KR101157073B1 - 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치 - Google Patents

근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치 Download PDF

Info

Publication number
KR101157073B1
KR101157073B1 KR20100126191A KR20100126191A KR101157073B1 KR 101157073 B1 KR101157073 B1 KR 101157073B1 KR 20100126191 A KR20100126191 A KR 20100126191A KR 20100126191 A KR20100126191 A KR 20100126191A KR 101157073 B1 KR101157073 B1 KR 101157073B1
Authority
KR
South Korea
Prior art keywords
emg
sensor
group
localization
rotation angle
Prior art date
Application number
KR20100126191A
Other languages
English (en)
Other versions
KR20120064922A (ko
Inventor
신현출
유경진
이기원
강희수
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR20100126191A priority Critical patent/KR101157073B1/ko
Priority to US13/979,337 priority patent/US9183760B2/en
Publication of KR20120064922A publication Critical patent/KR20120064922A/ko
Application granted granted Critical
Publication of KR101157073B1 publication Critical patent/KR101157073B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B21/00Teaching, or communicating with, the blind, deaf or mute
    • G09B21/009Teaching or communicating with deaf persons
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/038Control and interface arrangements therefor, e.g. drivers or device-embedded control circuitry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition
    • G06V40/28Recognition of hand or arm movements, e.g. recognition of deaf sign language
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1114Tracking parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • A61B5/1125Grasping motions of hands
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/12Classification; Matching

Abstract

본 발명은, 피측정자의 신체 일부에 부착된 자이로 센서와 근전도 센서로부터 자이로 측정 신호와 근전도 측정 신호를 각각 수신하는 단계와, 유사한 지화 동작들끼리 클러스터링된 그룹 중에서 상기 자이로 측정 신호의 해당 그룹을 판단하는 단계와, 상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 단계, 및 상기 획득한 가우시안 모델을 상기 해당 그룹에 속하는 후보 지화 동작들에 대한 가우시안 후보 모델들과 비교하여, 유사도가 가장 높은 가우시안 후보 모델에 대응되는 후보 지화 동작을 상기 피측정자의 현재 지화 동작으로 인식하는 단계를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치를 제공한다.
상기 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치에 따르면, 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치에 관한 것으로서, 자이로 센서를 이용한 유사 지화 동작의 클러스터링 데이터 및 근전도 센서를 이용한 지화 동작 별 가우시안 모델 데이터를 이용하여 지화 동작의 인식에 대한 정확도 및 신뢰성을 높일 수 있는 이점이 있다.

