CN109252832A - 一种基于储层稳定的水合物开采方法及开采装置 - Google Patents

一种基于储层稳定的水合物开采方法及开采装置 Download PDF

Info

Publication number
CN109252832A
CN109252832A CN201811173973.XA CN201811173973A CN109252832A CN 109252832 A CN109252832 A CN 109252832A CN 201811173973 A CN201811173973 A CN 201811173973A CN 109252832 A CN109252832 A CN 109252832A
Authority
CN
China
Prior art keywords
gas
hydrate
well
drilling platforms
monitoring instrument
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811173973.XA
Other languages
English (en)
Other versions
CN109252832B (zh
Inventor
梁前勇
杨林
董飞
董一飞
钟超
张亭亭
吴学敏
郭斌斌
肖曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Marine Geological Survey
Original Assignee
Guangzhou Marine Geological Survey
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Marine Geological Survey filed Critical Guangzhou Marine Geological Survey
Priority to CN201811173973.XA priority Critical patent/CN109252832B/zh
Publication of CN109252832A publication Critical patent/CN109252832A/zh
Application granted granted Critical
Publication of CN109252832B publication Critical patent/CN109252832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/001Survey of boreholes or wells for underwater installation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Abstract

本发明公开了一种基于储层稳定的水合物开采方法及开采装置,包括钻井平台,水合物区包括由上至下依次排列的上覆盖层、水合物层、水合物下伏游离气层和下覆盖层,所述水合物层设置有水平开采井,所述水合物层与所述上覆盖层的接触面设置有第一水平辅助井,所述水合物下伏游离气层与所述下覆盖层的接触面设置有第二水平辅助井,所述第一水平辅助井内设置有第一堵头,所述第二水平辅助井内设置有第二堵头;所述钻井平台包括第一钻井平台和第二钻井平台,本发明利用降压与置换相结合的方法开采水合物,能够增加天然气的产量,并且解决海底天然气水合物直接大量开采可能引起海底储层失稳的问题。

Description

一种基于储层稳定的水合物开采方法及开采装置
技术领域
本发明涉及一种水合物开采方法及开采装置,尤其涉及一种基于储层稳定的水合物开采方法及开采装置。
背景技术
天然气水合物是天然气水在高压低温条件下形成笼型晶体化合物,冰雪状,可点燃,又被称为“可燃冰”。天然气水合物是21世纪公认的最有可能接替煤炭、石油等常规能源的新型绿色能源,具有能量密度高、清洁环保、分布区域广、资源规模大等特点,是未来能源发展的战略制高点。
天然气水合物主要分布陆地永久冻土带和水深超过300米的海底沉积物中,其中,超过90%的世界近海海域满足天然气水合物形成所需条件。2017年,我国实现了世界上泥质粉砂型天然气水合物的首次成功试采,并对整个试采过程进行环境监测,然而水合物的首次试采结果表明,水合物试采不会对环境及储层稳定造成影响,但长期开采需要考虑水合物储层稳定性的影响。
鉴于泥质粉砂储层胶结程度弱、固结强度低、储层渗透性差的特点,目前,国内外众多学者对海洋水合物开采过程中的储层变形进行了研究,认为现有方法开发水合物过程中,水合物储层发生变形沉降,其中,水合物储层与上下覆盖层接触面土体会发生蠕变并产生较大相对位移,变形最为剧烈。
发明内容
为了克服现有技术的不足,本发明的目的之一在于提供一种基于储层稳定的水合物开采方法,其利用降压与置换相结合的方法开采水合物,能够增加天然气产量,并且解决海底天然气水合物直接大量开采可能引起海底储层失稳的问题。
本发明的目的之二在于提供一种基于储层稳定的水合物开采装置,其解决了海底天然气水合物直接大量开采可能引起海底储层失稳的问题。
本发明的目的之一采用以下技术方案实现:
一种基于储层稳定的水合物开采方法,该方法的具体步骤如下:
S1、在水合物层的中心区域构筑一口水平开采井,在水合物层与上覆盖层的接触面构筑一口第一水平辅助井,在水合物下伏游离气层与下覆盖层的接触面构筑一口第二水平辅助井,钻井完成后进行固井和完井;
S2、降压开采,利用放置在水平开采井底部的潜水泵对水平开采井进行抽水,使水平开采井内的压力降低,从而实现降压开采水合物,然后利用第一气体采集装置收集分解后的天然气和水,天然气和水经第一气液分离装置分离后分别储存于第一钻井平台的第一储气罐和第一储水罐内;
S3、置换开采,利用气体注入装置,通过第一水平辅助井和第二水平辅助井向水合物层与上覆盖层的接触面、水合物下伏游离气层与下覆盖层的接触面注入CO2/N2混合气体,注气后利用第一堵头和第二堵头对第一水平辅助井和第二水平辅助井的水平段进行焖井憋压置换开采天然气水合物,置换完成后利用第二气体采集装置收集混合气体,混合气体经第二气液分离装置分离后,水储存于第二储水罐中,混合气体经气体分离装置分离提纯后,分别储存于第二钻井平台的天然气罐、CO2罐和N2罐内。
进一步地,固井和完井后在水平开采井下入第一监测仪器,第一监测仪器包括第一温度传感器、第一压力传感器和第一流量传感器,测量水平开采井内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第一监测仪器连接到第一钻井平台的第一数据采集与处理系统,在第一水平辅助井下入第二监测仪器,第二监测仪器包括第二温度传感器、第二压力传感器和第二流量传感器,测量第一水平辅助井内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第二监测仪器连接到第二钻井平台的第二数据采集与处理系统,在第二水平辅助井下入第三监测仪器,第三监测仪器包括第三温度传感器、第三压力传感器和第三流量传感器,测量第二水平辅助井内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第三监测仪器连接到第二钻井平台的第二数据采集与处理系统。
