CN109265664B - 一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法 - Google Patents

一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法 Download PDF

Info

Publication number
CN109265664B
CN109265664B CN201811082278.2A CN201811082278A CN109265664B CN 109265664 B CN109265664 B CN 109265664B CN 201811082278 A CN201811082278 A CN 201811082278A CN 109265664 B CN109265664 B CN 109265664B
Authority
CN
China
Prior art keywords
peg
pcl
cspbbr
perovskite
stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811082278.2A
Other languages
English (en)
Other versions
CN109265664A (zh
Inventor
罗芳
李诗情
祖叶馨
林振宇
郭隆华
邱彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201811082278.2A priority Critical patent/CN109265664B/zh
Publication of CN109265664A publication Critical patent/CN109265664A/zh
Application granted granted Critical
Publication of CN109265664B publication Critical patent/CN109265664B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Polyethers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法,其是以碳酸铯、溴化铅作为反应物,油酸、油胺作为表面配体,采用矿物油油封后,通过超声的方式获得全无机卤素钙钛矿纳米材料CsPbBr3;随后,利用具有两亲特性的聚乙二醇‑聚己内酯(PEG‑PCL)共嵌聚合物作为包埋材料,形成CsPbBr3@PEG‑PCL复合物,其中,CsPbBr3包埋在PCL疏水嵌段内,而利用PEG亲水嵌段在水相环境中能形成胶体,以大幅度提高钙钛矿复合物在水相环境中的稳定性,所得复合物有望扩展钙钛矿材料在生物以及检测方面的应用。

Description

一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法。
背景技术
全无机卤素钙钛矿纳米材料因其量子产率高、半高宽较窄、载流子迁移率高等出色的光学性质,在太阳能电池、LED、光电探测器、生物传感器以及生物成像等领域应用十分广泛。但这些应用都面临的核心问题在于,钙钛矿量子点在水相环境中的稳定性差。为了解决这问题,研究人员采用了诸多方法,主要包括(1)在器件表面包裹一层超疏水的聚合物材料,以达到阻碍水汽的效果(Adv. Funct. Mater. 2017, 27, 1604382),但这却不利于其在水溶液中的分散性。(2)采用金属氧化物包埋与阳离子掺杂,如采用二氧化硅包埋(Angew. Chem. Int. Ed. 2016, 55, 7924 –7929)、Mn2+离子掺杂(J. Am. Chem. Soc. 2017, 139, 11443−11450),这种策略提高了其水汽稳定性,但复合材料的合成操作困难。水稳定性是影响材料荧光分析应用的重要因素,因此,需要一种提高全无机卤素钙钛矿纳米材料水稳定性的方法,以解决上述问题。
共嵌聚合物(BCPs)是含有两种或多种化学上不同的聚合物链段。BCPs可以产生各种形态的有序结构,包括球体、圆柱体、双连续结构、薄片、囊泡和许多其他复杂或分层组件。其中,BCPs形成囊泡结构的应用较为广泛。BCPs囊泡是空心球体,通常外亲水内疏水,疏水嵌段可隔绝空气,亲水嵌段在水相环境中提供胶体稳定性和细胞相容性。因此,共嵌聚合物可作为全无机卤素钙钛矿纳米材料的稳定剂。
发明内容
本发明的目的在于提供一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法,其所得钙钛矿复合物在水相环境中具有高稳定性、高分散性,在生物成像、荧光检测领域具有巨大的应用潜力。
为实现上述目的,本发明采用如下技术方案:
一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法,其包括以下步骤:
(1)将溴化铅、碳酸铯与矿物油、油酸、油胺混合,超声处理8~16 min,得到全无机卤素钙钛矿纳米材料CsPbBr3
(2)将纯化后的ε-己内酯(ε-CL)、聚乙二醇(PEG)和催化剂辛酸亚锡(Sn(Oct)2)于140 ℃、真空条件下聚合反应20 h;
(3)将步骤(2)所得反应产物溶解于三氯甲烷中,在机械搅拌下缓慢滴加到无水乙醚中进行沉淀,然后采用离心分离除去未反应的单体和催化剂,真空干燥后得到共嵌聚合物PEG-PCL;
(4)将所得共嵌聚合物PEG-PCL溶于甲苯中,并加入全无机卤素钙钛矿纳米材料CsPbBr3,然后在机械搅拌下缓慢滴加到正己烷中进行沉淀,再离心分离除去甲苯与正己烷,最后经真空干燥得到能在水中保持荧光稳定的钙钛矿复合物CsPbBr3@PEG-PCL。
步骤(1)中所用溴化铅和碳酸铯的摩尔比为3:1。
步骤(1)中所用矿物油、油酸、油胺的体积比为20:1:1。
步骤(2)中所用ε-己内酯与聚乙二醇的质量比为5:1,所用辛酸亚锡与聚乙二醇的质量比为0.3:100。
步骤(4)中PEG-PCL与CsPbBr3的用量比为0.0025-0.01g:1mL。
本发明的显著特点在于:
(1)本发明采用超声法合成CsPbBr3,其操作简单,且缩短了反应时间。
(2)本发明以PEG-PCL作为CsPbBr3的包埋材料,将CsPbBr3包埋到PCL疏水嵌段中,并利用PEG亲水嵌段在水相环境中提供较好的稳定性,并且PEG-PCL具有生物相容性好、生物降解速率可调控的特点。
(3)本发明制得的CsPbBr3@PEG-PCL在水相环境中具有良好稳定性和分散性,15天内其荧光几乎没有衰减。
附图说明
图1为本发明实施例制得的钙钛矿复合物CsPbBr3@PEG-PCL的透射电镜图。
图2为本发明实施例制得的钙钛矿复合物CsPbBr3@PEG-PCL与CsPbBr3在水中的分散情况对比图。
图3为本发明实施例制得的钙钛矿复合物CsPbBr3@PEG-PCL的稳定性曲线图。
具体实施方式
实施例
1. 称量2.5 g纯化后的ε-CL、0.5 g PEG和30 μl含50 mg/ml Sn(Oct)2的三氯甲烷溶液,将其装入干燥的聚合管中,先抽真空后再充入氮气,重复操作三次后真空封管;将聚合管放置在140 ℃环境中进行聚合反应20 h。待聚合反应结束后,将得到的粗产物溶解于约100 mL三氯甲烷中,在机械搅拌下缓慢滴加到500 mL无水乙醚中进行沉淀,然后在0℃、10000 rpm条件下离心3 min,除去未反应的单体和催化剂,再将沉淀于37 ℃下真空干燥24 h,得PEG-PCL。
2. 称取0.05 mmol碳酸铯、0.15 mmol的溴化铅,向其中快速加入5 mL矿物油、0.25 mL油酸、0.25 mL油胺。将所得混合溶液置于超声波细胞粉碎机中,超声处理16 min使其完全溶解,得到CsPbBr3
3. 称取0.05 g的PEG-PCL,将其溶于50 mL甲苯中,再加入20 mL CsPbBr3,所得混合液在机械搅拌下缓慢滴加到250 mL正己烷中进行沉淀,然后于8000 rpm离心5 min除去有机溶剂,将沉淀于37 ℃下真空干燥24 h,得CsPbBr3@PEG-PCL复合物。
图1为所得CsPbBr3@PEG-PCL复合物的透射电镜图。从图1可以看出,CsPbBr3被PEG-PCL包埋在内部,其复合物的形貌大致为囊泡。
图2为所得CsPbBr3@PEG-PCL复合物与CsPbBr3在水中的分散情况对比图。由图2可见, CsPbBr3@PEG-PCL在水中的分散性能良好。
称取制备得到的CsPbBr3@PEG-PCL复合物0.005 g,加入400 μL的去离子水,超声4h,待分散均匀后于不同时间进行荧光强度测定,以判断其在水溶液中的稳定性,结果见图3。由图3可见,CsPbBr3@PEG-PCL的荧光强度在15天内仅下降约为5.4%,证明其在水相环境中能保持较强的荧光稳定性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (1)

1.一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法,其特征在于:包括以下步骤:
(1)将溴化铅、碳酸铯与矿物油、油酸、油胺混合,经超声处理得到全无机卤素钙钛矿纳米材料CsPbBr3
(2)将ε-己内酯、聚乙二醇和催化剂辛酸亚锡于140 ℃、真空条件下聚合反应20 h;
(3)将步骤(2)所得反应产物溶解于三氯甲烷中,在机械搅拌下缓慢滴加到无水乙醚中进行沉淀,然后采用离心分离除去未反应的单体和催化剂,真空干燥后得到共嵌聚合物PEG-PCL;
(4)将所得共嵌聚合物PEG-PCL溶于甲苯中,并加入全无机卤素钙钛矿纳米材料CsPbBr3,然后在机械搅拌下缓慢滴加到正己烷中进行沉淀,再离心分离除去甲苯与正己烷,最后经真空干燥得到能在水中保持荧光稳定的钙钛矿复合物CsPbBr3@PEG-PCL;
步骤(1)中所用溴化铅和碳酸铯的摩尔比为3:1,所用矿物油、油酸、油胺的体积比为20:1:1;超声处理的时间为8~16min;
步骤(2)中所用ε-己内酯与聚乙二醇的质量比为5:1,所用辛酸亚锡与聚乙二醇的质量比为0.3:100;
步骤(4)中PEG-PCL与CsPbBr3的用量比为0.0025-0.01g:1mL。
CN201811082278.2A 2018-09-17 2018-09-17 一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法 Active CN109265664B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811082278.2A CN109265664B (zh) 2018-09-17 2018-09-17 一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811082278.2A CN109265664B (zh) 2018-09-17 2018-09-17 一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法

Publications (2)

Publication Number Publication Date
CN109265664A CN109265664A (zh) 2019-01-25
CN109265664B true CN109265664B (zh) 2021-01-29

Family

ID=65188787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811082278.2A Active CN109265664B (zh) 2018-09-17 2018-09-17 一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法

Country Status (1)

Country Link
CN (1) CN109265664B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111668377B (zh) * 2020-06-08 2022-02-18 河南大学 一种以Mo-二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN114517092B (zh) * 2022-01-24 2023-06-23 南京信息工程大学 一种CSPbBr3钙钛矿量子点及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090122479A (ko) * 2007-03-30 2009-11-30 에이전시 포 사이언스, 테크놀로지 앤드 리서치 소수성 양자점의 캡슐화

Also Published As

Publication number Publication date
CN109265664A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
Hu et al. Core‐template‐free strategy for preparing hollow nanospheres
Wang et al. Some recent developments of polyhedral oligomeric silsesquioxane (POSS)-based polymeric materials
Pandey et al. Sol–gel derived organic–inorganic hybrid materials: synthesis, characterizations and applications
Cheng et al. Boron-containing polymers as versatile building blocks for functional nanostructured materials
US5938934A (en) Dendrimer-based nanoscopic sponges and metal composites
CN109265664B (zh) 一种采用共嵌聚合物提高钙钛矿材料在水中稳定性的方法
KR20110127159A (ko) 캡슐화된 나노입자들
Jin Controlled location of porphyrin in aqueous micelles self‐assembled from porphyrin centered amphiphilic star poly (oxazolines)
Wang et al. Synthesis and pH/sugar/salt-sensitivity study of boronate crosslinked glycopolymer nanoparticles
CN110183601B (zh) 一种含有酰腙键和二硫键的共价有机框架材料的制备方法及应用
Grazon et al. A versatile and accessible polymer coating for functionalizable zwitterionic quantum dots with high DNA grafting efficiency
Prudnikau et al. Design of cross-linked polyisobutylene matrix for efficient encapsulation of quantum dots
CN105999305B (zh) 一种纳米粒子的表面修饰方法及其一种表面功能化的纳米材料
Cang et al. Immobilized CdS quantum dots in spherical polyelectrolyte brushes: Fabrication, characterization and optical properties
WO2016114625A1 (ko) 나노다공성 고분자 멤브레인 및 그 제조방법
WO2013029278A1 (en) A method for preparing functionalized silicon nanoparticles
Zhao et al. Facile fabrication of OA-POSS modified near-infrared-emitting CdSeTe alloyed quantum dots and their bioapplications
Zhang et al. A novel method to make hydrophilic quantum dots and its application on biodetection
Shi et al. Fabrication of rod-like nanocapsules based on polylactide and 3, 4-dihydroxyphenylalanine for a drug delivery system
CN109399627B (zh) Dna引导的量子点-氧化石墨烯复合材料的制备方法
CN101431148A (zh) 一种提高CdTe纳米复合薄膜发光强度的方法
Xue et al. Controlled fabrication of polypyrrole capsules and nanotubes in the presence of Rhodamine B
Jiang et al. Synthesis of poly (ethylene glycol)-graft-chitosan and using as ligand for fabrication of water-soluble quantum dots
CN114621417A (zh) 一种光学活性螺旋聚芴嵌段聚异腈共聚物及其制备方法和用途
JP2001172089A (ja) シリカ−チタニア多孔質体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant