CN109265143A - 一种高强度耐老化消声材料的制备方法 - Google Patents

一种高强度耐老化消声材料的制备方法 Download PDF

Info

Publication number
CN109265143A
CN109265143A CN201811098897.0A CN201811098897A CN109265143A CN 109265143 A CN109265143 A CN 109265143A CN 201811098897 A CN201811098897 A CN 201811098897A CN 109265143 A CN109265143 A CN 109265143A
Authority
CN
China
Prior art keywords
parts
deadener
reaction
preparation
strength ageing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201811098897.0A
Other languages
English (en)
Inventor
方建波
蒋东明
赵金晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201811098897.0A priority Critical patent/CN109265143A/zh
Publication of CN109265143A publication Critical patent/CN109265143A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/064Natural expanding materials, e.g. clay
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5212Organic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种高强度耐老化消声材料的制备方法,属于消声材料制备技术领域。本发明以石磨棒为原料制得反应固体粉末,再将玉米秸秆与反应固体粉末混合制得反应悬浊液,将滤渣与柠檬酸钠、甘油以及其它助剂混合,再加入玻璃纤维、聚乙烯挤出造粒制得反应产物,将煅烧产物与氧化钛、有机硅烷煅烧,在真空罐中静置制得高强度耐老化消声材料,本发明将石墨烯和植物纤维混合振荡使石墨烯吸附于植物纤维上和植物纤维管中,从而提高植物纤维的力学性能,铝单质在高温下与空气反应生成氧化铝材料,使消声材料的消声性能得到提高,并加入氧化钛与有机硅烷,从而进一步提高消声材料的力学性能和耐老化性能,具有广阔的应用前景。

Description

一种高强度耐老化消声材料的制备方法
技术领域
本发明涉及一种高强度耐老化消声材料的制备方法,属于消声材料制备技术领域。
背景技术
近年来,随着经济的发展的同时也加剧了噪声污染的问题,噪声严重影响着居民的正常生活和人体健康,成为人类亟待解决的问题之一。
消声材料一般选用密度大、致密的材料制备,如铅、混凝土等,但这些材料存在成型困难、单位质量重、极易吸水,从而使消声性能大大下降及装饰性差等问题,限制了其应用。目前,市场上有很多复合材料,但材料密度小,无论是对隔音、降噪等所起到的作用不大,因为材料的使用效果、韧性、抗阻性等均取决于材料本身的密度,如果材料自身密度低,则制成的复合材料的效果更不理想。
多孔玻璃是一种新型的建筑材料,由于其具有密度小、导热系数小、防化学腐蚀性、不受蚁鼠侵害、保温隔热、防水防潮、防火、吸声等一系列优越性能,已在化工、石化、轻工、冷藏、暖气输送、建筑、环保领域作为保温保冷、消声首选的工程材料。但由于多孔玻璃本身强度较低,不仅在搬运,加工,施工过程中易于破碎,更重要的是不能满足高层建筑墙体承重材料、军工防震材料的强度要求,而被限制使用。
高分子材料如聚氨酯泡沫塑料,质量轻,易成型,具有优异的吸声性能,但存在材料老化和防火性能较差等问题。泡沫玻璃具有质轻、不燃、不会老化、抗冻、耐热、耐水等特性。特别适用于防火要求高和极端潮湿的环境条件下使用,但其吸声性能远不及聚氨酯泡沫塑料。因此,改善和提高泡沫玻璃的吸声性能对其在工程中的应用至关重要。
现有消声材料也有复合型的,但是无机物料与有机物料复合的性能指标优异的较少。从整体上看,我国吸音材料行业产品加工能力不足,在高端吸音材料的研发和生产上与发达国家相比存在着较大的差距。因此,目前急需研究开发一种能够经受严酷环境考验,具有拉伸强度高、伸长率高、断裂强度高、吸音效果好并且制造成本低的新型消声材料。
发明内容
本发明所要解决的技术问题,针对目前消声材料力学性能不足导致消声材料易磨损、断裂,同时针对消声材料易老化的缺陷,提供了一种高强度耐老化消声材料的制备方法。
为解决上述技术问题,本发明采用的技术方案是:
一种高强度耐老化消声材料的制备方法,其特征在于具体制备步骤为:
(1)将石磨棒置于电弧室的正负极,电弧放电制得反应固体粉末,将玉米秸秆与盐酸置于烧杯中,将烧杯置于超声振荡仪中超声振荡制得混合悬浊液,向烧杯中加入混合悬浊液质量10~12%的反应固体粉末,继续超声振荡2~3h,制得反应悬浊液;
(2)将反应悬浊液过滤得到滤渣,用蒸馏水清洗滤渣3~5次,按重量份数计,称取7~9份滤渣、1.5~1.8份份柠檬酸钠、0.7~1.0份十二烷基苯磺酸、2~3份甘油、8~10份丙二酮、5~7份乙醇和20~22份蒸馏水投入三口烧瓶中,用搅拌器混合搅拌,制得混合溶液;
(3)按重量份数计,称取17~20份玻璃纤维、30~32份聚乙烯、9~12份上述混合溶液、1~2份碳酸镁投入反应釜中,搅拌2~3h,搅拌后投入双螺杆挤出机中挤出造粒,并投入研磨机中研磨粉碎,过100目筛得到反应产物;
(4)将上述反应产物与单质铝按质量比15:1投入行星球磨机中球磨共混得到混合产物,将混合产物置于电阻炉中升温,恒温加热,再降温,恒温静置制得煅烧产物;
(5)按重量份数计,将9~12份上述煅烧产物、2~4份乙烯基三乙氧基硅烷和1~2份氧化钛置于模具中,将模具置于马弗炉中,升温高温煅烧制得混合固体,将混合固体置于真空罐中,抽真空静置,即得高强度耐老化消声材料。
步骤(1)中所述的电弧室中的电压为3000~3500V,电弧放电时间为35~40min,盐酸的质量分数为5~8%的盐酸,超声振荡仪中的频率为30~35kHz,超声振荡时间为4~5h。
步骤(2)中所述的搅拌器的转速为1200~1400r/min,混合搅拌时间为60~80min。
步骤(3)中所述的反应釜中的搅拌转速为300~400r/min,搅拌时间为2~3h,双螺杆挤出机中的温度为240~280℃,挤出转速为60~80r/min。
步骤(4)中所述电阻炉的升温速率为10~13℃/min,升温温度至650~680℃,恒温加热时间为40~45min,降温温度至400~450℃,恒温静置时间为60~80min。
步骤(5)中所述的马弗炉中升温温度至800~820℃,高温煅烧时间为40~50min,制得混合固体,真空罐中抽真空至真空度为30~50Pa,静置时间为20~30min。
本发明的有益技术效果是:
(1)本发明首先将石磨棒置于电弧室中放电反应制得反应固体粉末,再将玉米秸秆置于盐酸中浸泡振荡,振荡后加入反应固体粉末混合制得反应悬浊液,然后将反应悬浊液过滤得到滤渣,再将滤渣与柠檬酸钠、甘油以及其它助剂混合,混合后加入玻璃纤维、聚乙烯混合投入挤出机中挤出造粒制得反应产物,随后将反应产物与铝混合投入电阻炉中高温煅烧,制得煅烧产物,再将煅烧产物与氧化钛、有机硅烷混合置于马弗炉中煅烧,煅烧后在真空罐中静置制得高强度耐老化消声材料,本发明将石墨棒置于电弧室中电弧放电制得纳米级石墨烯,再将玉米秸秆于盐酸中浸泡,使秸秆中的植物纤维分离出来,将石墨烯和植物纤维混合振荡使石墨烯吸附于植物纤维上和植物纤维管中,从而提高植物纤维的力学性能,并加入柠檬酸钠以及甘油对植物纤维进行改性,使植物纤维中引入羟基、羧基以及酯基基团,从而加强植物纤维对消声材料中各分子的吸附作用,有利于加强消声材料的力学性能,使消声材料的耐磨性能以及抗冲击性能得到加强;
(2)本发明将单质铝与植物纤维、玻璃纤维和聚乙烯为原料制成的反应产物混合,并进行高温煅烧,使铝单质在高温下与空气反应生成氧化铝材料,氧化铝受热膨胀使消声材料表面的粗糙程度提高,同时内部孔隙率增加,使消声材料的消声性能得到提高,并加入氧化钛与有机硅烷,利用有机硅烷对消声材料各分子间的共价键、分子间作用力吸附,加强消声材料内部粘结程度,从而进一步提高消声材料的力学性能和耐老化性能,具有广阔的应用前景。
具体实施方式
将石磨棒置于电弧室的正负极,在电压为3000~3500V的条件下通电,电弧放电35~40min,制得反应固体粉末,将玉米秸秆与质量分数为5~8%的盐酸置于烧杯中,将烧杯置于超声振荡仪中,在频率为30~35kHz的条件下超声振荡4~5h,制得混合悬浊液,向烧杯中加入混合悬浊液质量10~12%的反应固体粉末,继续以30~35kHz的频率超声振荡2~3h,制得反应悬浊液;将反应悬浊液过滤得到滤渣,用蒸馏水清洗滤渣3~5次,按重量份数计,称取7~9份滤渣、1.5~1.8份份柠檬酸钠、0.7~1.0份十二烷基苯磺酸、2~3份甘油、8~10份丙二酮、5~7份乙醇和20~22份蒸馏水投入三口烧瓶中,用搅拌器以1200~1400r/min的转速混合搅拌60~80min,制得混合溶液;按重量份数计,称取17~20份玻璃纤维、30~32份聚乙烯、9~12份上述混合溶液、1~2份碳酸镁投入反应釜中,在搅拌转速为300~400r/min的条件下搅拌2~3h,搅拌后投入双螺杆挤出机中在温度为240~280℃、挤出转速为60~80r/min的条件下挤出造粒,并投入研磨机中研磨粉碎,过100目筛得到反应产物;将上述反应产物与单质铝按质量比15:1投入行星球磨机中球磨共混得到混合产物,将混合产物置于电阻炉中,将电阻炉以10~13℃/min的升温速率升温至650~680℃,恒温加热40~45min,降温至400~450℃,恒温静置60~80min,制得煅烧产物;按重量份数计,将9~12份上述煅烧产物、2~4份乙烯基三乙氧基硅烷和1~2份氧化钛置于模具中,将模具置于马弗炉中,升温至800~820℃高温煅烧40~50min,制得混合固体,将混合固体置于真空罐中,抽真空至30~50Pa静置20~30min,即得高强度耐老化消声材料。
实例1
将石磨棒置于电弧室的正负极,在电压为3000V的条件下通电,电弧放电35min,制得反应固体粉末,将玉米秸秆与质量分数为5%的盐酸置于烧杯中,将烧杯置于超声振荡仪中,在频率为30kHz的条件下超声振荡4h,制得混合悬浊液,向烧杯中加入混合悬浊液质量10%的反应固体粉末,继续以30kHz的频率超声振荡2h,制得反应悬浊液;将反应悬浊液过滤得到滤渣,用蒸馏水清洗滤渣3次,按重量份数计,称取7份滤渣、1.5份份柠檬酸钠、0.7份十二烷基苯磺酸、2份甘油、8份丙二酮、5份乙醇和20份蒸馏水投入三口烧瓶中,用搅拌器以1200r/min的转速混合搅拌60min,制得混合溶液;按重量份数计,称取17份玻璃纤维、30份聚乙烯、9上述混合溶液、1份碳酸镁投入反应釜中,在搅拌转速为300r/min的条件下搅拌2h,搅拌后投入双螺杆挤出机中在温度为240℃、挤出转速为60r/min的条件下挤出造粒,并投入研磨机中研磨粉碎,过100目筛得到反应产物;将上述反应产物与单质铝按质量比15:1投入行星球磨机中球磨共混得到混合产物,将混合产物置于电阻炉中,将电阻炉以10℃/min的升温速率升温至650℃,恒温加热40min,降温至400℃,恒温静置60min,制得煅烧产物;按重量份数计,将9份上述煅烧产物、2份乙烯基三乙氧基硅烷和1份氧化钛置于模具中,将模具置于马弗炉中,升温至800℃高温煅烧40min,制得混合固体,将混合固体置于真空罐中,抽真空至30Pa静置20min,即得高强度耐老化消声材料。
实例2
将石磨棒置于电弧室的正负极,在电压为3250V的条件下通电,电弧放电37min,制得反应固体粉末,将玉米秸秆与质量分数为6%的盐酸置于烧杯中,将烧杯置于超声振荡仪中,在频率为33kHz的条件下超声振荡4h,制得混合悬浊液,向烧杯中加入混合悬浊液质量11%的反应固体粉末,继续以33kHz的频率超声振荡2h,制得反应悬浊液;将反应悬浊液过滤得到滤渣,用蒸馏水清洗滤渣4次,按重量份数计,称取8份滤渣、1.7份份柠檬酸钠、0.8份十二烷基苯磺酸、2份甘油、9份丙二酮、6份乙醇和21份蒸馏水投入三口烧瓶中,用搅拌器以1300r/min的转速混合搅拌70min,制得混合溶液;按重量份数计,称取18份玻璃纤维、31份聚乙烯、10份上述混合溶液、1份碳酸镁投入反应釜中,在搅拌转速为325r/min的条件下搅拌2h,搅拌后投入双螺杆挤出机中在温度为260℃、挤出转速为70r/min的条件下挤出造粒,并投入研磨机中研磨粉碎,过100目筛得到反应产物;将上述反应产物与单质铝按质量比15:1投入行星球磨机中球磨共混得到混合产物,将混合产物置于电阻炉中,将电阻炉以12℃/min的升温速率升温至660℃,恒温加热43min,降温至425℃,恒温静置70min,制得煅烧产物;按重量份数计,将10份上述煅烧产物、3份乙烯基三乙氧基硅烷和1份氧化钛置于模具中,将模具置于马弗炉中,升温至810℃高温煅烧45min,制得混合固体,将混合固体置于真空罐中,抽真空至40Pa静置25min,即得高强度耐老化消声材料。
实例3
将石磨棒置于电弧室的正负极,在电压为3500V的条件下通电,电弧放电40min,制得反应固体粉末,将玉米秸秆与质量分数为8%的盐酸置于烧杯中,将烧杯置于超声振荡仪中,在频率为35kHz的条件下超声振荡5h,制得混合悬浊液,向烧杯中加入混合悬浊液质量12%的反应固体粉末,继续以35kHz的频率超声振荡3h,制得反应悬浊液;将反应悬浊液过滤得到滤渣,用蒸馏水清洗滤渣5次,按重量份数计,称取9份滤渣、1.8份份柠檬酸钠、1.0份十二烷基苯磺酸、3份甘油、10份丙二酮、7份乙醇和22份蒸馏水投入三口烧瓶中,用搅拌器以1400r/min的转速混合搅拌80min,制得混合溶液;按重量份数计,称取20份玻璃纤维、32份聚乙烯、12份上述混合溶液、2份碳酸镁投入反应釜中,在搅拌转速为400r/min的条件下搅拌3h,搅拌后投入双螺杆挤出机中在温度为280℃、挤出转速为80r/min的条件下挤出造粒,并投入研磨机中研磨粉碎,过100目筛得到反应产物;将上述反应产物与单质铝按质量比15:1投入行星球磨机中球磨共混得到混合产物,将混合产物置于电阻炉中,将电阻炉以13℃/min的升温速率升温至680℃,恒温加热45min,降温至450℃,恒温静置80min,制得煅烧产物;按重量份数计,将12份上述煅烧产物、4份乙烯基三乙氧基硅烷和2份氧化钛置于模具中,将模具置于马弗炉中,升温至820℃高温煅烧50min,制得混合固体,将混合固体置于真空罐中,抽真空至50Pa静置30min,即得高强度耐老化消声材料。
对比例
以合肥市某公司生产的消声材料作为对比例 对本发明制得的高强度耐老化消声材料和对比例中的消声材料进行检测,检测结果如表1所示:
力学性能测试
采用电子万能材料试验机进行测试。
吸声测试
吸声系数(α):材料吸收的声能与入射到材料上的总声能之比。
α=Eα/Ei=(Ei-Er)/Ei=1-r
Ei:入射声能;
Eα:被材料或结构吸收的声能;
Er:被材料或结构反射的声能;
r:反射系数。
一般材料或结构的吸声系数,α值越大,表示吸声能越好,它是目前表征吸声性能最常用的参数。
耐老化性
将本发明制得的高强度耐老化消声材料和对比例中的消声材料置于温度为60℃的环境下放置30天,取出观察。
表1性能测定结果
根据表1中数据可知,本发明制得的高强度耐老化消声材料,具有强度高、韧性好、消声效果优异和耐老化性能良好等特点,且生产工艺简单,成本较低,具有广阔的应用前景。

Claims (6)

1.一种高强度耐老化消声材料的制备方法,其特征在于具体制备步骤为:
(1)将石磨棒置于电弧室的正负极,电弧放电制得反应固体粉末,将玉米秸秆与盐酸置于烧杯中,将烧杯置于超声振荡仪中超声振荡制得混合悬浊液,向烧杯中加入混合悬浊液质量10~12%的反应固体粉末,继续超声振荡2~3h,制得反应悬浊液;
(2)将反应悬浊液过滤得到滤渣,用蒸馏水清洗滤渣3~5次,按重量份数计,称取7~9份滤渣、1.5~1.8份份柠檬酸钠、0.7~1.0份十二烷基苯磺酸、2~3份甘油、8~10份丙二酮、5~7份乙醇和20~22份蒸馏水投入三口烧瓶中,用搅拌器混合搅拌,制得混合溶液;
(3)按重量份数计,称取17~20份玻璃纤维、30~32份聚乙烯、9~12份上述混合溶液、1~2份碳酸镁投入反应釜中,搅拌2~3h,搅拌后投入双螺杆挤出机中挤出造粒,并投入研磨机中研磨粉碎,过100目筛得到反应产物;
(4)将上述反应产物与单质铝按质量比15:1投入行星球磨机中球磨共混得到混合产物,将混合产物置于电阻炉中升温,恒温加热,再降温,恒温静置制得煅烧产物;
(5)按重量份数计,将9~12份上述煅烧产物、2~4份乙烯基三乙氧基硅烷和1~2份氧化钛置于模具中,将模具置于马弗炉中,升温高温煅烧制得混合固体,将混合固体置于真空罐中,抽真空静置,即得高强度耐老化消声材料。
2.根据权利要求1所述的一种高强度耐老化消声材料的制备方法,其特征在于:步骤(1)中所述的电弧室中的电压为3000~3500V,电弧放电时间为35~40min,盐酸的质量分数为5~8%的盐酸,超声振荡仪中的频率为30~35kHz,超声振荡时间为4~5h。
3.根据权利要求1所述的一种高强度耐老化消声材料的制备方法,其特征在于:步骤(2)中所述的搅拌器的转速为1200~1400r/min,混合搅拌时间为60~80min。
4.根据权利要求1所述的一种高强度耐老化消声材料的制备方法,其特征在于:步骤(3)中所述的反应釜中的搅拌转速为300~400r/min,搅拌时间为2~3h,双螺杆挤出机中的温度为240~280℃,挤出转速为60~80r/min。
5.根据权利要求1所述的一种高强度耐老化消声材料的制备方法,其特征在于:步骤(4)中所述电阻炉的升温速率为10~13℃/min,升温温度至650~680℃,恒温加热时间为40~45min,降温温度至400~450℃,恒温静置时间为60~80min。
6.根据权利要求1所述的一种高强度耐老化消声材料的制备方法,其特征在于:步骤(5)中所述的马弗炉中升温温度至800~820℃,高温煅烧时间为40~50min,制得混合固体,真空罐中抽真空至真空度为30~50Pa,静置时间为20~30min。
CN201811098897.0A 2018-09-20 2018-09-20 一种高强度耐老化消声材料的制备方法 Withdrawn CN109265143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811098897.0A CN109265143A (zh) 2018-09-20 2018-09-20 一种高强度耐老化消声材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811098897.0A CN109265143A (zh) 2018-09-20 2018-09-20 一种高强度耐老化消声材料的制备方法

Publications (1)

Publication Number Publication Date
CN109265143A true CN109265143A (zh) 2019-01-25

Family

ID=65197648

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811098897.0A Withdrawn CN109265143A (zh) 2018-09-20 2018-09-20 一种高强度耐老化消声材料的制备方法

Country Status (1)

Country Link
CN (1) CN109265143A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880289A (zh) * 2013-06-25 2014-06-25 浙江奥强环保科技有限公司 一种多功能环保型泡沫玻璃制品及其制备方法
CN108395211A (zh) * 2018-03-24 2018-08-14 广州城建职业学院 一种新型的建筑用吸声材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880289A (zh) * 2013-06-25 2014-06-25 浙江奥强环保科技有限公司 一种多功能环保型泡沫玻璃制品及其制备方法
CN108395211A (zh) * 2018-03-24 2018-08-14 广州城建职业学院 一种新型的建筑用吸声材料及其制备方法

Similar Documents

Publication Publication Date Title
Khushnood et al. Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials
CN102757590B (zh) 一种地板,其生产方法及应用
CN101041578A (zh) 轻骨料混凝土及采用该轻骨料混凝土制成的模壳墙体构件
CN1140604C (zh) 真空绝热材料
CN107286464A (zh) 一种聚丙烯木塑复合板及其制备方法
CN105601320B (zh) 一种利用富镁冶金镍渣制备的多孔陶瓷及其制备方法
CN109096563A (zh) 一种高强度填充橡胶的制备方法
CN108585936A (zh) 一种硅藻土植物纤维建筑保温材料及其制备方法
CN109265143A (zh) 一种高强度耐老化消声材料的制备方法
CN108191358A (zh) 一种新型墙体保温材料及其制备方法
Zheng et al. Construction of homogeneous structure and chemical bonding in bamboo scrap/magnesium oxychloride composites by polycarboxylate superplasticizer
CN107916011A (zh) 一种高强度吸音板的制备方法
CN108147775A (zh) 一种阻燃保温压缩板及其制备方法
Dove et al. A material characterization and embodied energy study of novel clay-alginate composite aerogels
CN101045642A (zh) 新型高掺量工业废料建筑保温隔热材料及其制备方法
CN108948465A (zh) 一种高强度绝热管道及其制备方法
CN109082035A (zh) 一种抗老化pvc墙板及其加工工艺
CN108706988A (zh) 一种应用于装配式建筑的新型环保复合材料及其制备方法
CN108164250A (zh) 一种自保温烧结多孔砖及烧结工艺
Valchev et al. Silica products from rice hulls
CN109650943A (zh) 一种保温隔音复合水泥基墙体材料及其制备方法
CN108358549A (zh) 一种建筑用的高性能保温砖及其制备方法
CN114773015A (zh) 一种改性生土保温结构一体化建筑墙体材料及制备方法
CN114735976A (zh) 一种垃圾焚烧飞灰地聚物混凝土的制备方法
CN111377688B (zh) 防火保温材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20190125

WW01 Invention patent application withdrawn after publication