本发明的目的之二采用以下技术方案实现:
一种基于储层稳定的水合物开采装置,包括钻井平台,水合物区包括由上至下依次排列的上覆盖层、水合物层、水合物下伏游离气层和下覆盖层,所述水合物层设置有水平开采井,所述水合物层与所述上覆盖层的接触面设置有第一水平辅助井,所述水合物下伏游离气层与所述下覆盖层的接触面设置有第二水平辅助井,所述第一水平辅助井内设置有第一堵头,所述第二水平辅助井内设置有第二堵头;所述钻井平台包括第一钻井平台和第二钻井平台,所述第一钻井平台上设置有第一气体采集装置、第一气液分离装置、第一储气罐和第一储水罐;所述第一气体采集装置的一端与所述水平开采井连接,另一端与所述第一气液分离装置连接;所述第一储气罐和第一储水罐分别与所述第一气液分离装置连接,所述第二钻井平台上设置有第二气体采集装置、第二气液分离装置、气体注入装置、气体分离装置、第二储水罐、天然气罐、CO2罐和N2罐,所述第一水平辅助井和第二水平辅助井分别与所述气体注入装置连接,所述第一水平辅助井和第二水平辅助井分别与所述第二气体采集装置连接,所述第二气液分离装置的一端与所述第二气体采集装置连接,另一端与所述气体分离装置连接,所述第二储水罐、天然气罐、CO2罐和N2罐分别与所述第二气体分离装置连接。
进一步地,所述水平开采井内设置有第一监测仪器,所述第一水平辅助井内设置有第二监测仪器,所述第二水平辅助井内设置有第三监测仪器。
进一步地,所述第一监测仪器包括第一温度传感器、第一压力传感器和第一流量传感器,所述第二监测仪器包括第二温度传感器、第二压力传感器和第二流量传感器,所述第三监测仪器包括第三温度传感器、第三压力传感器和第三流量传感器。
进一步地,所述第一钻井平台上设置有第一数据采集与处理系统,所述第二钻井平台上设置有第二数据采集与处理系统,所述第一温度传感器、第一压力传感器和第一流量传感器分别与所述第一数据采集与处理系统连接,所述第二温度传感器、第二压力传感器和第二流量传感器分别与所述第二数据采集与处理系统连接,所述第三温度传感器、第三压力传感器和第三流量传感器分别与所述第二数据采集与处理系统连接。
进一步地,所述水平开采井的底部还设置有潜水泵。
相比现有技术,本发明的有益效果在于,利用降压与置换相结合的方法开采水合物,能够增加天然气的产量,并且解决海底天然气水合物直接大量开采可能引起海底储层失稳的问题,通过在水合物层与上覆盖层的接触面和水合物下伏游离气层与下覆盖层的接触面置换形成CO2/N2水合物,能有效地增强接触面土体强度,降低接触面土体的蠕变和不同土体的相对位移,利用气体注入装置向第二水平辅助井即水合物下伏游离气层与下覆盖层的接触面注入CO2/N2混合气体,将水合物下伏游离气层的天然气驱赶至开采区域,能有效地增加天然气的产气量且能解决海底天然气水合物直接大量开采可能引起海底储层失稳的问题。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明,其中:
图1为本发明的结构示意图。
图中:1-水合物区、3-水平开采井、4-第一水平辅助井、5-第二水平辅助井、11-上覆盖层、12-水合物层、13-水合物下伏游离气层、14-下覆盖层、21-第一钻井平台、22-第二钻井平台、31-第一监测仪器、32-潜水泵、41-第一堵头、42-第二监测仪器、51-第二堵头、52-第三监测仪器、211-第一气体采集装置、212-第一气液分离装置、213-第一储气罐、214-第一储水罐、215-第一数据采集与处理系统、221-第二气体采集装置、222-第二气液分离装置、223-气体注入装置、224-气体分离装置、225-第二储水罐、226-天然气罐、227-CO2罐、228-N2罐、229-第二数据采集与处理系统。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
如图1所示,一种基于储层稳定的水合物开采装置,包括钻井平台,水合物区1包括由上至下依次排列的上覆盖层11、水合物层12、水合物下伏游离气层13和下覆盖层14,所述水合物层12设置有水平开采井3,所述水合物层12与所述上覆盖层11的接触面设置有第一水平辅助井4,所述水合物下伏游离气层13与所述下覆盖层14的接触面设置有第二水平辅助井5,所述第一水平辅助井4内设置有第一堵头41,所述第二水平辅助井5内设置有第二堵头51。
具体地,所述钻井平台包括第一钻井平台21和第二钻井平台22,所述第一钻井平台21上设置有第一气体采集装置211、第一气液分离装置212、第一储气罐213和第一储水罐214;所述第一气体采集装置211的一端与所述水平开采井3连接,另一端与所述第一气液分离装置212连接;所述第一储气罐213和第一储水罐214分别与所述第一气液分离装置212连接,所述第二钻井平台22上设置有第二气体采集装置221、第二气液分离装置222、气体注入装置223、气体分离装置224、第二储水罐225、天然气罐226、CO2罐227和N2罐228,所述第一水平辅助井4和第二水平辅助井5分别与所述气体注入装置223连接,所述第一水平辅助井4和第二水平辅助井5分别与所述第二气体采集装置221连接,所述第二气液分离装置222的一端与所述第二气体采集装置221连接,另一端与所述气体分离装置224连接,所述第二储水罐225、天然气罐226、CO2罐227和N2罐228分别与所述第二气体分离装置224连接。
具体地,通过在在水合物层12与上覆盖层11的接触面和水合物下伏游离气层13与下覆盖层14的接触面置换形成CO2/N2水合物,能有效地增强接触面土体强度,降低接触面土体的蠕变和不同土体的相对位移,利用气体注入装置223向第二水平辅助井5即水合物下伏游离气层13与下覆盖层14的接触面注入CO2/N2混合气体,将水合物下伏游离气层13的天然气驱赶至开采区域,能有效地增加天然气的产气量且能解决海底天然气水合物直接大量开采可能引起海底储层失稳的问题。
具体地,所述水平开采井3内设置有第一监测仪器31,所述第一水平辅助井4内设置有第二监测仪器42,所述第二水平辅助井5内设置有第三监测仪器52。
具体地,所述第一监测仪器31包括第一温度传感器、第一压力传感器和第一流量传感器,所述第二监测仪器42包括第二温度传感器、第二压力传感器和第二流量传感器,所述第三监测仪器52包括第三温度传感器、第三压力传感器和第三流量传感器。
具体地,所述第一钻井平台21上设置有第一数据采集与处理系统215,所述第二钻井平台22上设置有第二数据采集与处理系统229,所述第一温度传感器、第一压力传感器和第一流量传感器分别与所述第一数据采集与处理系统215连接,所述第二温度传感器、第二压力传感器和第二流量传感器分别与所述第二数据采集与处理系统229连接,所述第三温度传感器、第三压力传感器和第三流量传感器分别与所述第二数据采集与处理系统229连接。
具体地,所述水平开采井3的底部还设置有潜水泵32,利用潜水泵32对水平开采井3进行抽水,使水平开采井3内的压力降低,从而实现降压开采水合物。