Description

근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치{Method for Finger language recognition using EMG and Gyro sensor and Apparatus thereof}
본 발명은 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치에 관한 것으로서, 보다 상세하게는 피측정자의 신체 일부에 부착된 근전도 센서와 자이로 센서를 이용하여 지화 동작을 인식할 수 있는 방법 및 장치에 관한 것이다.
지화란 한글 자모음이나 알파벳, 숫자 하나하나를 손가락으로 표시하는 방법을 의미한다. 현재 존재하고 있는 수화 장치 또는 지화 장치는 카메라로 수화 또는 지화 동작을 촬영하여 그 동작을 분석한다. 그런데 이러한 방식은 복잡한 영상 처리 및 그에 따른 고가의 장비가 필요하고 영상 처리 시간이 많이 소요되어 지화 동작의 즉각적인 인식이 어렵고 휴대가 불편한 단점이 있다.
본 발명은 피측정자의 신체 일부에 부착된 근전도 센서와 자이로 센서의 신호를 이용하여 피측정자의 지화 동작을 용이하게 인식할 수 있는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치를 제공하는데 목적이 있다.
본 발명은, 피측정자의 신체 일부에 부착된 자이로 센서와 근전도 센서로부터 자이로 측정 신호와 근전도 측정 신호를 각각 수신하는 단계와, 유사한 지화 동작들끼리 클러스터링된 그룹 중에서 상기 자이로 측정 신호의 해당 그룹을 판단하는 단계와, 상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 단계, 및 상기 획득한 가우시안 모델을 상기 해당 그룹에 속하는 후보 지화 동작들에 대한 가우시안 후보 모델들과 비교하여, 유사도가 가장 높은 가우시안 후보 모델에 대응되는 후보 지화 동작을 상기 피측정자의 현재 지화 동작으로 인식하는 단계를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법을 제공한다.
여기서, 상기 근전도 센서와 자이로 센서를 이용한 지화 인식 방법은 신호 특성이 유사한 지화 동작들끼리 그룹 별로 클러스터링하는 단계를 더 포함하며, 상기 그룹 별로 클러스터링하는 단계는, 상기 자이로 센서로부터 얻어진 롤 회전 값 및 피치 회전 값을 이용하여, 해당 지화 동작에 대한 회전각 좌표 샘플들을 얻는 단계와, 상기 지화 동작의 회전각 좌표 샘플들마다, 상기 회전각 좌표와 상기 그룹 별로 설정된 중심 좌표 사이의 거리를 측정하여, 가장 가까운 거리의 해당 그룹 상에 상기 회전각 좌표를 할당하는 단계와, 상기 회전각 좌표와 상기 중심 좌표에 대한 평균값을 산출하여 새로운 중심 좌표를 얻는 단계, 및 상기 샘플들의 회전각 좌표가 상기 그룹 별로 군집되도록, 상기 회전각 좌표를 할당하는 단계 및 상기 새로운 중심 좌표를 얻는 단계를 상기 회전각 좌표 샘플들마다 반복 수행하는 단계를 포함할 수 있다.
그리고, 상기 근전도 센서는 서로 다른 채널을 가진 복수 개로 이루어져 있으며, 상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 단계는, 상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 엔트로피를 구하는 단계; 및 상기 엔트로피에 따른 가우시안 모델을 각각 획득하는 단계를 포함할 수 있다.
또한, 상기 피측정자의 현재 지화 동작으로 인식하는 단계는, 상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 가우시안 모델과 상기 해당 그룹에 속하는 지화 동작들에 대한 가우시안 후보 모델들 사이의 개별 유사도를 각각 산출하고, 산출된 개별 유사도에 대한 곱이 가장 큰 값을 나타내는 후보 지화 동작을 상기 현재 지화 동작으로 인식할 수 있다.
여기서, 상기 유사도는 최대 우도 추론 방법(maximum likelihood estimation method)을 사용할 수 있다.
그리고, 본 발명은, 피측정자의 신체 일부에 부착된 자이로 센서와 근전도 센서로부터 자이로 측정 신호와 근전도 측정 신호를 각각 수신하는 신호수신부와, 유사한 지화 동작들끼리 클러스터링된 그룹 중에서 상기 자이로 측정 신호의 해당 그룹을 판단하는 그룹판단부와, 상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 모델획득부, 및 상기 획득한 가우시안 모델을 상기 해당 그룹에 속하는 후보 지화 동작들에 대한 가우시안 후보 모델들과 비교하여, 유사도가 가장 높은 가우시안 후보 모델에 대응되는 후보 지화 동작을 상기 피측정자의 현재 지화 동작으로 인식하는 지화인식부를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 장치를 제공한다.
여기서, 상기 근전도 센서와 자이로 센서를 이용한 지화 인식 장치는, 신호 특성이 유사한 지화 동작들끼리 그룹 별로 클러스터링하는 클러스터링부를 더 포함하며, 상기 클러스터링부는, 상기 자이로 센서로부터 얻어진 롤 회전 값 및 피치 회전 값을 이용하여, 해당 지화 동작에 대한 회전각 좌표 샘플들을 얻으며, 상기 지화 동작의 회전각 좌표 샘플들마다, 상기 회전각 좌표와 상기 그룹 별로 설정된 중심 좌표 사이의 거리를 측정하여, 가장 가까운 거리의 해당 그룹 상에 상기 회전각 좌표를 할당하며, 상기 회전각 좌표와 상기 중심 좌표에 대한 평균값을 산출하여 새로운 중심 좌표를 획득하며, 상기 샘플들의 회전각 좌표가 상기 그룹 별로 군집되도록, 상기 회전각 좌표의 할당 과정 및 상기 새로운 중심 좌표의 획득 과정을 상기 회전각 좌표 샘플들마다 반복 수행할 수 있다.
그리고, 상기 근전도 센서는 서로 다른 채널을 가진 복수 개로 이루어져 있으며, 상기 모델획득부는, 상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 엔트로피를 구한 다음, 상기 엔트로피에 따른 가우시안 모델을 각각 획득할 수 있다.
또한, 상기 지화인식부는, 상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 가우시안 모델과 상기 해당 그룹에 속하는 지화 동작들에 대한 가우시안 후보 모델들 사이의 개별 유사도를 각각 산출하고, 산출된 개별 유사도에 대한 곱이 가장 큰 값을 나타내는 후보 지화 동작을 상기 현재 지화 동작으로 인식할 수 있다.
본 발명에 따른 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치에 따르면, 자이로 센서를 이용한 유사 지화 동작의 클러스터링 데이터 및 근전도 센서를 이용한 지화 동작 별 가우시안 모델 데이터를 이용하여 지화 동작의 인식에 대한 정확도 및 신뢰성을 높일 수 있는 이점이 있다.
도 1은 한글을 구성하는 자음과 모음 각각에 대한 지화 동작의 예를 나타낸다.
도 2는 본 발명의 실시예에 따른 근전도 센서와 자이로 센서의 장착 예를 나타낸다.
도 3은 본 발명의 실시예에 따른 근전도 센서와 자이로 센서를 이용한 지화 인식 방법의 흐름도이다.
도 4는 도 3을 위한 장치 구성도이다.
도 5는 본 발명의 실시예에 따른 클러스터링 과정에 따른 지화 동작 그룹들의 일례를 나타낸다.
도 6은 본 발명의 실시예에 따른 클러스터링 과정에 의한 자이로 센서의 인식 결과를 나타낸다.
도 7은 본 발명의 실시예에 따른 근전도 센서의 원신호를 절대값 신호로 변환한 예시도이다.
도 8은 도 7의 변환된 신호의 엔트로피를 구하기 위하여 신호를 구간별로 나눈 예시도이다.
도 9는 본 발명의 실시예에 따른 지화 동작 별로 4개 채널에서 얻어지는 근전도 측정 신호에 대한 각각의 엔트로피 결과를 나타내는 예시도이다.
도 10은 본 발명의 실시예에 따라 획득된 지화 동작 별 가우시안 모델의 예시도이다.
도 11은 본 발명의 실시예에 따른 지화 동작 인식 결과의 예시도이다.
도 12는 본 발명의 실시예에 따른 지화 동작 인식 성공률의 데이터이다.
그러면 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다.
본 발명은 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치에 관한 것으로서, 자이로 센서를 이용한 유사 지화 동작의 클러스터링 데이터 및 근전도 센서를 이용한 지화 동작 별 가우시안 모델 데이터를 이용하여 지화 동작의 인식에 대한 정확도 및 신뢰성을 높일 수 있도록 한다.
도 1은 한글을 구성하는 자음과 모음 각각에 대한 지화 동작의 예를 나타낸다. 상기 지화 동작은 일반적으로 손가락을 이용하는 것으로서, 한글의 경우 자음과 모음을 합한 총 28가지 동작을 수행하여 총 28개 음소를 통해 모든 글자의 표현이 가능하다.
도 2는 본 발명의 실시예에 따른 근전도 센서와 자이로 센서의 장착 예를 나타낸다. 상기 근전도 센서와 자이로 센서는 피측정자의 신체 일부에 부착되는데, 도 2의 경우는 자이로 센서(2)는 손목 부위에, 근전도 센서(1)는 팔 안쪽의 전완부 부근에 부착된 경우를 나타낸다.
여기서, 센서모듈(10)은 블루투스 기반의 근전도 및 자이로 신호 측정 모듈이다. 근전도 센서(1)는 팔 안쪽 부위에 부착된 상태에서 센서모듈(10)에 연결되며, 자이로 센서(2)는 센서모듈(10)에 내장된 형태를 갖는다. 근전도 센서(1)는 총 4개의 채널이 있는데, 본 실시예에서는 4개의 채널을 모두 사용한다. 본 발명은 상기 근전도 센서(1)와 자이로 센서(2)가 팔 부위 및 손목 부위 인근에 장착된 것을 예시로 하나, 본 발명이 반드시 이에 한정되는 것은 아니다.
도 3은 본 발명의 실시예에 따른 근전도 센서와 자이로 센서를 이용한 지화 인식 방법의 흐름도이다. 도 4는 도 3을 위한 장치 구성도이다. 상기 장치(100)는 클러스터링부(110), 신호수신부(120), 그룹판단부(130), 모델획득부(140), 지화인식부(150)를 포함한다.
이하에서는 상기 근전도 센서와 자이로 센서를 이용한 지화 인식 방법에 관하여 도 3 및 도 4를 참조로 하여 상세히 알아본다.
상기 지화 동작을 판별하기 앞서, 본 발명은 상기 클러스터링부(110)를 이용하여, 상기 자이로 센서(2)로부터 측정되는 신호의 특성이 유사한 지화 동작들끼리 그룹 별로 클러스터링 해 놓는다.
상기 자이로 센서(2)는 손목 부위에 부착되어 있으며 2방향 회전축을 사용한다. 따라서, 지화 동작 시 손목이 회전되는 양에 따라, 피치(Pitch) 회전 및 롤(Roll) 회전의 각속도가 측정된다. 이러한 측정 각속도는 지화 동작 별로 상이하게 나타나지만, 비슷한 각속도의 동작끼리 그룹으로 묶을 수 있다. 이하에서는 이를 상세히 설명한다.
상기 자이로 센서(2)에 의해 획득되는 롤 회전에 대한 각속도
Figure 112010081490939-pat00001
와 피치 회전에 대한 각속도
Figure 112010081490939-pat00002
를 각각 시간에 대해 적분한 값인 롤 회전각
Figure 112010081490939-pat00003
과 피치 회전각
Figure 112010081490939-pat00004
은 아래의 수학식 1로 정의된다.
Figure 112010081490939-pat00005
여기서, n은 이산시간 인덱스를 나타낸다. 이를 이용하여 상기 롤 회전각과 피치 회전각을 2차원 좌표값
Figure 112010081490939-pat00006
로 나타낼 수 있고 이는 수학식 2와 같다.
Figure 112010081490939-pat00007
도 5는 본 발명의 실시예에 따른 클러스터링 과정에 따른 지화 동작 그룹들의 일례를 나타낸다. 동작의 유사도에 따라 총 3개의 그룹이 존재한다. 그룹 1은 손가락이 아래로 향하는 지화 동작이고, 그룹 2는 손가락이 지표면과 평행한 지화 동작이며, 그룹 3은 손가락이 위로 향하는 지화 동작에 속한다.
클러스터링 단계를 상세히 알아보면 다음과 같다. 먼저, 상기 자이로 센서(2)로부터 얻어진 롤 회전 값 및 피치 회전 값을 이용하여, 해당 지화 동작에 대한 회전각 좌표 샘플들을 수학식 2와 같이 얻는다(a 과정).
그리고, 상기 지화 동작의 회전각 좌표 샘플들마다 상기 '회전각 좌표'와 상기 '그룹별로 설정된 중심 좌표' 사이의 거리를 측정하여, 가장 가까운 거리의 해당 그룹 상에 상기 회전각 좌표를 할당한다(b 과정). 예를 들어, 현재 얻어진 지화 동작의 회전각 좌표와, 각각 그룹별 중심좌표 사이의 거리를 각각 측정한다. 그룹이 3개인 경우 3개의 거리가 측정된다. 그 중 가장 단거리에 해당되는 그룹 상에 회전각 좌표를 할당한다. 여기서, 상기 중심 좌표는 클러스터링 과정에 따라 점차 수정되도록 하여 유사한 신호 속성을 갖는 샘플들끼리 점점 중앙으로 집산되도록 할 수 있다. 이는 이후의 과정을 통해 이루어진다.
상기 b 과정 이후에는, 상기 회전각 좌표와 상기 중심 좌표에 대한 평균값을 산출하여 새로운 중심 좌표를 얻는다(c 과정). 이에 따라, 중심 좌표는 회전각 좌표 샘플들과 인접하게 점점 좁혀지게 된다.
이후, 상기 회전각 좌표를 할당하는 단계(b 과정) 및 상기 새로운 중심 좌표를 얻는 단계(c 과정)를 상기 회전각 좌표 샘플들마다 반복 수행함으로써, 상기 샘플들의 회전각 좌표가 상기 그룹 별로 군집되어, 최종적으로 클러스터링 되도록 한다.
도 6은 본 발명의 실시예에 따른 클러스터링 과정에 의한 자이로 센서의 인식 결과를 나타낸다. 그룹 1,2,3에 대한 평균 성공률을 80%. 88.4%, 95.4%이고, 이들 평균 성공률은 약 87.9%로 매우 높으며, 그 결과가 신뢰성 있음을 알 수 있다.
상기 클러스터링 과정은 반드시 상술한 바에 한정되지 않으며, 상기 자이로 센서에 의해 측정할 수 있는 정보를 통해 보다 다양한 변형예가 존재할 수 있다. 그 예로서, 3방향 회전축을 사용하여 클러스터링을 수행할 수 있다.
이하에서는, 피측정자의 지화 동작에 따른 동작의 인식 과정에 대하여 상세히 설명한다.
우선, 상기 신호수신부(110)에서는 피측정자의 신체 일부 즉, 손목과 팔 부위에 부착된 자이로 센서(2)와 근전도 센서(1)로부터 자이로 측정 신호와 근전도 측정 신호를 각각 수신한다(S110).
다음, 그룹판단부(130)에서는, 앞서와 같이 유사한 지화 동작들끼리 미리 클러스터링된 그룹 중에서, 상기 S110단계에서 수신된 자이로 측정 신호의 해당 그룹이 어떤 그룹에 속하는지를 판단한다(S120). 즉, 수신된 자이로 측정 신호에 대한 롤 회전각과 피치 회전각에 따른 좌표를 수학식 1과 2를 통해 얻은 다음, 얻어진 좌표가 3 개의 그룹들 중 어떤 그룹에 속하는지 판단하게 된다.
이후에는, 상기 모델획득부(140)를 통해 상기 근전도 측정 신호에 대한 가우시안 모델을 획득한다(S130). 본 실시예의 경우 4개의 근전도 센서(1)를 이용한 4채널의 근전도 센서를 이용한다. 따라서, 상기 S130단계는 4개의 근전도 센서(1)에 대한 각각의 상기 근전도 측정 신호에 대한 엔트로피를 구한 다음, 상기 엔트로피에 따른 가우시안 모델을 각각 획득한다.
상기 가우시안 모델 획득에 관하여 상세히 알아보면 다음과 같다. 도 7은 본 발명의 실시예에 따른 근전도 센서의 원신호를 절대값 신호로 변환한 예시도이다.
도 7의 과정은 수학식 3으로 표현된다.
Figure 112010081490939-pat00008
여기서,
Figure 112010081490939-pat00009
은 원신호이고,
Figure 112010081490939-pat00010
은 원신호에 절대값을 취한 신호이다. 수학식 3에서 k는 임의의 지화 동작을 의미하며, c는 근전도 센서(1)의 채널(1~4 채널)을 의미한다. 한글 지화의 경우 k는 1~28까지 존재한다. n은 이산시간 인덱스를 나타낸다. 이러한 수학식 3은 임의의 지화 동작 k를 수행할 때, 근전도 센서(1)의 c번째 채널에서 발생되는 근전도 원신호에 절대값을 취한 값을 의미한다. 이러한 절대값을 취하는 과정은 이후의 신호의 분석 과정을 용이하게 한다.
그리고, 상기 수학식 3에 의해 변환된 신호를 이용하여 엔트로피를 구하기 위해서는 상기 변환된 신호의 구간별 확률을 구하여야 한다. 도 8은 도 7의 변환된 신호의 엔트로피를 구하기 위하여 신호를 구간별로 나눈 예시도이다. 도 8의 가로축은 시간, 세로축은 신호의 크기를 의미한다.
이를 참조하면, 우선 근전도 신호의 크기[단위:uV]를 0부터 xMax까지 균등하게 M개로 등분하면 총 m(=1~M)개의 구간이 생성되고, 각각의 구간의 이름을 I1~ IM으로 지정된다. 즉, 근전도 신호의 범위는 0과 xMax 사이의 값이 되며, xMax 값은 근전도 센서의 신호 수신 장치에서 설정될 수 있다.
상기 도 8의 내용은 수학식 4로 요약될 수 있다.
Figure 112010081490939-pat00011
수학식 4는 일반 확률 이론을 나타낸 것으로서 상세한 설명은 생략한다.
이때, 각각의 구간 IM안에 속해 있는 신호의 샘플 수를 전체 신호의 샘플 수로 나눈 값의 확률
Figure 112010081490939-pat00012
은 수학식 5와 같다. 즉,
Figure 112010081490939-pat00013
는 구간 IM에 신호 샘플이 존재할 확률을 나타낸다.
Figure 112010081490939-pat00014
이를 바탕으로 상기 근전도 측정 신호에 대한 엔트로피는 수학식 6로 계산된다.
Figure 112010081490939-pat00015
수학식 6은 신호 X에 대한 엔트로피로서, 수학식 5의 값이 이용된다. 수학식 6을 통해 4개의 근전도 센서(1) 별로 근전도 측정 신호에 대한 엔트로피를 각각 구한다.
도 9는 본 발명의 실시예에 따른 지화 동작 별로 4개 채널에서 얻어지는 근전도 측정 신호에 대한 각각의 엔트로피 결과를 나타내는 예시도이다. 이러한 도 9는 각 동작 별로 각각의 채널에서 구하여진 엔트로피 값으로 구성되는 히스토그램을 나타내는 것으로서, 가로축은 엔트로피, 세로축은 발생횟수를 의미한다.
상기와 같이 얻어지는 엔트로피에 대한 가우시안 확률밀도 모델은 수학식 7을 통해 얻는다.
Figure 112010081490939-pat00016
이러한 수학식 7은 가우시안 확률밀도 함수의 일반적인 식으로서, 상기 가우시안 모델에 해당된다. 입력
Figure 112010081490939-pat00017
는 채널 c에서 동작 k를 수행할 경우의 엔트로피이며,
Figure 112010081490939-pat00018
는 표준편차,
Figure 112010081490939-pat00019
는 평균을 의미한다. 수학식 7 또한 가우시안 모델에 대란 기본 식으로서 상세한 설명은 생략한다.
상기 S130 이후에는, 이상과 같이 획득한 가우시안 모델을 상기 해당 그룹에 속하는 후보 지화 동작들에 대한 가우시안 후보 모델들과 비교한 다음, 유사도가 가장 높은 가우시안 후보 모델에 대응되는 후보 지화 동작을 상기 피측정자의 현재 지화 동작으로 인식한다(S140). 상기 S140단계는 지화인식부(150)에서 수행한다.
앞서 S120단계에서는 현재 자이로 센서(2)에서 얻어진 자이로 신호를 해석하여, 기존에 클러스터링된 그룹 중 해석된 신호가 어떤 그룹에 속하는지 판단하며, S130단계는 현재 근전도 센서(1)에서 얻어진 근전도 측정 신호에 대한 가우시안 모델을 획득하는 단계이다.
여기서, 상기 S140단계에서는 상기 S130단계에서 얻어진 근전도 측정 신호의 가우시안 모델과, 상기 S120단계에서 판단된 상기 해당 그룹 내에 속하는 후보 지화 동작들에 대한 근전도 측정 신호의 가우시안 모델(가우시안 후보 모델)을 서로 비교하여, 유사도가 가장 높은 가우시안 모델에 대응되는 후보 지화 동작을 현재 동작으로 인식하는 것이다.
이러한 비교 과정을 위해서는, 모든 지화 동작(한글의 경우 총 28개)에 대한 표준 가우시안 모델을 사전에 획득하여 데이터베이스화 하는 것이 바람직함은 자명하다. 도 10은 본 발명의 실시예에 따라 획득된 지화 동작 별 가우시안 모델의 예시도이다. 이는 4개의 동작에 대하여 4개 채널에 대해 얻어진 각각의 가우시안 모델의 예로서, 각 동작 별로 서로 다른 형태의 가우시안 모델이 형성됨을 알 수 있다.
본 실시예에서는 4개의 근전도 센서(1)를 사용하였으므로, 이를 기준으로 상기 S140 단계를 보다 구체적으로 설명하면, 상기 4개의 근전도 센서(1)에 대한 각각의 상기 근전도 측정 신호에 대한 가우시안 모델과, 상기 해당 그룹에 속하는 지화 동작들에 대한 가우시안 후보 모델들 사이의 개별 유사도를 각각 산출한다. 예를 들어, 상기 해당 그룹 내의 후보 지화 동작들이 총 4개인 경우, 후보 지화 동작 1개마다 채널 별 유사도 값 즉, 4개의 유사도 값이 구하여지며, 후보 지화 동작 4개를 통틀어 본다면 총 16개의 유사도 값이 산출된다.
그런 다음, 산출된 개별 유사도에 대한 곱이 가장 큰 값을 나타내는 후보 지화 동작을 상기 현재 지화 동작으로 인식한다. 예를 들어, 후보 지화 동작 별로 산출되는 4개의 유사도를 서로 곱한 값을 각 동작 별로 산출하고, 이를 동작 별로 비교하여, 가장 큰 곱의 값을 갖는 해당 후보 지화 동작을 현재 지화 동작으로 인식하는 것이다.
이러한 과정은 수학식 8 및 수학식 9을 참조한다.
Figure 112010081490939-pat00020
수학식 8은 최대 우도 추론 방법(maximum likelihood estimation method)을 사용한 것으로서, likelihood 값인 L을 구하는 방법을 의미한다. 즉, 채널마다 지화 동작 별 유사도의 곱 값을 산출할 수 있다. 만약, 후보 동작이 4개인 경우 L(1)~L(4) 값을 구해야 하고, L(1) 내지 L(4)를 가장 크게 하는 k 값이 판별된 동작의 번호가 된다.
수학식 8을 상세히 살펴보면, Fk는 k 동작에 대한 가우시안 모델을 의미하고,
Figure 112010081490939-pat00021
는 피측정자의 동작에 의해 채널 c를 통해 측정된 근전도 신호의 정보 엔트로피 값이다. 즉, 상기 L(k)함수는, 생성된 엔트로피 값을 상기 확률 밀도 함수에 대입하여 산출된 값을 각 채널 별로 곱한 값이다.
만약 특정 채널에 대한 확률 밀도 함수에 해당 채널에 대한 엔트로피 값을 입력한 결과 0이 나왔다면, 그 채널의 근전도 신호는 해당 동작에 대한 것일 확률이 거의 0이라는 것을 의미한다. 상기 L(k) 값은 각 채널의 확률 밀도 함수 값을 곱한 것이므로, 하나의 채널에서라도 확률 밀도 함수 값이 0이 나오면 해당 동작의 L(k)값은 0이 된다.
Figure 112010081490939-pat00022
수학식 9는 수학식 8과 관련된 값을 최대로 하는 동작
Figure 112010081490939-pat00023
를 추론하는 것으로서 로그 함수가 사용된다. 즉 L(k) 함수에 로그를 취한 log(L(k)) 값을 최대로 만드는 k를 구하는 것이다. 이는 곱셈에 로그를 취하면 덧셈으로 변환되는 수학적 지식을 활용한 것이다. 즉, 동작
Figure 112010081490939-pat00024
는 본 발명에 의해 인식 및 판별된 지화 동작을 의미한다. 따라서, 구하고자 하는 동작의 식별번호
Figure 112010081490939-pat00025
는 log(L(k)) 값의 합을 최대로 만드는 값이다.
도 11은 본 발명의 실시예에 따른 지화 동작 인식 결과의 예시도이다. 도 11은 4개의 동작(동작1, 동작2, 동작3, 동작4; 위에서 아래 순)에 대하여 4개의 채널(Ch.1, Ch.2, Ch.3, Ch.4)에서 측정된 엔트로피에 대한 확률 밀도 함수(가우시안 모델) 그래프이다.
각 채널에 대하여 세로 방향으로 그려진 직선이 피측정자의 동작에 의해 각 채널 별로 측정된 엔트로피 값을 나타낸다. 즉, 상기 세로 방향의 직선이 각 그래프와 교차하는 지점의 y축 값이 각 채널 및 동작에 대한 확률 밀도 함수 값이다. 이미 설명한 바와 같이, 특정 동작 k에 대하여 하나의 채널이라도 상기 확률 밀도 함수 값이 0이라면, 대상자의 동작이 동작 k일 확률은 0에 가깝다. Ch 2 신호의 경우, 동작 2,4의 값이 0이므로, 동작 2,4일 확률은 거의 없다는 것을 알 수 있다. 결론적으로, 각 채널의 확률 밀도 함수의 곱이 가장 큰 동작 1이 피측정자의 동작이라고 판별할 수 있다. 즉, 동작 1이 가장 피측정자의 동작과 유사도가 가장 높은 동작으로 검출된 것이다.
도 12는 본 발명의 실시예에 따른 지화 동작 인식 성공률의 데이터이다. 자음 14개의 인식 평균성공률은 85.5%, 모음 14개에 대한 평균성공률은 75.14%로서, 인식 결과를 신뢰할 수 있음을 알 수 있다.
이와 같이 본 발명에 따른 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치에 따르면, 자이로 센서를 이용한 유사 지화 동작의 클러스터링 데이터 및 근전도 센서를 이용한 지화 동작 별 가우시안 모델 데이터를 이용하여 지화 동작의 인식에 대한 정확도 및 신뢰성을 높일 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
100: 근전도 센서와 자이로 센서를 이용한 지화 인식 장치
110: 클러스터링부 120: 신호수신부
130: 그룹판단부 140: 모델획득부
150: 지화인식부

Claims (10)

  1. 피측정자의 신체 일부에 부착된 자이로 센서와 근전도 센서로부터 자이로 측정 신호와 근전도 측정 신호를 각각 수신하는 단계;
    유사한 지화 동작들끼리 클러스터링된 그룹 중에서 상기 자이로 측정 신호의 해당 그룹을 판단하는 단계;
    상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 단계; 및
    상기 획득한 가우시안 모델을 상기 해당 그룹에 속하는 후보 지화 동작들에 대한 가우시안 후보 모델들과 비교하여, 유사도가 가장 높은 가우시안 후보 모델에 대응되는 후보 지화 동작을 상기 피측정자의 현재 지화 동작으로 인식하는 단계를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법.
  2. 청구항 2은(는) 설정등록료 납부시 포기되었습니다.
    청구항 1에 있어서,
    신호 특성이 유사한 지화 동작들끼리 그룹 별로 클러스터링하는 단계를 더 포함하며,
    상기 그룹 별로 클러스터링하는 단계는,
    상기 자이로 센서로부터 얻어진 롤 회전 값 및 피치 회전 값을 이용하여, 해당 지화 동작에 대한 회전각 좌표 샘플들을 얻는 단계;
    상기 지화 동작의 회전각 좌표 샘플들마다, 상기 회전각 좌표와 상기 그룹 별로 설정된 중심 좌표 사이의 거리를 측정하여, 가장 가까운 거리의 해당 그룹 상에 상기 회전각 좌표를 할당하는 단계;
    상기 회전각 좌표와 상기 중심 좌표에 대한 평균값을 산출하여 새로운 중심 좌표를 얻는 단계; 및
    상기 샘플들의 회전각 좌표가 상기 그룹 별로 군집되도록, 상기 회전각 좌표를 할당하는 단계 및 상기 새로운 중심 좌표를 얻는 단계를 상기 회전각 좌표 샘플들마다 반복 수행하는 단계를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법.
  3. 청구항 3은(는) 설정등록료 납부시 포기되었습니다.
    청구항 1에 있어서,
    상기 근전도 센서는 서로 다른 채널을 가진 복수 개로 이루어져 있으며,
    상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 단계는,
    상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 엔트로피를 구하는 단계, 그리고
    상기 엔트로피에 따른 가우시안 모델을 각각 획득하는 단계를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법.
  4. 청구항 4은(는) 설정등록료 납부시 포기되었습니다.
    청구항 3에 있어서,
    상기 피측정자의 현재 지화 동작으로 인식하는 단계는,
    상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 가우시안 모델과 상기 해당 그룹에 속하는 지화 동작들에 대한 가우시안 후보 모델들 사이의 개별 유사도를 각각 산출하고, 산출된 개별 유사도에 대한 곱이 가장 큰 값을 나타내는 후보 지화 동작을 상기 현재 지화 동작으로 인식하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법.
  5. 청구항 5은(는) 설정등록료 납부시 포기되었습니다.
    청구항 4에 있어서,
    상기 유사도는 최대 우도 추론 방법(maximum likelihood estimation method)을 사용하는 근전도 센서와 자이로 센서를 이용한 지화 인식 방법.
  6. 피측정자의 신체 일부에 부착된 자이로 센서와 근전도 센서로부터 자이로 측정 신호와 근전도 측정 신호를 각각 수신하는 신호수신부;
    유사한 지화 동작들끼리 클러스터링된 그룹 중에서 상기 자이로 측정 신호의 해당 그룹을 판단하는 그룹판단부;
    상기 근전도 측정 신호에 대한 가우시안 모델을 획득하는 모델획득부; 및
    상기 획득한 가우시안 모델을 상기 해당 그룹에 속하는 후보 지화 동작들에 대한 가우시안 후보 모델들과 비교하여, 유사도가 가장 높은 가우시안 후보 모델에 대응되는 후보 지화 동작을 상기 피측정자의 현재 지화 동작으로 인식하는 지화인식부를 포함하는 근전도 센서와 자이로 센서를 이용한 지화 인식 장치.
  7. 청구항 6에 있어서,
    신호 특성이 유사한 지화 동작들끼리 그룹 별로 클러스터링하는 클러스터링부를 더 포함하며,
    상기 클러스터링부는,
    상기 자이로 센서로부터 얻어진 롤 회전 값 및 피치 회전 값을 이용하여, 해당 지화 동작에 대한 회전각 좌표 샘플들을 얻으며,
    상기 지화 동작의 회전각 좌표 샘플들마다, 상기 회전각 좌표와 상기 그룹 별로 설정된 중심 좌표 사이의 거리를 측정하여, 가장 가까운 거리의 해당 그룹 상에 상기 회전각 좌표를 할당하며,
    상기 회전각 좌표와 상기 중심 좌표에 대한 평균값을 산출하여 새로운 중심 좌표를 획득하며,
    상기 샘플들의 회전각 좌표가 상기 그룹 별로 군집되도록, 상기 회전각 좌표의 할당 과정 및 상기 새로운 중심 좌표의 획득 과정을 상기 회전각 좌표 샘플들마다 반복 수행하는 근전도 센서와 자이로 센서를 이용한 지화 인식 장치.
  8. 청구항 6에 있어서,
    상기 근전도 센서는 서로 다른 채널을 가진 복수 개로 이루어져 있으며,
    상기 모델획득부는,
    상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 엔트로피를 구한 다음, 상기 엔트로피에 따른 가우시안 모델을 각각 획득하는 근전도 센서와 자이로 센서를 이용한 지화 인식 장치.
  9. 청구항 8에 있어서,
    상기 지화인식부는,
    상기 복수의 근전도 센서에 대한 각각의 상기 근전도 측정 신호에 대한 가우시안 모델과 상기 해당 그룹에 속하는 지화 동작들에 대한 가우시안 후보 모델들 사이의 개별 유사도를 각각 산출하고, 산출된 개별 유사도에 대한 곱이 가장 큰 값을 나타내는 후보 지화 동작을 상기 현재 지화 동작으로 인식하는 근전도 센서와 자이로 센서를 이용한 지화 인식 장치.
  10. 청구항 9에 있어서,
    상기 유사도는 최대 우도 추론 방법(maximum likelihood estimation method)을 사용하는 근전도 센서와 자이로 센서를 이용한 지화 인식 장치.
KR20100126191A 2010-12-10 2010-12-10 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치 KR101157073B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20100126191A KR101157073B1 (ko) 2010-12-10 2010-12-10 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치
US13/979,337 US9183760B2 (en) 2010-12-10 2011-10-28 Method and apparatus for recognizing sign language using electromyogram sensor and gyro sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100126191A KR101157073B1 (ko) 2010-12-10 2010-12-10 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20120064922A KR20120064922A (ko) 2012-06-20
KR101157073B1 true KR101157073B1 (ko) 2012-06-21

Family

ID=46689031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100126191A KR101157073B1 (ko) 2010-12-10 2010-12-10 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치

Country Status (2)

Country Link
US (1) US9183760B2 (ko)
KR (1) KR101157073B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105496418A (zh) * 2016-01-08 2016-04-20 中国科学技术大学 一种臂带式可穿戴的上肢运动功能评估系统

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101428857B1 (ko) * 2012-09-24 2014-08-12 숭실대학교산학협력단 근전도 센서와 가속도 센서를 이용한 로봇 동작 제어 장치 및 방법
KR102165077B1 (ko) 2013-08-21 2020-10-13 삼성전자주식회사 생체신호 인터페이스 장치 및 생체신호 인터페이스 장치의 동작 방법
WO2015160849A1 (en) * 2014-04-14 2015-10-22 Motionsavvy, Inc. Systems and methods for recognition and translation of gestures
USD788223S1 (en) * 2015-08-11 2017-05-30 Barbara J. Grady Sign language displaying communicator
WO2017131318A1 (ko) 2016-01-27 2017-08-03 연세대학교 원주산학협력단 수화 인식 시스템 및 방법
US11281301B2 (en) * 2016-02-03 2022-03-22 Flicktek Ltd Wearable controller for wrist
CN105893942B (zh) * 2016-03-25 2019-04-26 中国科学技术大学 一种基于eSC和HOG的自适应HMM的手语识别方法
US11847426B2 (en) * 2017-11-08 2023-12-19 Snap Inc. Computer vision based sign language interpreter
KR102054066B1 (ko) * 2017-11-27 2019-12-10 숭실대학교산학협력단 근전도 신호를 이용한 동작 추론 장치 및 그 방법
KR101875472B1 (ko) * 2018-03-05 2018-07-06 연세대학교 원주산학협력단 지화 인식 시스템 및 방법
US10890970B2 (en) 2018-12-24 2021-01-12 Lasarrus Clinic And Research Center Flex force smart glove for measuring sensorimotor stimulation
CN110623673B (zh) * 2019-09-29 2022-01-28 华东交通大学 一种用于驾驶员手势识别的全柔性智能腕带
CN113625882B (zh) * 2021-10-12 2022-06-14 四川大学 一种基于稀疏多通道相关性特征的肌电手势识别方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050032296A (ko) * 2003-10-01 2005-04-07 학교법인 포항공과대학교 지화 인식 방법 및 장치
KR100634549B1 (ko) 2005-07-28 2006-10-13 삼성전자주식회사 건강관리장치 및 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027155A2 (en) 1995-02-13 1996-09-06 Electronic Publishing Resources, Inc. Systems and methods for secure transaction management and electronic rights protection
JPH11296425A (ja) 1998-04-06 1999-10-29 Yamatake Corp 情報閲覧システム
KR20050052555A (ko) 2003-11-28 2005-06-03 양기혁 자이로 및 엑셀로미터 센서를 이용한 모션캡쳐 장치 및 방법
US7610315B2 (en) 2006-09-06 2009-10-27 Adobe Systems Incorporated System and method of determining and recommending a document control policy for a document
US9356935B2 (en) 2006-09-12 2016-05-31 Adobe Systems Incorporated Selective access to portions of digital content
KR20080028084A (ko) 2006-09-26 2008-03-31 삼성전자주식회사 휴대 단말기를 이용하는 근전도 기반의 의사 전달 장치 및방법
US8230417B1 (en) 2007-06-08 2012-07-24 Adobe Systems Incorporated Combined application and execution environment install
US8051287B2 (en) 2008-10-15 2011-11-01 Adobe Systems Incorporated Imparting real-time priority-based network communications in an encrypted communication session
KR101284797B1 (ko) 2008-10-29 2013-07-10 한국전자통신연구원 착용형 컴퓨팅 환경 기반의 사용자 인터페이스 장치 및 그 방법
KR20100121871A (ko) 2009-05-11 2010-11-19 (주)모빌랩 동작인식센서를 이용한 문자와 숫자 입력 및 조합 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050032296A (ko) * 2003-10-01 2005-04-07 학교법인 포항공과대학교 지화 인식 방법 및 장치
KR100634549B1 (ko) 2005-07-28 2006-10-13 삼성전자주식회사 건강관리장치 및 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105496418A (zh) * 2016-01-08 2016-04-20 中国科学技术大学 一种臂带式可穿戴的上肢运动功能评估系统

Also Published As

Publication number Publication date
US9183760B2 (en) 2015-11-10
KR20120064922A (ko) 2012-06-20
US20130295529A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
KR101157073B1 (ko) 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치
Li et al. Deep Fisher discriminant learning for mobile hand gesture recognition
TWI569176B (zh) 手寫軌跡識別方法與系統
Khelil et al. Hand gesture recognition using leap motion controller for recognition of arabic sign language
Zhang et al. A comprehensive study of smartphone-based indoor activity recognition via Xgboost
CN116226691B (zh) 用于手势姿态感知的智能戒指数据处理方法
CN102985897A (zh) 高效姿势处理
US10685219B2 (en) Sign language recognition system and method
CN108196668B (zh) 一种便携式手势识别系统及方法
KR20120052610A (ko) 신경망 학습을 통한 동작 인식 방법 및 장치
Ahmad et al. Inertial sensor data to image encoding for human action recognition
WO2019180511A1 (en) Ultrasound based air-writing system and method
KR102116604B1 (ko) 레이더를 이용한 제스처 인식 장치 및 방법
Patil et al. Handwriting recognition in free space using WIMU-based hand motion analysis
CN107346207B (zh) 一种基于隐马尔科夫模型的动态手势切分识别方法
CN109592528B (zh) 基于视觉词带的电梯安全标志物定位方法与系统
JP2007280219A (ja) 動きパターン認識装置、動きパターン認識方法及び動きパターン認識プログラム
CN111914822A (zh) 文本图像标注方法、装置、计算机可读存储介质及设备
WO2012077909A2 (ko) 근전도 센서와 자이로 센서를 이용한 지화 인식 방법 및 장치
KR101875472B1 (ko) 지화 인식 시스템 및 방법
Mohandes et al. Automation of the Arabic sign language recognition
Wang et al. Handwriting recognition under natural writing habits based on a low-cost inertial sensor
CN103826202B (zh) 基于手机传感器信息改进WiFi定位结果跳动的方法
CN103207686B (zh) 一种指点杆、指点杆信息转换方法、装置及电子设备
Teja et al. A ballistic stroke representation of online handwriting for recognition

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170410

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee