CN109243849B - 超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法 - Google Patents

超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法 Download PDF

Info

Publication number
CN109243849B
CN109243849B CN201811304891.4A CN201811304891A CN109243849B CN 109243849 B CN109243849 B CN 109243849B CN 201811304891 A CN201811304891 A CN 201811304891A CN 109243849 B CN109243849 B CN 109243849B
Authority
CN
China
Prior art keywords
preparation
graphene aerogel
graphene
caco
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811304891.4A
Other languages
English (en)
Other versions
CN109243849A (zh
Inventor
张旭
曲宁
范秋雨
米盼盼
杨贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201811304891.4A priority Critical patent/CN109243849B/zh
Publication of CN109243849A publication Critical patent/CN109243849A/zh
Application granted granted Critical
Publication of CN109243849B publication Critical patent/CN109243849B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法,属于电极材料技术领域。该氮掺杂分级孔石墨烯气凝胶氮含量为0.3~2.3wt.%,比表面积为85~286m2/g,电化学比容量达到51~228F/g。方法为:首先,制备纳米碳酸钙@聚多巴胺CaCO3@PDA颗粒;其次,将CaCO3@PDA颗粒、氧化石墨烯以及硫脲分散于去离子水中,反应冷冻干燥后制备石墨烯气凝胶;最后,放入管式炉中得到产物。本发明石墨烯气凝胶具有分级孔的特点;制备过程可控性强;所制备的功能化石墨烯作为电极材料应用于超级电容器中,有利于电解液的传输和浸润,可获得较好的电化学性能。

