CN109249429A - 一种双足机器人地形分类系统 - Google Patents

一种双足机器人地形分类系统 Download PDF

Info

Publication number
CN109249429A
CN109249429A CN201811118835.1A CN201811118835A CN109249429A CN 109249429 A CN109249429 A CN 109249429A CN 201811118835 A CN201811118835 A CN 201811118835A CN 109249429 A CN109249429 A CN 109249429A
Authority
CN
China
Prior art keywords
landform
data frame
row
step number
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811118835.1A
Other languages
English (en)
Other versions
CN109249429B (zh
Inventor
刘阳
刘珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Guoli Intelligent Technology Co ltd
Original Assignee
Anhui Fruit Intelligent Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Fruit Intelligent Technology Co Ltd filed Critical Anhui Fruit Intelligent Technology Co Ltd
Priority to CN201811118835.1A priority Critical patent/CN109249429B/zh
Publication of CN109249429A publication Critical patent/CN109249429A/zh
Application granted granted Critical
Publication of CN109249429B publication Critical patent/CN109249429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种双足机器人地形分类系统,该系统包括:1个加速度计,1个力传感器,2个触觉传感器,1个数据处理单元;数据处理单元能够接收来自所有传感器的数据,并对数据进行分析以推测当前地形。该系统融合多种传感器采集的数据,利用各传感器获取数据的互补特性,进行机器人所处地形种类的判别,具有较高的分类准确率和鲁棒性。

Description

一种双足机器人地形分类系统
技术领域
本发明涉及机器人领域,特别是涉及一种双足机器人地形分类系统。
背景技术
双足机器人与轮式及其他多足机器人相比,更能适应复杂的地形,具有更加灵活的运动方向和速度变化范围。然而在其工作过程中,如果双足机器人无法准确辨别其所在地形,也就无法及时改变行走步态,其灵活性便无法施展。因此对地形的感知对于双足机器人来说具有重要意义。已有的双足机器人地形感知方法多依靠单一传感器采集的数据进行,因此极有可能在该单一传感器数据出现异常时方法失效。本发明面向双足机器人,通过机器人平台不同位置上安装的加速度计、力传感器和触觉传感器收集的数据进行分析,获取机器人所在地形的种类,据此机器人可调整步态来适应地形。利用不同位置上各种传感器的互补特性,帮助实现地形种类的更加准确高效的估计。
发明内容
本发明技术克服现有技术的不足,解决了双足机器人地形分类的问题。
为解决上述问题,本发明公开了一种双足机器人地形分类系统,如附图1与附图2所示,该系统包括:1个加速度计,1个力传感器,2个触觉传感器,1个数据处理单元;其中,加速度计安装在机器人的重心处,力传感器安装在机器人膝关节部位,2个触觉传感器分别安装在同一只脚的脚底的前部和后部,力传感器和2个触觉传感器安装在机器人同一侧的腿部和脚部,数据处理单元能够接收来自所有传感器的数据,并执行地形判别算法,具体如下:
步骤1:在系统上电时初始化,令行走步数k=0,第k行走步数的截断时刻tk为系统当前时间,根据机器人当前所处地形种类确定第k行走步数的地形最终预测的概率向量xk,其中为L×1的向量,L为地形种类总数,i=1,2,..·,L表示第i种地形的最终预测概率,如果确切可知机器人处在第i种地形,则
步骤2:实时获取加速度计的垂直于地面的轴的加速度数据、力数据、触觉数据的时间序列;
步骤3:监测加速度数据,当加速度数据达到极小值时,k自增1,并令tk为系统当前时间;
步骤4:截取tk-1与tk之间的加速度数据、力数据、触觉数据的时间序列,分别得到第k行走步数的加速度数据帧、力传感器数据帧、触觉数据帧A与触觉数据帧B,其中,A对应脚底前部触觉传感器产生的数据帧,B对应脚底后部触觉传感器产生的数据帧;
步骤5:对第k行走步数的加速度数据帧、力传感器数据帧、触觉数据帧A与触觉数据帧B分别进行特征提取,得到每个数据帧的特征,并将这4个数据帧的特征串联起来得到1个8维的特征向量,即为第k行走步数的样本;该步骤所涉及的特征提取方式为:
先对每个数据帧进行快速傅里叶变换,获取该数据帧的频谱向量v=[v1,v2,···,vn],其中ve,e=1,2,···,n表示频率e对应的幅值;然后计算该数据帧的特征向量f=[f1,f2],具体为
步骤6:将第k行走步数的特征向量输入到事先训练好的支持向量机当中,得到第k行走步数的地形初步预测的概率向量其中i=1,2,···,L表示第i种地形的初步预测概率;
步骤7:利用第k-1行走步数的地形最终预测的概率向量xk-1与第k行走步数的地形初步预测的概率向量yk进行融合,得到第k行走步数的地形最终预测的概率向量xk,方法如下:
xk=w1xk-1+w2yk
其中,w1∈(0,1)、w2∈(0,1)为权重系数,且w1+w2=1;取xk中最大元素对应的地形种类为第k行走步数的地形最终预测结果ck,其中ck∈{1,2,...,L},{1,2,...,L}为地形序号集合;
步骤8:重复步骤2至步骤7,即可获取每一行走步数的地形最终预测结果。
与已有的技术相比,本发明具有以下优点:1)充分利用不同位置上各种传感器的互补特性,实现地形种类的更加准确高效的识别;2)保证分类准确率的前提下,每种传感器数量达到最小,使系统总体成本最低;3)利用地形的相关性,进一步降低了分类的错误率。
附图说明
图1为本发明系统结构图;
图2位本发明触觉传感器安装示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图与具体实施例对本发明进行详细说明。
本发明公开了一种双足机器人地形分类系统,该系统包括:1个加速度计,1个力传感器,2个触觉传感器,1个数据处理单元;其中,加速度计安装在机器人的重心处,力传感器安装在机器人膝关节部位,2个触觉传感器分别安装在同一只脚的脚底的前部和后部,力传感器和2个触觉传感器安装在机器人同一侧的腿部和脚部,数据处理单元能够接收来自所有传感器的数据,并执行地形判别算法,具体如下:
步骤1:在系统上电时初始化,令行走步数k=0,第k行走步数的截断时刻tk为系统当前时间,根据机器人当前所处地形种类确定第k行走步数的地形最终预测的概率向量xk,其中为L×1的向量,L为地形种类总数,i=1,2,···,L表示第i种地形的最终预测概率,如果确切可知机器人处在第i种地形,则
步骤2:实时获取加速度计的垂直于地面的轴的加速度数据、力数据、触觉数据的时间序列;
步骤3:监测加速度数据,当加速度数据达到极小值时,k自增1,并令tk为系统当前时间;
步骤4:截取tk-1与tk之间的加速度数据、力数据、触觉数据的时间序列,分别得到第k行走步数的加速度数据帧、力传感器数据帧、触觉数据帧A与触觉数据帧B,其中,A对应脚底前部触觉传感器产生的数据帧,B对应脚底后部触觉传感器产生的数据帧;
步骤5:对第k行走步数的加速度数据帧、力传感器数据帧、触觉数据帧A与触觉数据帧B分别进行特征提取,得到每个数据帧的特征,并将这4个数据帧的特征串联起来得到1个8维的特征向量,即为第k行走步数的样本;该步骤所涉及的特征提取方式为:
先对每个数据帧进行快速傅里叶变换,获取该数据帧的频谱向量v=[v1,v2,···,vn],其中ve,e=1,2,···,n表示频率e对应的幅值;然后计算该数据帧的特征向量f=[f1,f2],具体为
步骤6:将第k行走步数的特征向量输入到事先训练好的支持向量机当中,得到第k行走步数的地形初步预测的概率向量其中i=1,2,···,L表示第i种地形的初步预测概率;
步骤7:利用第k-1行走步数的地形最终预测的概率向量xk-1与第k行走步数的地形初步预测的概率向量yk进行融合,得到第k行走步数的地形最终预测的概率向量xk,方法如下:
xk=w1xk-1+w2yk
其中,w1∈(0,1)、w2∈(0,1)为权重系数,且w1+w2=1;取xk中最大元素对应的地形种类为第k行走步数的地形最终预测结果ck,其中ck∈{1,2,···,L},{1,2,···,L}为地形序号集合;
步骤8:重复步骤2至步骤7,即可获取每一行走步数的地形最终预测结果。
在上述步骤6中涉及的支持向量机需要在其他计算机平台预先训练获取,具体如下:
让机器人在期望被识别的地形上各行走一定步数,例如100步,并同时采集各传感器的数据;将这些数据进行分割以得到数据帧集合;对所有数据帧分别提取特征,得到样本集合,其中每个特征向量为8维;从每种地形所对应的的所有样本中随机选择70%个作为训练样本,剩余30%个作为测试样本,训练支持向量机。在训练过程中涉及的特征提取方法与本发明的地形判别算法中涉及的特征提取方法一致;训练过程中涉及的数据帧分割方法与本发明的地形判别算法中涉及的数据帧分割方法一致。
在上述步骤7中涉及的权重系数中,一般将w1设为较大的值,例如0.9。
提供以上实施例仅仅是为了描述本发明的目的,而并非要限制本发明的范围。本发明的范围由所附权利要求限定。不脱离本发明的精神和原理而做出的各种等同替换和修改,均应涵盖在本发明的范围之内。

Claims (1)

1.一种双足机器人地形分类系统,其特征在于,包括:1个加速度计,1个力传感器,2个触觉传感器,1个数据处理单元;其中,加速度计安装在机器人的重心处,力传感器安装在机器人膝关节部位,2个触觉传感器分别安装在同一只脚的脚底的前部和后部,力传感器和2个触觉传感器安装在机器人同一侧的腿部和脚部,数据处理单元能够接收来自所有传感器的数据,并执行地形判别算法,具体如下:
步骤1:在系统上电时初始化,令行走步数k=0,第k行走步数的截断时刻tk为系统当前时间,根据机器人当前所处地形种类确定第k行走步数的地形最终预测的概率向量xk,其中为L×1的向量,L为地形种类总数,表示第i种地形的最终预测概率,如果确切可知机器人处在第i种地形,则
步骤2:实时获取加速度计的垂直于地面的轴的加速度数据、力数据、触觉数据的时间序列;
步骤3:监测加速度数据,当加速度数据达到极小值时,k自增1,并令tk为系统当前时间;
步骤4:截取tk-1与tk之间的加速度数据、力数据、触觉数据的时间序列,分别得到第k行走步数的加速度数据帧、力传感器数据帧、触觉数据帧A与触觉数据帧B,其中,A对应脚底前部触觉传感器产生的数据帧,B对应脚底后部触觉传感器产生的数据帧;
步骤5:对第k行走步数的加速度数据帧、力传感器数据帧、触觉数据帧A与触觉数据帧B分别进行特征提取,得到每个数据帧的特征,并将这4个数据帧的特征串联起来得到1个8维的特征向量,即为第k行走步数的样本;该步骤所涉及的特征提取方式为:
先对每个数据帧进行快速傅里叶变换,获取该数据帧的频谱向量v=[v1,v2,···,vn],其中ve,e=1,2,···,n表示频率e对应的幅值;然后计算该数据帧的特征向量f=[f1,f2],具体为
步骤6:将第k行走步数的特征向量输入到事先训练好的支持向量机当中,得到第k行走步数的地形初步预测的概率向量其中表示第i种地形的初步预测概率;
步骤7:利用第k-1行走步数的地形最终预测的概率向量xk-1与第k行走步数的地形初步预测的概率向量yk进行融合,得到第k行走步数的地形最终预测的概率向量xk,方法如下:
xk=w1xk-1+w2yk
其中,w1∈(0,1)、w2∈(0,1)为权重系数,且w1+w2=1;取xk中最大元素对应的地形种类为第k行走步数的地形最终预测结果ck,其中ck∈{1,2,…,L},{1,2,···,L}为地形序号集合;
步骤8:重复步骤2至步骤7,即可获取每一行走步数的地形最终预测结果。
CN201811118835.1A 2018-09-25 2018-09-25 一种双足机器人地形分类系统 Active CN109249429B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811118835.1A CN109249429B (zh) 2018-09-25 2018-09-25 一种双足机器人地形分类系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811118835.1A CN109249429B (zh) 2018-09-25 2018-09-25 一种双足机器人地形分类系统

Publications (2)

Publication Number Publication Date
CN109249429A true CN109249429A (zh) 2019-01-22
CN109249429B CN109249429B (zh) 2019-10-01

Family

ID=65048533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811118835.1A Active CN109249429B (zh) 2018-09-25 2018-09-25 一种双足机器人地形分类系统

Country Status (1)

Country Link
CN (1) CN109249429B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260057A (zh) * 2020-01-21 2020-06-09 北京空间飞行器总体设计部 一种基于虚拟传感器的足式机器人地形感知方法
CN111680642A (zh) * 2020-06-11 2020-09-18 石家庄铁道大学 一种地形分类方法及装置
CN112644600A (zh) * 2021-01-04 2021-04-13 之江实验室 一种具有主动地形感知能力的双足机器人仿生足部系统
CN112857314A (zh) * 2020-12-30 2021-05-28 惠州学院 双模态地形识别方法及硬件系统,及其传感器安装方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202613A (zh) * 2008-09-04 2011-09-28 Iwalk股份有限公司 混合型地形自适应下肢系统
CN104589348A (zh) * 2014-12-25 2015-05-06 北京理工大学 一种仿人机器人多模态运动转换方法
CN108051004A (zh) * 2017-11-29 2018-05-18 安徽省通信息科技有限公司 一种针对四轮机器人的转动瞬心估计方法
CN108320456A (zh) * 2018-01-27 2018-07-24 西安交通大学 一种融合多传感器的老年人摔倒预测方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202613A (zh) * 2008-09-04 2011-09-28 Iwalk股份有限公司 混合型地形自适应下肢系统
CN104589348A (zh) * 2014-12-25 2015-05-06 北京理工大学 一种仿人机器人多模态运动转换方法
CN108051004A (zh) * 2017-11-29 2018-05-18 安徽省通信息科技有限公司 一种针对四轮机器人的转动瞬心估计方法
CN108320456A (zh) * 2018-01-27 2018-07-24 西安交通大学 一种融合多传感器的老年人摔倒预测方法和系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111260057A (zh) * 2020-01-21 2020-06-09 北京空间飞行器总体设计部 一种基于虚拟传感器的足式机器人地形感知方法
CN111680642A (zh) * 2020-06-11 2020-09-18 石家庄铁道大学 一种地形分类方法及装置
CN111680642B (zh) * 2020-06-11 2023-06-23 石家庄铁道大学 一种地形分类方法及装置
CN112857314A (zh) * 2020-12-30 2021-05-28 惠州学院 双模态地形识别方法及硬件系统,及其传感器安装方法
CN112644600A (zh) * 2021-01-04 2021-04-13 之江实验室 一种具有主动地形感知能力的双足机器人仿生足部系统
CN112644600B (zh) * 2021-01-04 2022-03-25 之江实验室 一种具有主动地形感知能力的双足机器人仿生足部系统

Also Published As

Publication number Publication date
CN109249429B (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
CN109249429B (zh) 一种双足机器人地形分类系统
CN104323780B (zh) 基于支持向量机的行人步态分类系统及方法
KR102292683B1 (ko) 보행 환경 인식 방법 및 장치
Ustev et al. User, device and orientation independent human activity recognition on mobile phones: Challenges and a proposal
CN109579853B (zh) 基于bp神经网络的惯性导航室内定位方法
CN105934654B (zh) 用于确定加速度计的取向的方法和装置
KR101157073B1 (ko) 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치
CN110738154A (zh) 一种基于人体姿态估计的行人摔倒检测方法
CN108334827B (zh) 一种基于智能鞋的步态身份认证方法及智能鞋
Shao et al. DePedo: Anti periodic negative-step movement pedometer with deep convolutional neural networks
CN111008583A (zh) 一种利用肢体特征辅助的行人和骑车人姿态估计方法
CN110728754B (zh) 刚体标记点识别方法、装置、设备及存储介质
KR20170036747A (ko) 장면 내 키포인트를 추적하기 위한 방법
CN109998551A (zh) 一种分段式局部峰值检测的步态相位分析方法
Abdallah et al. CBARS: Cluster based classification for activity recognition systems
CN112487902B (zh) 面向外骨骼的基于tcn-hmm的步态相位分类方法
JP2015052999A (ja) 個人特徴抽出プログラム、個人特徴抽出装置、および個人特徴抽出方法
CN111539364B (zh) 基于特征融合和多分类器投票的多体感人体行为识别算法
US20160066150A1 (en) Dynamic Configuration of a Positioning System
CN116206358A (zh) 一种基于vio系统的下肢外骨骼运动模式预测方法及系统
CN111329485A (zh) 一种基于imu的步态识别方法及装置
Osmani et al. Reduction of the position bias via multi-level learning for activity recognition
CN203630717U (zh) 基于轻型惯导传感输入设备的交互系统
US11822623B2 (en) Traveling amount estimation apparatus, model generation apparatus, traveling amount estimation method and recording medium
CN105232053A (zh) 一种人体踝关节跖屈相位检测系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: 235000 Fenghuang Road, Lantau Peak Economic Development Zone, Xiangshan District, Huaibei, Anhui, 7

Patentee after: Anhui Guoli Intelligent Technology Co.,Ltd.

Address before: 235000 Fenghuang Road, Lantau Peak Economic Development Zone, Xiangshan District, Huaibei, Anhui, 7

Patentee before: ANHUI GUOLI INTELLIGENT TECHNOLOGY CO.,LTD.