通过在水平开采井3下入第一温度传感器、第一压力传感器和第一流量传感器等第一监测仪器31,测量水平开采井3内的地层温度、压力及气体流量等数据,实时监测水合物的置换情况,将所述第一监测仪器31连接到第一钻井平台21的第一数据采集与处理系统215,在第一水平辅助井4下入第二温度传感器、第二压力传感器和第二流量传感器等第二监测仪器42,测量第一水平辅助井4内的地层温度、压力及气体流量等数据,实时监测水合物的置换情况,将所述第二监测仪器42连接到第二钻井平台22的第二数据采集与处理系统229,在第二水平辅助井5下入第三温度传感器、第三压力传感器和第三流量传感器等第三监测仪器52,测量第二水平辅助井5内的地层温度、压力及气体流量等数据,实时监测水合物的置换情况,将所述第三监测仪器52连接到第二钻井平台22的第二数据采集与处理系统229。
如图1所示,公开了本实施例的一种基于储层稳定的水合物开采方法,该方法的具体步骤如下:
S1、在水合物层12的中心区域构筑一口水平开采井3,在水合物层12与上覆盖层11的接触面构筑一口第一水平辅助井4,在水合物下伏游离气层13与下覆盖层14的接触面构筑一口第二水平辅助井5,钻井完成后进行固井和完井,完井后在水平开采井3下入第一监测仪器31,第一监测仪器31包括第一温度传感器、第一压力传感器和第一流量传感器,测量水平开采井3内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第一监测仪器31连接到第一钻井平台21的第一数据采集与处理系统215,在第一水平辅助井4下入第二监测仪器42,第二监测仪器42包括第二温度传感器、第二压力传感器和第二流量传感器,测量第一水平辅助井4内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第二监测仪器42连接到第二钻井平台22的第二数据采集与处理系统229,在第二水平辅助井5下入第三监测仪器52,第三监测仪器52包括第三温度传感器、第三压力传感器和第三流量传感器,测量第二水平辅助井5内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第三监测仪器52连接到第二钻井平台22的第二数据采集与处理系统229。
S2、降压开采,利用放置在水平开采井3底部的潜水泵32对水平开采井3进行抽水,使水平开采井3内的压力降低,从而实现降压开采水合物,利用第一气体采集装置211收集分解后的天然气和水,天然气和水经第一气液分离装置212分离后分别储存于第一钻井平台21的第一储气罐213和第一储水罐214内。
S3、置换开采,利用气体注入装置223,通过第一水平辅助井4和第二水平辅助井5向水合物层12与上覆盖层11的接触面、水合物下伏游离气层13与下覆盖层14的接触面注入CO2/N2混合气体,注气后利用第一堵头41和第二堵头51对第一水平辅助井4和第二水平辅助井5的水平段进行焖井憋压置换开采天然气水合物,置换完成后利用第二气体采集装置221收集混合气体,混合气体经第二气液分离装置222分离后,水储存于第二储水罐225中,混合气体经气体分离装置224分离提纯后,分别储存于第二钻井平台22的天然气罐226、CO2罐227和N2罐228内,CO2和N2可以循环利用。
具体地,上述S3中利用气体注入装置223向第一水平辅助井4和第二水平辅助井5注入CO2/N2混合气体,使水合物层12与上覆盖层11的接触面和水合物下伏游离气层13与下覆盖层14的接触面置换形成CO2/N2水合物,能有效地增强接触面土体强度,降低接触面土体的蠕变和不同土体的相对位移;
具体地,上述S3中利用气体注入装置223向第二水平辅助井5即水合物下伏游离气层13与下覆盖层14的接触面注入CO2/N2混合气体,能将水合物下伏游离气层13的天然气驱赶至开采区域,能有效地能增加天然气的产气量。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (7)

1.一种基于储层稳定的水合物开采方法,其特征在于:该方法的具体步骤如下:
S1、在水合物层(12)的中心区域构筑一口水平开采井(3),在水合物层(12)与上覆盖层(11)的接触面构筑一口第一水平辅助井(4),在水合物下伏游离气层(13)与下覆盖层(14)的接触面构筑一口第二水平辅助井(5),钻井完成后进行固井和完井;
S2、降压开采,利用放置在水平开采井(3)底部的潜水泵(32)对水平开采井(3)进行抽水,使水平开采井(3)内的压力降低,从而实现降压开采水合物,然后利用第一气体采集装置(211)收集分解后的天然气和水,天然气和水经第一气液分离装置(212)分离后分别储存于第一钻井平台(21)的第一储气罐(213)和第一储水罐(214)内;
S3、置换开采,利用气体注入装置(223),通过第一水平辅助井(4)和第二水平辅助井(5)向水合物层(12)与上覆盖层(11)的接触面、水合物下伏游离气层(13)与下覆盖层(14)的接触面注入CO2/N2混合气体,注气后利用第一堵头(41)和第二堵头(51)对第一水平辅助井(4)和第二水平辅助井(5)的水平段进行焖井憋压置换开采天然气水合物,置换完成后利用第二气体采集装置(221)收集混合气体,混合气体经第二气液分离装置(222)分离后,水储存于第二储水罐(225)中,混合气体经气体分离装置(224)分离提纯后,分别储存于第二钻井平台的天然气罐(226)、CO2罐(227)和N2罐(228)内。
2.根据权利要求1所述的一种基于储层稳定的水合物开采方法,其特征在于:固井和完井后在水平开采井下入第一监测仪器(31),第一监测仪器(31)包括第一温度传感器、第一压力传感器和第一流量传感器,测量水平开采井(3)内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第一监测仪器(31)连接到第一钻井平台(21)的第一数据采集与处理系统(215),在第一水平辅助井(4)下入第二监测仪器(42),第二监测仪器(42)包括第二温度传感器、第二压力传感器和第二流量传感器,测量第一水平辅助井(4)内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第二监测仪器(42)连接到第二钻井平台(22)的第二数据采集与处理系统(229),在第二水平辅助井(5)下入第三监测仪器(52),第三监测仪器(52)包括第三温度传感器、第三压力传感器和第三流量传感器,测量第二水平辅助井(5)内的地层温度、压力及气体流量数据,实时监测水合物的置换情况,将所述第三监测仪器(52)连接到第二钻井平台(22)的第二数据采集与处理系统(229)。
3.一种基于储层稳定的水合物开采装置,其特征在于:包括钻井平台,水合物区(1)包括由上至下依次排列的上覆盖层(11)、水合物层(12)、水合物下伏游离气层(13)和下覆盖层(14),所述水合物层(12)设置有水平开采井(3),所述水合物层(12)与所述上覆盖层(11)的接触面设置有第一水平辅助井(4),所述水合物下伏游离气层(13)与所述下覆盖层(14)的接触面设置有第二水平辅助井(5),所述第一水平辅助井(4)内设置有第一堵头(41),所述第二水平辅助井(5)内设置有第二堵头(51);所述钻井平台包括第一钻井平台(21)和第二钻井平台(22),所述第一钻井平台(21)上设置有第一气体采集装置(211)、第一气液分离装置(212)、第一储气罐(213)和第一储水罐(214);所述第一气体采集装置(211)的一端与所述水平开采井(3)连接,另一端与所述第一气液分离装置(212)连接;所述第一储气罐(213)和第一储水罐(214)分别与所述第一气液分离装置(212)连接,所述第二钻井平台(22)上设置有第二气体采集装置(221)、第二气液分离装置(222)、气体注入装置(223)、气体分离装置(224)、第二储水罐(225)、天然气罐(226)、CO2罐(227)和N2罐(228),所述第一水平辅助井(4)和第二水平辅助井(5)分别与所述气体注入装置(223)连接,所述第一水平辅助井(4)和第二水平辅助井(5)分别与所述第二气体采集装置(221)连接,所述第二气液分离装置(222)的一端与所述第二气体采集装置(221)连接,另一端与所述气体分离装置(224)连接,所述第二储水罐(225)、天然气罐(226)、CO2罐(227)和N2罐(228)分别与所述气体分离装置(224)连接。
4.根据权利要求3所述的一种基于储层稳定的水合物开采装置,其特征在于:所述水平开采井(3)内设置有第一监测仪器(31),所述第一水平辅助井(4)内设置有第二监测仪器(42),所述第二水平辅助井(5)内设置有第三监测仪器(52)。
5.根据权利要求4所述的一种基于储层稳定的水合物开采装置,其特征在于:所述第一监测仪器(31)包括第一温度传感器、第一压力传感器和第一流量传感器,所述第二监测仪器(42)包括第二温度传感器、第二压力传感器和第二流量传感器,所述第三监测仪器(52)包括第三温度传感器、第三压力传感器和第三流量传感器。
6.根据权利要求5所述的一种基于储层稳定的水合物开采装置,其特征在于:所述第一钻井平台(21)上设置有第一数据采集与处理系统(215),所述第二钻井平台(22)上设置有第二数据采集与处理系统(228),所述第一温度传感器、第一压力传感器和第一流量传感器分别与所述第一数据采集与处理系统(215)连接,所述第二温度传感器、第二压力传感器和第二流量传感器分别与所述第二数据采集与处理系统(229)连接,所述第三温度传感器、第三压力传感器和第三流量传感器分别与所述第二数据采集与处理系统(229)连接。
7.根据权利要求3所述的一种基于储层稳定的水合物开采装置,其特征在于:所述水平开采井(3)的底部还设置有潜水泵(32)。
CN201811173973.XA 2018-10-09 2018-10-09 一种基于储层稳定的水合物开采方法及开采装置 Active CN109252832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811173973.XA CN109252832B (zh) 2018-10-09 2018-10-09 一种基于储层稳定的水合物开采方法及开采装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811173973.XA CN109252832B (zh) 2018-10-09 2018-10-09 一种基于储层稳定的水合物开采方法及开采装置

Publications (2)

Publication Number Publication Date
CN109252832A true CN109252832A (zh) 2019-01-22
CN109252832B CN109252832B (zh) 2023-10-20

Family

ID=65045630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811173973.XA Active CN109252832B (zh) 2018-10-09 2018-10-09 一种基于储层稳定的水合物开采方法及开采装置

Country Status (1)

Country Link
CN (1) CN109252832B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109915084A (zh) * 2019-04-09 2019-06-21 中国石油大学(北京) 深水天然气水合物开采系统和深水天然气水合物开采方法
CN110159233A (zh) * 2019-06-10 2019-08-23 中国石油大学(华东) 一种通过人工致密盖层提高天然气水合物藏采收率的方法
CN111707800A (zh) * 2020-06-10 2020-09-25 大连理工大学 一种下伏气的天然气水合物储层重塑与降压开采模拟装置及方法
CN112761590A (zh) * 2021-01-21 2021-05-07 中国矿业大学 基于重力分离的天然气水合物间接置换开采方法
CN113356800A (zh) * 2021-06-28 2021-09-07 西南石油大学 一种海洋水合物与自由气联合开采的实验装置及方法
CN114517664A (zh) * 2022-02-21 2022-05-20 吉林大学 海域水合物泄水井辅助降压开采方法
CN116220622A (zh) * 2023-03-02 2023-06-06 四川申和新材料科技有限公司 利用人工储层开发水合物的开采系统及方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204562A (ja) * 2002-12-25 2004-07-22 Kajima Corp 海底ガスハイドレート採掘方法及びシステム
JP2005213824A (ja) * 2004-01-28 2005-08-11 Univ Akita メタンハイドレート堆積層からの天然ガス生産設備と発電設備を具備する統合設備
JP2006096779A (ja) * 2004-09-28 2006-04-13 National Institute Of Advanced Industrial & Technology 窒素によるメタンハイドレートの分解方法及び分解装置
CN103216219A (zh) * 2013-05-01 2013-07-24 吉林大学 一种co2/n2地下置换开采天然气水合物的方法
CN104806205A (zh) * 2015-05-12 2015-07-29 吉林大学 一种陆域天然气水合物开采的方法
WO2016078164A1 (zh) * 2014-11-20 2016-05-26 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验系统及模拟方法
US9598936B1 (en) * 2015-10-12 2017-03-21 China University Of Petroleum (East China) Apparatus and method for monitoring hydrate decomposition area under different drilling and production processes
CN106703780A (zh) * 2017-01-05 2017-05-24 大连理工大学 一种倾斜井海洋天然气水合物开采方法
CN106761589A (zh) * 2017-01-03 2017-05-31 中国石油大学(北京) 一种海域天然气水合物储层改造开采的方法
CN106930749A (zh) * 2017-05-03 2017-07-07 西南石油大学 基于降压的海域天然气水合物层钻井等效渗透率计算方法
CN206617144U (zh) * 2017-04-01 2017-11-07 吉林大学 一种海洋浅层天然气水合物微管增产装置
CN107608007A (zh) * 2017-08-29 2018-01-19 广州海洋地质调查局 一种海洋天然气水合物开发环境监测系统及方法
CN108194063A (zh) * 2018-03-07 2018-06-22 吉林大学 利用自发热材料加热辅助降压开采水合物的装置及方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004204562A (ja) * 2002-12-25 2004-07-22 Kajima Corp 海底ガスハイドレート採掘方法及びシステム
JP2005213824A (ja) * 2004-01-28 2005-08-11 Univ Akita メタンハイドレート堆積層からの天然ガス生産設備と発電設備を具備する統合設備
JP2006096779A (ja) * 2004-09-28 2006-04-13 National Institute Of Advanced Industrial & Technology 窒素によるメタンハイドレートの分解方法及び分解装置
CN103216219A (zh) * 2013-05-01 2013-07-24 吉林大学 一种co2/n2地下置换开采天然气水合物的方法
WO2016078164A1 (zh) * 2014-11-20 2016-05-26 中国科学院广州能源研究所 天然气水合物开采全过程模拟实验系统及模拟方法
CN104806205A (zh) * 2015-05-12 2015-07-29 吉林大学 一种陆域天然气水合物开采的方法
US9598936B1 (en) * 2015-10-12 2017-03-21 China University Of Petroleum (East China) Apparatus and method for monitoring hydrate decomposition area under different drilling and production processes
CN106761589A (zh) * 2017-01-03 2017-05-31 中国石油大学(北京) 一种海域天然气水合物储层改造开采的方法
CN106703780A (zh) * 2017-01-05 2017-05-24 大连理工大学 一种倾斜井海洋天然气水合物开采方法
CN206617144U (zh) * 2017-04-01 2017-11-07 吉林大学 一种海洋浅层天然气水合物微管增产装置
CN106930749A (zh) * 2017-05-03 2017-07-07 西南石油大学 基于降压的海域天然气水合物层钻井等效渗透率计算方法
CN107608007A (zh) * 2017-08-29 2018-01-19 广州海洋地质调查局 一种海洋天然气水合物开发环境监测系统及方法
CN108194063A (zh) * 2018-03-07 2018-06-22 吉林大学 利用自发热材料加热辅助降压开采水合物的装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
光新军;王敏生;: "海洋天然气水合物试采关键技术", 石油钻探技术, no. 05 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109915084A (zh) * 2019-04-09 2019-06-21 中国石油大学(北京) 深水天然气水合物开采系统和深水天然气水合物开采方法
CN110159233A (zh) * 2019-06-10 2019-08-23 中国石油大学(华东) 一种通过人工致密盖层提高天然气水合物藏采收率的方法
CN111707800A (zh) * 2020-06-10 2020-09-25 大连理工大学 一种下伏气的天然气水合物储层重塑与降压开采模拟装置及方法
CN112761590A (zh) * 2021-01-21 2021-05-07 中国矿业大学 基于重力分离的天然气水合物间接置换开采方法
CN113356800A (zh) * 2021-06-28 2021-09-07 西南石油大学 一种海洋水合物与自由气联合开采的实验装置及方法
CN114517664A (zh) * 2022-02-21 2022-05-20 吉林大学 海域水合物泄水井辅助降压开采方法
CN116220622A (zh) * 2023-03-02 2023-06-06 四川申和新材料科技有限公司 利用人工储层开发水合物的开采系统及方法
CN116220622B (zh) * 2023-03-02 2024-01-02 四川申和新材料科技有限公司 利用人工储层开发水合物的开采系统及方法

Also Published As

Publication number Publication date
CN109252832B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
CN109252832A (zh) 一种基于储层稳定的水合物开采方法及开采装置
CN108868706B (zh) 定向钻进超临界二氧化碳致裂置换开采天然气水合物方法
CN105041271B (zh) 一种降压式海洋天然气水合物开采方法与海底开采系统
CN102942006B (zh) 封存二氧化碳的方法
CN106761588A (zh) 射流破碎、反循环输送浆态海洋天然气水合物的开采方法及开采装置
CN109812293A (zh) 一种利用煤矿废弃矿井采空区封存co2的方法
CN108412466B (zh) 一种海底天然气水合物开采装置及开采方法
CN109488259A (zh) 基于温海水-砾石吞吐置换开采浅层块状i类水合物系统的方法
CN106528707A (zh) 一种煤层顶板砂岩含水层富水性评价方法
CN209053597U (zh) 一种基于储层稳定的水合物开采装置
CN102352757A (zh) 盾构机空推过矿山法隧道时控制管片上浮的方法
WO2022126801A1 (zh) 一种海域天然气水合物筒式开采装置及其方法
CN103437803A (zh) 一种煤矿高抽钻场钻孔瓦斯抽放结构和方法
CN102493831A (zh) 地面压裂井下水平钻孔抽放煤层气方法
CN111827936B (zh) 一种批钻滚动式井群开采天然气水合物的系统及方法
CN108316924A (zh) 一种保水采煤矿井/矿区等级划分方法
CN107269270B (zh) 一种冻土区天然气水合物地层稳定态监测方法
CN101832137A (zh) 一种煤层顶板支撑柱的预埋方法
CN112228075A (zh) 开采海洋弱胶结非成岩天然气水合物装置及其开采方法
CN109577924A (zh) 一种基于记忆合金材料开采海洋浅层天然气水合物的方法
CN115898400A (zh) 一种深部煤炭及其伴生资源高效清洁综合开采利用方法
CN210714650U (zh) 一种浅层地热能中增大换热面积装置
CN115017750A (zh) 一种co2储气库混气敏感参数分析方法
CN112727405A (zh) 一种提高煤层气开发井煤层渗透率的开采方法
CN204419165U (zh) 一种井下测压装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant