CN109250929B - 一种g85级钢铁渣粉及其制备方法 - Google Patents
一种g85级钢铁渣粉及其制备方法 Download PDFInfo
- Publication number
- CN109250929B CN109250929B CN201811353610.4A CN201811353610A CN109250929B CN 109250929 B CN109250929 B CN 109250929B CN 201811353610 A CN201811353610 A CN 201811353610A CN 109250929 B CN109250929 B CN 109250929B
- Authority
- CN
- China
- Prior art keywords
- steel slag
- powder
- slag powder
- grade
- slag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002893 slag Substances 0.000 title claims abstract description 210
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 159
- 239000010959 steel Substances 0.000 title claims abstract description 159
- 239000000843 powder Substances 0.000 title claims abstract description 149
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 238000002156 mixing Methods 0.000 claims abstract description 22
- 238000011282 treatment Methods 0.000 claims abstract description 19
- 238000000227 grinding Methods 0.000 claims abstract description 18
- 238000007885 magnetic separation Methods 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 claims description 8
- 239000002245 particle Substances 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 3
- 239000004568 cement Substances 0.000 abstract description 34
- 230000000694 effects Effects 0.000 abstract description 13
- 239000011148 porous material Substances 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 7
- 239000004566 building material Substances 0.000 abstract description 3
- 239000002002 slurry Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 15
- 239000000126 substance Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 8
- 239000004567 concrete Substances 0.000 description 7
- 238000011056 performance test Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 3
- 239000004570 mortar (masonry) Substances 0.000 description 3
- 238000004064 recycling Methods 0.000 description 3
- 238000005034 decoration Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052604 silicate mineral Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001649247 Boehmeria Species 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000011083 cement mortar Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/14—Cements containing slag
- C04B7/147—Metallurgical slag
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
本发明提供了一种G85级钢铁渣粉及其制备方法,属于建筑材料技术领域。本发明以转炉钢渣为原料,依次经热闷处理、磁选、烘干、破碎、粉磨和旋风气流分级处理后,与矿渣粉混合,制得G85级钢铁渣粉。制备出的G85级钢铁渣粉满足《钢铁渣粉》(GB/T28293‑2012)标准中的规定,胶凝活性高,与矿渣复配后能够优化了水泥浆孔结构,提高了钢渣高附加值资源化利用水平。
Description
技术领域
本发明涉及建筑材料技术领域,尤其涉及一种G85级钢铁渣粉及其制备方法。
背景技术
钢渣是炼钢过程中排出的固体废弃物,钢渣的排放量一般为钢产量的15~20%。大量钢渣闲置堆弃,既严重污染环境又占用土地,因此,迫切需要对钢渣进行减量化、二次资源化和高效利用。将钢渣开发用作水泥混合材或混凝土掺合料很有可能成为其高效、高附加值利用的重要途径。
钢渣中富含C3S和C2S等矿物,是一种类似于劣质硅酸盐水泥熟料的工业废渣,具有开发作为水泥和混凝土生产原料的潜能。钢渣微粉用作辅助性胶凝材料可以改善水泥混凝土的耐磨、抗冲击和抗碳化等性能。钢渣作为辅助性胶凝材料而减少水泥熟料的使用量,既可减轻水泥工业对资源、能源和环境的压力,也可解决钢铁工业废弃物产生的环境问题,对于促进我国钢铁工业和建材工业的可持续发展具有不可替代的双赢效果。
但钢渣微粉用作辅助性胶凝材料时,胶凝活性低,致使混凝土收缩较大,抗压强度低,易产生开裂。
发明内容
鉴于此,本发明的目的在于提供一种G85级钢铁渣粉及其制备方法。本发明提供的方法制得的G85级钢铁渣粉胶凝活性高,与矿渣复配后能够优化了水泥浆孔结构,提高了钢铁渣粉高附加值资源化利用水平。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种G85级钢铁渣粉的制备方法,包括如下步骤:
将转炉钢渣进行热闷处理后磁选回收铁,得到转炉热闷钢渣;
将所述转炉热闷钢渣依次经烘干、破碎和粉磨,得到钢渣粉;
将所述钢渣粉分级后,得到钢渣微粉,所述分级在旋风气流分级机中进行;
将所述钢渣微粉与矿渣粉混合,得到G85级钢铁渣粉。
优选地,所述热闷处理的温度为600℃~1000℃,时间为8h~24h。
优选地,所述磁选的磁场强度为1000GS~2000GS。
优选地,所述烘干至水分质量含量≤1%。
优选地,所述破碎至粒径≤4.75mm。
优选地,所述粉磨时加入三乙醇胺,所述三乙醇胺的掺量为所述转炉热闷钢渣质量含量的0.02%~0.05%。
优选地,所述旋风气流分级机的转子转速为2000r/min~3000r/min。
优选地,所述钢渣微粉中位径D50≤5μm。
本发明还提供了上述技术方案所述的G85级钢铁渣粉,所述G85级钢铁渣粉包括钢渣微粉与矿渣粉,所述钢渣微粉与矿渣粉的重量百分含量比为40%~50%:50%~60%。
优选地,所述矿渣粉为S75级矿渣粉,勃氏比表面积为400~450m2/kg,密度为2.86~2.95g/cm3,中位径D50为10~12μm。
本发明提供了一种G85级钢铁渣粉的制备方法,包括如下步骤:
将转炉钢渣进行热闷处理后磁选回收铁,得到转炉热闷钢渣;将所述转炉热闷钢渣依次经烘干、破碎和粉磨,得到钢渣粉;将所述钢渣粉分级后,得到钢渣微粉,所述分级在旋风气流分级机中进行;将所述钢渣微粉与矿渣粉混合,得到G85级钢铁渣粉。
本发明以转炉钢渣为原料,依次经热闷处理、磁选、烘干、破碎、粉磨和旋风气流分级处理后,与矿渣粉混合,制得G85级钢铁渣粉。制备出的G85级钢铁渣粉满足《钢铁渣粉》(GB/T28293-2012)标准中的规定,胶凝活性高,与矿渣复配后能够优化了水泥浆孔结构,提高了钢铁渣粉高附加值资源化利用水平。实验结果表明,掺入本发明制得的G85级钢铁渣粉与矿渣复配的凝胶材料后,水泥胶砂7天抗压强度≥28.0MPa、活性指数≥67.6%,28天抗压强度≥54.3MPa、活性指数≥90.5%。且胶凝活性与等掺量矿渣粉接近,二者之比(7d和28d)在0.95~1.03之间,可以替代矿渣粉使用。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为实施例1与对比例1的G85级钢铁渣粉的孔径分布图。
具体实施方式
本发明提供了一种G85级钢铁渣粉的制备方法,包括如下步骤:
将转炉钢渣进行热闷处理后磁选回收铁,得到转炉热闷钢渣;
将所述转炉热闷钢渣依次经烘干、破碎和粉磨,得到钢渣粉;
将所述钢渣粉分级后,得到钢渣微粉,所述分级在旋风气流分级机中进行;
将所述钢渣微粉与矿渣粉混合,得到G85级钢铁渣粉。
本发明将转炉钢渣进行热闷处理后磁选回收铁,得到转炉热闷钢渣。在本发明中,所述热闷处理的温度优选为600℃~1000℃,更优选为800℃~900℃,最优选为850℃,所述热闷处理的时间优选为8h~24h,更优选为10h~16h,最优选为14h。本发明对所述热闷处理的具体方式没有特殊的限定,能够满足将转炉钢渣中游离的不稳定的f-CaO和f-MgO消解即可。
在本发明中,所述磁选的磁场强度优选为1000GS~2000GS,更优选为1200GS。本发明对所述磁选处理的具体方式没有特殊的限定,能够满足热闷钢渣中金属铁含量≤3%、f-CaO≤8%、密度为3.29~3.45g/cm3即可。本发明对所述转炉钢渣的来源没有特殊限定,采用任意钢铁厂生产的转炉钢渣或者市售均可。
得到转炉热闷钢渣后,本发明将所述转炉热闷钢渣依次经烘干、破碎和粉磨,得到钢渣粉。在本发明中,所述烘干优选至转炉热闷钢渣的水分含量≤1%。本发明对所述烘干的具体方式及烘干时间没有特殊的限定,能够满足转炉热闷钢渣对水分含量的要求即可。在本发明中,所述转炉热闷钢渣的粒径优选破碎至≤4.75mm。本发明对所述破碎的具体方式及破碎时间没有特殊的限定,能够满足转炉热闷钢渣对粒径的要求即可,在本发明实施例中,进一步优选采用颚式破碎机进行破碎。在本发明中,所述粉磨处理中,优选加入三乙醇胺,所述三乙醇胺的掺量优选为所述转炉热闷钢渣质量含量的0.02%~0.05%。本发明对所述粉磨处理的具体方式没有特殊的限定,能够满足钢渣粉的勃氏比表面积为300~350m2/kg即可。
得到钢渣粉后,本发明将所述钢渣粉分级后,得到钢渣微粉。在本发明中,所述分级处理优选在旋风气流分级机中进行。在本发明中,所述旋风气流分级机的转子转速优选为2000r/min~3000r/min,更优选为2500r/min,所述分级后钢渣微粉中位径优选为D50≤5μm。本发明优选将钢渣粉通过螺旋给料机送入旋风流分级机中进行分级。本发明对所述旋风流分级机的型号没有特殊限定,采用任意市售型号均可。
本发明通过分级工艺处理能够将钢渣粉中含铁量高、比重大且活性差的难磨组分与硅酸盐矿物进行有效的分离,使分级后得到的钢渣微粉中硅酸盐矿物的含量相对提高,进而提高了钢渣微粉的胶凝活性。钢渣微粉与矿渣复掺所得复合掺合料颗粒级配更接近紧密堆积,在水泥基材料水化后,不仅能有效填充水泥颗粒间隙,降低了硬化水泥基材料的孔隙率,还优化了硬化浆体的孔结构,提高了钢铁渣粉高附加值资源化利用水平。
得到钢渣微粉后,本发明将所述钢渣微粉与矿渣粉混合,得到G85级钢铁渣粉。本发明对所述钢渣微粉与矿渣粉的加入顺序没有特殊限定,以任意顺序加入均可。本发明对所述混合方式没有特殊限定,采用本领域技术人员熟知的混合方式即可,在本发明中,所述混合优选为机械搅拌或磁力搅拌,本发明对所述搅拌的转速和时间没有特殊的限定,能够混合均匀即可。
在本发明中,所述矿渣粉优选为S75级矿渣粉,所述矿渣粉的勃氏比表面积优选为400~450m2/kg,密度优选为2.86~2.95g/cm3,中位径D50优选为10~12μm,其性能满足GB/T18046-2017《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》的要求。本发明对矿渣粉的来源没有特殊限定,采用任意矿厂生产的矿渣粉或者市售均可,在本发明实施例中进一步优选采用立磨矿渣粉。
本发明还提供了上述技术方案所述制备方法制得的G85级钢铁渣粉,所述G85级钢铁渣粉包括钢渣微粉与矿渣粉,所述钢渣微粉与矿渣粉的重量百分含量比为40%~50%:50%~60%。
下面结合实施例对本发明提供的G85级钢铁渣粉进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1:
1)以某钢铁厂生产的经磁选后的转炉热闷钢渣为原料,主要技术指标如下:转炉钢渣在800℃条件下入热闷炉,磁选时磁场强度1200GS,转炉热闷钢渣中金属铁含量为2.8%,f-CaO含量为4.75%,密度为3.29g/cm3,转炉热闷钢渣化学成分见表1,其中,含有其他难测的未知成分;
表1转炉热闷钢渣的主要化学组成
2)将转炉热闷钢渣进行烘干至水分小于1%、通过颚式破碎机破碎至粒径小于4.75mm、通过球磨机进行粉磨(5kg/磨)制备出钢渣粉,粉磨过程中加入三乙醇胺助磨剂,掺量为0.04%,制得勃氏比表面积为322m2/kg的钢渣粉;
3)将钢渣粉通过螺旋给料机送入旋风气流分级机进行分级,分级机转子转速控制在2500r/min,制备出钢渣微粉;其中位径D50为1.07μm;
4)采用立磨矿渣粉,其勃氏比表面积为450m2/kg,密度为2.86g/cm3,中位径D50为10.56μm,其性能满足GB/T18046-2017《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》标准中S75级技术要求,其化学成分见表2,其中,含有其他难测的未知成分;
表2立磨矿渣的主要化学组成
将上述步骤制得的钢渣微粉和矿渣粉,按钢渣微粉40%和矿渣粉60%的比例混合均匀得到G85级钢铁渣粉。
性能试验:
将G85级钢铁渣粉取代标准水泥50%,依据《钢铁渣粉》(GB/T28293-2012)标准进行性能试验,水胶比0.5,砂胶比3,水泥化学组成见表3,其中,含有其他难测的未知成分,其配合比与试验结果见表4。
表3水泥的主要化学组成
实施例2:
1)以某钢铁厂生产的经磁选后的转炉热闷钢渣为原料,主要技术指标如下:转炉钢渣入热闷消解炉温度800℃左右,磁选时磁场强度1200GS左右;残余热闷钢渣中金属铁含量为2.8%,f-CaO含量为4.75%,密度为3.29g/cm3;化学成分见表1;
2)将转炉热闷钢渣进行烘干至水分小于1%、通过颚式破碎机破碎至粒径小于4.75mm以下、通过球磨机进行粉磨(5kg/磨)制备出钢渣粉,粉磨过程中加入三乙醇胺助磨剂,掺量为0.04%;制得勃氏比表面积为322m2/kg的钢渣粉;
3)将钢渣粉通过螺旋给料机送入旋风气流分级机进行分级,分级机转子转速控制在2500r/min,制备出钢渣微粉;其中位径D50为1.07μm;
4)采用立磨矿渣粉,其勃氏比表面积为450m2/kg,密度为2.86g/cm3,中位径D50为10.56μm,其性能满足GB/T18046-2017《用于水泥、砂浆和混凝土中的粒化高炉矿渣粉》标准中S75级技术要求,其化学成分见表2;
将上述步骤制得的钢渣微粉和矿渣粉,按钢渣微粉50%和矿渣粉50%的比例混合均匀得到G85级钢铁渣粉。
性能试验:
将G85级钢铁渣粉取代标准水泥50%,依据《钢铁渣粉》(GB/T28293-2012)标准进行性能试验,水胶比0.5,砂胶比3,水泥化学组成见表3,其配合比与试验结果见表4。
对比例1
取标准水泥,依据《钢铁渣粉》(GB/T28293-2012)标准进行性能试验,水胶比0.5,砂胶比3,水泥化学组成见表3,其配合比与试验结果见表4。
对比例2
将矿渣取代标准水泥50%,依据《钢铁渣粉》(GB/T28293-2012)标准进行性能试验,水胶比0.5,砂胶比3,水泥化学组成见表3,其配合比与试验结果见表4。
表4实施例与对比例试验结果
上述表4表明:本发明可以制备出满足《钢铁渣粉》(GB/T28293-2012)标准中强度要求的G85级钢铁渣粉,该钢铁渣粉胶凝活性与等掺量矿渣粉接近,二者之比(7d和28d)在0.95~1.03之间,可以替代矿渣粉使用,提高了钢铁渣粉高附加值资源化利用水平。
图1为实施例1与对比例1的G85级钢铁渣粉的孔径分布图,图1表明:与纯水泥净浆相比,掺杂G85级钢铁渣粉与矿渣复配的凝胶材料优化了硬化水泥浆体的孔结构,特别是大于100nm的孔隙率显著减少,故对提高水泥基材料的抗渗性有利,进而提高了材料的耐久性。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (9)
1.一种G85级钢铁渣粉的制备方法,步骤为:
将转炉钢渣进行热闷处理后磁选回收铁,得到转炉热闷钢渣;
将所述转炉热闷钢渣依次经烘干、破碎和粉磨,得到钢渣粉;
将所述钢渣粉分级后,得到钢渣微粉,所述分级在旋风气流分级机中进行;
将所述钢渣微粉与S75级矿渣粉混合,得到G85级钢铁渣粉;
所述钢渣微粉中位径D50≤5μm;
所述G85级钢铁渣粉包括钢渣微粉与矿渣粉,所述钢渣微粉与矿渣粉的重量百分含量比为40%~50%:50%~60%;
所述矿渣粉为S75级矿渣粉,勃氏比表面积为400~450m2/kg,密度为2.86~2.95g/cm3,中位径D50为10~12μm。
2.根据权利要求1所述的制备方法,其特征在于,所述热闷处理的温度为600℃~1000℃,时间为8h~24h。
3.根据权利要求1所述的制备方法,其特征在于,所述磁选的磁场强度为1000GS~2000GS。
4.根据权利要求1所述的制备方法,其特征在于,所述烘干至水分质量含量≤1%。
5.根据权利要求1所述的制备方法,其特征在于,所述破碎至粒径≤4.75mm。
6.根据权利要求1所述的制备方法,其特征在于,所述粉磨时加入三乙醇胺,所述三乙醇胺的掺量为所述转炉热闷钢渣质量含量的0.02%~0.05%。
7.根据权利要求1所述的制备方法,其特征在于,所述旋风气流分级机的转子转速为2000r/min~3000r/min。
8.权利要求1~7任一项所述的制备方法得到的G85级钢铁渣粉,其特征在于,所述G85级钢铁渣粉包括钢渣微粉与S75级矿渣粉,所述钢渣微粉与矿渣粉的重量百分含量比为40%~50%:50%~60%。
9.根据权利要求8所述的G85级钢铁渣粉,其特征在于,所述矿渣粉为S75级矿渣粉,勃氏比表面积为400~450m2/kg,密度为2.86~2.95g/cm3,中位径D50为10~12μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811353610.4A CN109250929B (zh) | 2018-11-14 | 2018-11-14 | 一种g85级钢铁渣粉及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811353610.4A CN109250929B (zh) | 2018-11-14 | 2018-11-14 | 一种g85级钢铁渣粉及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109250929A CN109250929A (zh) | 2019-01-22 |
CN109250929B true CN109250929B (zh) | 2021-03-23 |
Family
ID=65043543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811353610.4A Active CN109250929B (zh) | 2018-11-14 | 2018-11-14 | 一种g85级钢铁渣粉及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109250929B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110655341B (zh) * | 2019-11-01 | 2023-10-13 | 中铁工程装备集团有限公司 | 一种提高钢渣化学活性的系统及方法 |
CN115354091A (zh) * | 2022-08-19 | 2022-11-18 | 马鞍山钢铁股份有限公司 | 一种钢渣分类处理及资源化利用方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009077425A1 (de) * | 2007-12-18 | 2009-06-25 | Cala Aufbereitungstechnik Gmbh & Co. Kg | Verfahren zur baustoffherstellung aus stahlschlacke |
CN101805142A (zh) * | 2010-04-20 | 2010-08-18 | 上海大学 | 改性s95级矿渣粉的制备方法 |
CN103060493A (zh) * | 2012-06-29 | 2013-04-24 | 南京梅山冶金发展有限公司 | 一种钢渣水洗球磨生产加工工艺 |
CN107935416A (zh) * | 2017-12-01 | 2018-04-20 | 攀枝花钢城集团有限公司 | 一种提高转炉钢渣活性的方法 |
CN108751752A (zh) * | 2018-06-13 | 2018-11-06 | 贵州理工学院 | 一种用于水泥中钢渣粉的制备方法及风选装置 |
-
2018
- 2018-11-14 CN CN201811353610.4A patent/CN109250929B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009077425A1 (de) * | 2007-12-18 | 2009-06-25 | Cala Aufbereitungstechnik Gmbh & Co. Kg | Verfahren zur baustoffherstellung aus stahlschlacke |
CN101805142A (zh) * | 2010-04-20 | 2010-08-18 | 上海大学 | 改性s95级矿渣粉的制备方法 |
CN103060493A (zh) * | 2012-06-29 | 2013-04-24 | 南京梅山冶金发展有限公司 | 一种钢渣水洗球磨生产加工工艺 |
CN107935416A (zh) * | 2017-12-01 | 2018-04-20 | 攀枝花钢城集团有限公司 | 一种提高转炉钢渣活性的方法 |
CN108751752A (zh) * | 2018-06-13 | 2018-11-06 | 贵州理工学院 | 一种用于水泥中钢渣粉的制备方法及风选装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109250929A (zh) | 2019-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110041028A (zh) | 一种利用建筑垃圾的再生混凝土及其制备方法 | |
CN112374843B (zh) | 一种利用湿磨钢渣矿浆制备矿山充填混凝土的方法 | |
CN111302741B (zh) | 一种利用铅锌渣制备的生态胶凝材料及其制备方法 | |
CN112125543B (zh) | 一种以大宗固废为原料的复合凝胶材料及其制备方法 | |
CN103159450A (zh) | 一种用钢渣制成的泡沫混凝土砌块的生产方法 | |
CN109250929B (zh) | 一种g85级钢铁渣粉及其制备方法 | |
CN113213789A (zh) | 基于生活垃圾焚烧飞灰制备的路面砖及其制备方法 | |
CN114276097A (zh) | 一种通过分相活化提高镍渣活性的镍渣胶凝材料及制备方法 | |
KR101138243B1 (ko) | 산업폐기물을 이용한 레미콘 조성물 | |
CN113860802A (zh) | 一种环保型高性能矿物掺合料及其制备方法和应用 | |
CN104529198A (zh) | 一种固体废弃物硅酸盐水泥及其制备方法 | |
CN114230208A (zh) | 一种高强度水泥及其制备方法 | |
CN117776628A (zh) | 一种低碳混凝土及其制备方法 | |
CN110922119B (zh) | 采石场洗石制砂废渣的活化方法、水泥基活化废渣混凝土以及该混凝土的制备方法 | |
CN110255943B (zh) | 一种湿磨钡渣掺合料及其制备方法和应用 | |
CN116496034A (zh) | 一种再生地聚物混凝土及其制备方法 | |
CN111302691A (zh) | 一种钢渣粉-锰铁矿渣粉复合掺合料及其制备工艺 | |
CN110937863A (zh) | 一种可循环水泥混凝土及其制备方法 | |
CN112209641B (zh) | 一种利用废弃烧结页岩制备水泥的方法 | |
CN105366972B (zh) | 一种改善石材废料水泥混合材颗粒级配的粉磨工艺及制备的石材废料水泥 | |
CN109250930B (zh) | 一种提高低品位矿渣粉胶凝活性的方法 | |
CN111892312A (zh) | 一种多固废大掺量利用方法 | |
CN116444218B (zh) | 一种全再生混凝土及其制备方法和应用 | |
CN109942237A (zh) | 一种镍铁渣制备的建筑材料 | |
CN108863115A (zh) | 一种水泥及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |