photovoltaic cell
US20010021514A1 (en) * 1999-02-12 2001-09-13 Ljl Biosystems, Inc. Luminescent metal-ligand complexes
US20030148142A1 (en) * 2000-10-10 2003-08-07 Michael Fryd Polymers having attached luminescent metal complexes and devices made with such polymers
US20040267018A1 (en) * 2001-10-30 2004-12-30 Elliott Michael C. Metal complex-based electron-transfer mediators in dye-sensitized solar cells
US20100200051A1 (en) * 2007-07-25 2010-08-12 Polymers Crc Ltd. Solar cell and method for preparation thereof
WO2009020098A1 (ja) * 2007-08-08 2009-02-12 Nippon Kayaku Kabushiki Kaisha パイ電子共役系を拡張した色素増感型太陽電池用増感色素
WO2009078823A1 (en) * 2007-12-17 2009-06-25 Turkiye Sise Ve Cam Fabrikalari A.S. Novel ruthenium complex photo-sensitizers for dye sensitized solar cells
US20110083732A1 (en) * 2009-10-08 2011-04-14 Everlight Usa, Inc. Novel ruthenium complex and photoelectric component using the same
WO2012121192A1 (ja) * 2011-03-10 2012-09-13 パナソニック株式会社 光吸収材料及び光電変換素子
EP2883881A1 (en) * 2013-12-12 2015-06-17 Merck Patent GmbH Cobaltcomplex salts and mixtures of Cobaltcomplex salts for use in DSSC
CN106008327A (zh) * 2016-05-05 2016-10-12 中国计量大学 一种有机无机杂化铋碘阴离子簇基半导体材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN Y , YANG Z , WU X Y , ET AL.: "Iodobismuthates with N-alkyl- or N,N"-dialkyl-4,4"-bipyridinium: syntheses, structures and dielectric properties.", 《 PHYSICAL CHEMISTRY CHEMICAL PHYSICS》 *

Similar Documents

Publication Publication Date Title
Jiang et al. Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation
Selopal et al. Highly stable colloidal “giant” quantum dots sensitized solar cells
Sivula et al. WO3− Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach
Huang et al. Efficient electron-transport layer-free planar perovskite solar cells via recycling the FTO/glass substrates from degraded devices
Kim et al. Transparent thin-film silicon solar cells for indoor light harvesting with conversion efficiencies of 36% without photodegradation
KR101060463B1 (ko) 그래핀을 전기영동법으로 증착시켜 제조하는 상대전극의 제조방법, 그 방법에 의하여 제조된 상대전극 및 이를 포함하는 염료감응형 태양전지
Kwon et al. Investigating recombination and charge carrier dynamics in a one-dimensional nanopillared perovskite absorber
CN103441154B (zh) 一种ZnO纳米阵列紫外探测器及其制作方法
CN108948089B (zh) 一种具有光电效应的金属有机杂化钙钛矿材料及应用
CN109103282B (zh) 一种基于氧化镓纳米柱阵列的光电化学型日盲紫外探测器
Xue et al. Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum
CN109148696A (zh) 基于甲基紫精配体的金属有机杂化钙钛矿铁电体薄膜在用于光伏产业方面的应用
CN110911506A (zh) 稀土Er掺杂高稳定全无机钙钛矿太阳能电池及制备方法
CN110054628A (zh) 一种水稳定杂化铅碘钙钛矿材料及其应用
Krawczak et al. The influence of the dye adsorption time on the DSSC performance
Patel et al. Preparation and characterization of SnO2 thin film coating using rf-plasma enhanced reactive thermal evaporation
CN109273602A (zh) 2,2’-联吡啶配体金属有机杂化材料在光电领域中的应用
CN110194780B (zh) 一种具有光电导效应的有机无机杂化材料晶体及其应用
CN110265501B (zh) 一种基于BexZn1-xO非晶薄膜的柔性深紫外光电探测器及其制备方法
CN103280323A (zh) 锡掺杂染料敏化TiO2纳晶薄膜光电极及其制备方法与应用
González-Díaz et al. Durability analysis of the [Eu (bphen)(tta) 3] down-shifter on Si-based PV modules exposed to extreme outdoor conditions
Yan et al. Ultrafast terahertz probes of charge transfer and recombination pathway of CH3NH3PbI3 perovskites
CN109750357B (zh) 红外非线性光学晶体Ba10Zn7M6Q26及其制备方法与用途
CN111808139B (zh) 一种基于2-f-5甲基吡啶配体的金属有机无机杂化晶体及其制备方法和应用
Womack et al. High temperature stability of broadband anti-reflection coatings on soda lime glass for solar modules

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190125