Description

超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法
技术领域
本发明涉及一种超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法,属于电极材料技术领域。
背景技术
超级电容器作为一种具有优异电化学特性和环境友好性的电化学储能器件,吸引了科学以及工业界研究人员的广泛关注。在众多超级电容器用电极材料中,炭素材料,如碳纳米管,石墨烯,多孔炭等以其较高的比较面积和较好的化学稳定性得到了广泛的关注。这其中,石墨烯以其优异的物理和化学特性被证明是一种超级电容器用的优异的电极材料(Ruoff,R.S.et al.Science,2011,332,1537-1541)。然而,常规的石墨烯粉末材料在制备电极过程中不可避免的要加入粘结剂等非活性物质,进而导致材料电化学性能的降低。
为了克服以上的缺点,可以利用石墨烯二维共轭的结构特点,自组装形成三维结构的石墨烯气凝胶。以整体性的石墨烯气凝胶为电极则在电极制备过程中避免了粘结剂的使用,进而有助于提高电极材料的电化学性能。但是石墨烯气凝胶也有不足之处,如孔径比较单一,多以大孔结构为主,缺乏中孔和微孔,因此不利于电解液的传输与储存。为此,可以在制备过程中选择合适的模板剂调控石墨烯气凝胶的结构,以实现对其孔径的调控。在诸多模板剂中,纳米CaCO3除了自身具有造孔作用,其在高温下分解产生的二氧化碳也可以对炭基材料进一步刻蚀,实现二次造孔,使得材料具有相应的分级孔结构。然而在石墨烯气凝胶制备的过程中,由于纳米CaCO3在水中具有较差的分散性而无法实现与制备前躯体氧化石墨烯的均匀复合,容易形成团聚,继而影响其造孔能力。除此之外,石墨烯材料的共轭结构使得石墨烯气凝胶具有一定的疏水性,因此石墨烯电极气凝胶材料与水系电解液会存在浸润不够充分的问题,也阻碍了石墨烯气凝胶材料在超级电容器领域中的应用。
发明内容
针对现有技术存在的问题,本发明提供一种可作为超级电容器电极的氮掺杂分级孔石墨烯气凝胶及其制备方法。该材料具有良好的电化学性能,制备方法可控性强,前景广泛。
为了达到上述技术目的,本发明采用的技术方案为:
一种超级电容器用氮掺杂分级孔石墨烯气凝胶,该气凝胶氮含量为0.3wt.%~2.3wt.%,比表面积为85~286m2/g,电容为51~228F/g。
一种超级电容器用氮掺杂分级孔石墨烯气凝胶的制备方法,该制备方法将一定浓度的氧化石墨溶液与预先制备好的纳米碳酸钙@聚多巴胺CaCO3@PDA颗粒、一定量硫脲混合,放入水热釜中一定温度下反应一段时间,得到的样品再在惰性气体保护下高温下处理一段时间,随后用稀盐酸溶液酸洗得到氮掺杂分级孔结构的石墨烯气凝胶。具体包括以下步骤:
第一步,制备纳米碳酸钙@聚多巴胺CaCO3@PDA颗粒
将尺寸为50~200nm的纳米CaCO3加入乙醇和去离子水的混合溶液中,再加入三(羟甲基)氨基甲烷和与三(羟甲基)氨基甲烷相同质量的盐酸多巴胺,常温下搅拌18~24h,使盐酸多巴胺原位聚合成聚多巴胺(PDA),包覆到纳米CaCO3表面,过滤后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒,备用。
所述的乙醇和去离子水的体积比为1:1。所述的纳米碳酸钙与盐酸多巴胺的质量比为4:1~1:1。
第二步,制备石墨烯气凝胶
将第一步制备的CaCO3@PDA颗粒、氧化石墨烯以及硫脲分散于去离子水中,在150℃~180℃条件反应12~24h,冷冻干燥得到相应的石墨烯气凝胶。
所述的CaCO3@PDA颗粒与氧化石墨烯的质量比为0.5:1~3:1。所述的硫脲与氧化石墨烯的质量比为50:3~100:3。所述的氧化石墨烯采用改进的Hummers’制备。
第三步,制备氮掺杂分级孔石墨烯气凝胶
将第二步制备得到的石墨烯气凝胶放入管式炉中,惰性气体下以2℃/min的速率升温至600~900℃,炭化1~3h,经1mol/L HCl溶液酸洗后得到产物氮掺杂分级孔石墨烯气凝胶。
以上述方法制备的上述材料用于制作超级电容器的电极。
本发明的有益效果我:1)本发明的所制备的石墨烯气凝胶具有分级孔的特点,有利于电解液的传输,提高电化学性能;2)通过PDA包覆纳米CaCO3制备CaCO3@PDA颗粒为模板剂,与氧化石墨烯复合既实现了模板剂的均匀分散又对石墨烯气凝胶实现了氮元素掺杂;3)石墨烯气凝胶的制备过程可控性强,通过聚多巴胺包覆纳米CaCO3制备CaCO3@PDA颗粒为模板剂,与石墨烯气凝胶的制备前躯体氧化石墨烯复合既实现了模板剂的均匀分散又对石墨烯气凝胶实现了氮元素掺杂。
附图说明
图1是实施例4中氮掺杂分级孔石墨烯气凝胶的SEM图。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1
称取400mg的尺寸为200nm的纳米CaCO3于250mL烧杯中,加入体积比为1比1的无水乙醇和去离子水溶液200mL,随后加入200mg三(羟甲基)氨基甲烷和200mg的盐酸多巴胺,常温下搅拌18h,取出后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒。
将15mg的GO水溶液,7.5mg CaCO3@PDA颗粒、0.25g硫脲和10mL去离子水混合在一起,搅拌0.5h后将其转移到20mL的水热釜中并在160℃的温度下保持12h,经冷冻干燥得到石墨烯气凝胶。
在管式加热炉中,将石墨烯气凝胶在氩气气氛中以2℃/min的升温速率升温至600℃下处理1h,冷却至室温后通过1mol/L HCl溶液溶液酸洗去除模板剂,得到氮掺杂分级孔石墨烯气凝胶。所得产物氮含量为0.3wt.%,比表面积为85m2/g,利用6M KOH为电解液的三电极体系测试其电化学比容量,在5mV/s的扫描速率下,石墨烯气凝胶的比容量为51F/g。
实施例2
称取200mg的尺寸为80nm的纳米CaCO3于250mL烧杯中,加入体积比为1比1的无水乙醇和去离子水溶液200mL,随后加入100mg三(羟甲基)氨基甲烷和100mg的盐酸多巴胺,常温下搅拌24h,取出后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒。
将15mg的GO水溶液,45mg CaCO3@PDA颗粒、0.5g硫脲和10mL去离子水混合在一起,搅拌0.5h后将其转移到20mL的水热釜中并在180℃的温度下保持24h,经冷冻干燥得到石墨烯气凝胶。
在管式加热炉中,将石墨烯气凝胶在氩气气氛中以2℃/min的升温速率升温至800℃下处理2h,冷却至室温后通过1mol/L HCl溶液溶液酸洗去除模板剂,得到氮掺杂分级孔石墨烯气凝胶。所得产物氮含量为2.3wt.%,比表面积为242m2/g,利用6M KOH为电解液的三电极体系测试其电化学比容量,在5mV/s的扫描速率下,石墨烯气凝胶的比容量为228F/g。
实施例3
称取200mg的尺寸为50nm的纳米CaCO3于250mL烧杯中,加入体积比为1比1的无水乙醇和去离子水溶液200mL,随后加入100mg三(羟甲基)氨基甲烷和100mg的盐酸多巴胺,常温下搅拌24h,取出后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒。
将15mg的GO水溶液,45mg CaCO3@PDA颗粒、0.5g硫脲和10mL去离子水混合在一起,搅拌0.5h后将其转移到20mL的水热釜中并在180℃的温度下保持24h,经冷冻干燥得到石墨烯气凝胶。
在管式加热炉中,将石墨烯气凝胶在氩气气氛中以2℃/min的升温速率升温至900℃下处理3h,冷却至室温后通过1mol/L HCl溶液溶液酸洗去除模板剂,得到氮掺杂分级孔石墨烯气凝胶。所得产物氮含量为2.1wt.%,比表面积为286m2/g,利用6M KOH为电解液的三电极体系测试其电化学比容量,在5mV/s的扫描速率下,石墨烯气凝胶的比容量为202F/g。
实施例4
称取400mg的尺寸为100nm的纳米CaCO3于250mL烧杯中,加入体积比为1比1的无水乙醇和去离子水溶液200mL,随后加入400mg三(羟甲基)氨基甲烷和400mg的盐酸多巴胺,常温下搅拌24h,取出后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒。
将30mg的GO水溶液,45mg CaCO3@PDA颗粒、1g硫脲和20mL去离子水混合在一起,搅拌0.5h后将其转移到40mL的水热釜中并在180℃的温度下保持18h,经冷冻干燥得到石墨烯气凝胶。
在管式加热炉中,将石墨烯气凝胶在氩气气氛中以2℃/min的升温速率升温至700℃下处理2h,冷却至室温后通过1mol/L HCL溶液酸洗去除模板剂,得到氮掺杂分级孔石墨烯气凝胶。所得产物氮含量为1.8wt.%,比表面积为182m2/g,利用6M KOH为电解液的三电极体系测试其电化学比容量,在5mV/s的扫描速率下,石墨烯气凝胶的比容量为171F/g。
实施例5
称取200mg的尺寸为80nm的纳米CaCO3于250mL烧杯中,加入体积比为1比1的无水乙醇和去离子水溶液200mL,随后加入50mg三(羟甲基)氨基甲烷和50mg的盐酸多巴胺,常温下搅拌24h,取出后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒。
将15mg的GO水溶液,15mg CaCO3@PDA颗粒、0.25g硫脲和10mL去离子水混合在一起,搅拌0.5h后将其转移到20mL的水热釜中并在160℃的温度下保持24h,经冷冻干燥得到石墨烯气凝胶。
在管式加热炉中,将石墨烯气凝胶在氩气气氛中以2℃/min的升温速率升温至800℃下处理2h,冷却至室温后通过1mol/L HCl溶液溶液酸洗去除模板剂,得到氮掺杂分级孔石墨烯气凝胶。所得产物氮含量为1.1wt.%,比表面积为154m2/g,利用6M KOH为电解液的三电极体系测试其电化学比容量,在5mV/s的扫描速率下,石墨烯气凝胶的比容量为127F/g。
以上所述实施例仅表达本发明的实施方式,但并不能因此而理解为对本发明专利的范围的限制,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (8)

1.一种超级电容器用氮掺杂分级孔石墨烯气凝胶的制备方法,其特征在于,所述的气凝胶氮含量为0.3wt.%~2.3wt.%,比表面积为85~286m2/g,电容为51~228F/g;制备方法包括以下步骤:
第一步,制备纳米碳酸钙@聚多巴胺CaCO3@PDA颗粒
将纳米CaCO3加入乙醇和去离子水的混合溶液中,再加入三(羟甲基)氨基甲烷和与三(羟甲基)氨基甲烷相同质量的盐酸多巴胺,常温下搅拌18~24h,使盐酸多巴胺原位聚合成聚多巴胺(PDA),包覆到纳米CaCO3表面,过滤后用去离子水冲洗至中性,冷冻干燥得到纳米CaCO3@PDA颗粒,备用;所述的纳米碳酸钙与盐酸多巴胺的质量比为4:1~1:1;
第二步,制备石墨烯气凝胶
将第一步制备的CaCO3@PDA颗粒、氧化石墨烯以及硫脲分散于去离子水中,在150℃~180℃条件反应12~24h,冷冻干燥得到相应的石墨烯气凝胶;所述的CaCO3@PDA颗粒与氧化石墨烯的质量比为0.5:1~3:1;所述的硫脲与氧化石墨烯的质量比为50:3~100:3;
第三步,制备氮掺杂分级孔石墨烯气凝胶
将第二步制备得到的石墨烯气凝胶放入管式炉中,惰性气体下升温至600~900℃,炭化1~3h,经酸液酸洗后得到产物氮掺杂分级孔石墨烯气凝胶。
2.根据权利要求1所述的制备方法,其特征在于,第一步所述的纳米CaCO3的尺寸为50~200nm。
3.根据权利要求1或2所述的制备方法,其特征在于,第一步所述的乙醇和去离子水的体积比为1:1。
4.根据权利要求1或2所述的制备方法,其特征在于,第二步所述的氧化石墨烯采用改进的Hummers’制备。
5.根据权利要求3所述的制备方法,其特征在于,第二步所述的氧化石墨烯采用改进的Hummers’制备。
6.根据权利要求1或2或5所述的制备方法,其特征在于,第三步所述的酸液为1mol/L的HCl溶液。
7.根据权利要求3所述的制备方法,其特征在于,第三步所述的酸液为1mol/L的HCl溶液。
8.根据权利要求4所述的制备方法,其特征在于,第三步所述的酸液为1mol/L的HCl溶液。
CN201811304891.4A 2018-11-05 2018-11-05 超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法 Expired - Fee Related CN109243849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811304891.4A CN109243849B (zh) 2018-11-05 2018-11-05 超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811304891.4A CN109243849B (zh) 2018-11-05 2018-11-05 超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法

Publications (2)

Publication Number Publication Date
CN109243849A CN109243849A (zh) 2019-01-18
CN109243849B true CN109243849B (zh) 2019-10-11

Family

ID=65076819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811304891.4A Expired - Fee Related CN109243849B (zh) 2018-11-05 2018-11-05 超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法

Country Status (1)

Country Link
CN (1) CN109243849B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864302B (zh) * 2022-05-09 2023-08-18 武夷学院 一种氮掺杂氧化石墨烯基柔性超级电容器的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615621A (zh) * 2018-06-22 2018-10-02 安徽大学 一种复合石墨烯气凝胶电极、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108615621A (zh) * 2018-06-22 2018-10-02 安徽大学 一种复合石墨烯气凝胶电极、其制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hierarchically porous nitrogen-doped graphene aerogels as efficient metal-free oxygen reduction catalysts;Zongsheng Hou 等;《Colloid and Interface Science》;20161103;第317页左边栏第1段-318页右边栏第1段 *
氮掺杂石墨烯气凝胶的制备与性能研究;石贤盼;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20170315;第36页第1段-第37页第1段 *

Also Published As

Publication number Publication date
CN109243849A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
Yuan et al. Synthesis and utilization of RuO 2· xH 2 O nanodots well dispersed on poly (sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors
Carriazo et al. Microwave-assisted synthesis of NiCo 2 O 4–graphene oxide nanocomposites suitable as electrodes for supercapacitors
Li et al. MOF-derived Co/C nanocomposites encapsulated by Ni (OH) 2 ultrathin nanosheets shell for high performance supercapacitors
Lv et al. Coal-based 3D hierarchical porous carbon aerogels for high performance and super-long life supercapacitors
Andikaey et al. Synthesis of engineered graphene nanocomposites coated with NiCo metal-organic frameworks as electrodes for high-quality supercapacitor
Hsieh et al. Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors
CN106365142A (zh) 一种基于化学交联的高比表面积高电导率石墨烯复合碳气凝胶的制备方法
Du et al. Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery
Wang et al. Hydrothermal synthesis and electrochemical performance of NiO microspheres with different nanoscale building blocks
KR101975033B1 (ko) 비반복적이고 불규칙적인 3차원 기공을 포함하는 그래핀 및 이의 제조 방법
Chatterjee et al. Synthesis and characterization of CuO-NiO nanocomposites for electrochemical supercapacitors
Xu et al. One-pot solvothermal synthesis of size-controlled NiO nanoparticles
CN109742355A (zh) 一种硅碳复合材料制备方法
Xu et al. A strategy and detailed explanations to the composites of Si/MWCNTs for lithium storage
Zhu et al. In situ synthesis of porous Co 3 O 4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors
CN106024410A (zh) 一种高容量石墨烯基超级电容器电极材料及其制备方法
Yuan et al. Template-free synthesis of ordered mesoporous NiO/poly (sodium-4-styrene sulfonate) functionalized carbon nanotubes composite for electrochemical capacitors
Dai et al. High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance
CN107123555A (zh) 一种金属氢氧化物中空纳米管及其制备方法和应用
Wang et al. Synthesis of partially graphitic nanoflake-like carbon/Fe 3 O 4 magnetic composites from chitosan as high-performance electrode materials in supercapacitors
CN104591118A (zh) 一种三维状石墨烯/碳纳米管复合微珠的制备方法
CN109822107B (zh) 一种金纳米粒子复合生物质碳材料的制备方法
CN109243849B (zh) 超级电容器用氮掺杂分级孔石墨烯气凝胶及其制备方法
Jia et al. SiO2 anchored stacked-petal structure CoO-NiO/CNF as electrodes for high-rate-performance supercapacitors
CN110718398B (zh) 高容量碳纳米管-四硫化二钴合镍复合材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191011

CF01 Termination of patent right due to non-payment of annual fee