CN109241867B - 采用人工智能算法识别数字岩心图像的方法及装置 - Google Patents

采用人工智能算法识别数字岩心图像的方法及装置 Download PDF

Info

Publication number
CN109241867B
CN109241867B CN201810933401.0A CN201810933401A CN109241867B CN 109241867 B CN109241867 B CN 109241867B CN 201810933401 A CN201810933401 A CN 201810933401A CN 109241867 B CN109241867 B CN 109241867B
Authority
CN
China
Prior art keywords
core
gray value
dimensional space
pixel point
neural network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810933401.0A
Other languages
English (en)
Other versions
CN109241867A (zh
Inventor
龙威
昝成
程浩然
雷鸣
孟惠婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Icore Shenzhen Energy Technology Co ltd
Shenzhen Research Institute Tsinghua University
Original Assignee
Icore Shenzhen Energy Technology Co ltd
Shenzhen Research Institute Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Icore Shenzhen Energy Technology Co ltd, Shenzhen Research Institute Tsinghua University filed Critical Icore Shenzhen Energy Technology Co ltd
Priority to CN201810933401.0A priority Critical patent/CN109241867B/zh
Publication of CN109241867A publication Critical patent/CN109241867A/zh
Application granted granted Critical
Publication of CN109241867B publication Critical patent/CN109241867B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts

Abstract

本申请揭示了一种采用人工智能算法识别数字岩心图像的方法、装置、电子设备和计算机可读存储介质。所述方法包括:获取岩心扫描图像,所述岩心扫描图像与岩心对应;通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法;识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量;根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布。通过神经网络检测上述根据灰度值的变化所提取的特征量,对三维空间中的像素点进行自动识别,能够大大提高识别的精度。

Description

采用人工智能算法识别数字岩心图像的方法及装置
技术领域
本申请涉及图像处理技术领域,特别涉及一种采用人工智能算法识别数字岩心图像的方法、装置、电子设备和计算机可读存储介质。
背景技术
在现代微观科学领域,成像技术得到了极大的提高和广泛的应用。成像技术例如,微米级断层扫描重构,电子扫描显微镜,透射电子显微镜,纳米级断层扫描重构。
通过上述成像技术能够得到被扫描样品的灰度图像。根据扫描设备的不同,灰度图像中图像像素点的灰度值表征不同的物理量。例如,在微米级断层扫描重构中,所得到灰度图像中图像像素点的灰度值与被扫描样品的密度正相关,灰度图像中灰度值越大的区域,被扫描样品在此区域所对应的密度越大。
根据灰度图像,可以建立三维模型对被扫描样品进行模拟分析。但在进行模拟分析前,需先对被扫描样品所含物质进行识别,以及对不同的物质进行不同的标注。例如,在石油及天然气领域,需要将所采集岩心样品中的物质区分为岩石、有机物、空气。
当前,对岩心样品中的物质进行识别的方法是对数字岩心图像(扫描岩心样品产生的灰度图像)进行初步的阈值分割,即,直接将图像像素点根据其灰度值所在的范围进行分割识别。
但是,由于数字岩心图像中会存在伪影,现有的识别数字岩心图像的方法只对图像进行初步的阈值分割,识别精度低,例如,容易将孔隙识别为岩石。
申请内容
为了解决相关技术中识别精度低的技术问题,本申请提供了一种采用人工智能算法识别数字岩心图像的方法、装置、电子设备和计算机可读存储介质。
一种采用人工智能算法识别数字岩心图像的方法,所述方法包括:
获取岩心扫描图像,所述岩心扫描图像与岩心对应;
通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法;
识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量;
根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布。
一种采用人工智能算法识别数字岩心图像的装置,所述装置包括:
图像获取模块,获取岩心扫描图像,所述岩心扫描图像与岩心对应;
灰度值获取模块,通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法;
特征量提取模块,识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量;
物质识别模块,根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布。
一种电子设备,包括:
处理器;以及
存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所述处理器执行时实现如前所述的方法。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前所述的方法。
本申请的实施例提供的技术方案可以包括以下有益效果:
对于被扫描的岩心样品,将扫描所得岩心扫描图像映射至三维空间,岩心在三维空间中的映射为若干像素点,取若干所述像素点作为样本,对样本进行物质识别所得样本数据用于训练神经网络算法,根据三维空间中灰度值的变化提取特征量,最后通过神经网络算法根据特征量识别岩心所含物质,获得岩心在三维空间的物质分布。通过神经网络算法检测上述根据灰度值的变化所提取的特征量,对三维空间中的像素点进行自动识别,一方面能够将一部分现有技术识别错的像素点根据该像素点灰度值的变化识别出来,大大提高识别的精度,另一方面能够自动识别,无需人为设置阈值,人工工作量小。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并于说明书一起用于解释本申请的原理。
图1是根据一示例性实施例示出的一种采用人工智能算法识别数字岩心图像的方法的流程图;
图2是根据图1实施例示出的一种交互界面的示意图;
图3是根据图1对应实施例示出的步骤130的细节的流程图;
图4是根据图1对应实施例示出的一种采用人工智能算法识别数字岩心图像的方法的流程图;
图5是根据图1对应实施例示出的步骤170的细节的流程图;
图6是根据图5对应实施例示出的步骤170的细节的流程图;
图7是根据一示例性实施例示出的一种采用人工智能算法识别数字岩心图像的装置的框图;
图8是根据图7对应实施例示出的物质识别模块的细节的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所描述的、本申请的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种采用人工智能算法识别数字岩心图像的方法的流程图。如图1所示,该方法包括以下步骤。
步骤110,获取岩心扫描图像,该岩心扫描图像与岩心对应。
应当理解,在此说明书中,岩心样品是指从岩石中取出的岩石样品,也将岩心样品直接称为岩心。岩心扫描图像是扫描设备发射扫描信号扫描岩心所产生,可以是岩心的三维灰度图像,也可以是岩心的二维灰度图像序列,和岩心对应。
当前,通过例如微米级断层扫描重构技术,纳米级断层扫描重构技术,可以得到岩心的三维灰度图像,通过例如电子扫描显微镜扫描技术,透射电子显微镜扫描技术,可以得到岩心的二维灰度图像序列(有序排列的若干二维灰度图像)。
步骤130,通过岩心扫描图像得到岩心所映射三维空间中每个像素点的灰度值,取若干像素点作为样本,对样本进行物质识别所得样本数据用于训练神经网络算法。
岩心扫描图像是由若干像素点构成的灰度图像,每个像素点都有其灰度值,像素点的灰度值位于一定范围内。
灰度值是与扫描信号的信号强度成正比的,但扫描信号在岩心中传播时信号强度会有一定程度的衰减,导致部分像素点的灰度值比其应有的灰度值偏低,因此,需根据扫描信号的信号强度衰减趋势对灰度值进行恢复,消除信号强度衰减所造成的灰度值失真,得到在同一信号强度下图像中每个像素点的灰度值,即对像素点灰度值进行标准化,将灰度值约束至指定范围,得到标准灰度图像。
标准灰度图像的灰度值范围(例如0~2^8,0~2^16,0~2^32),即上述指定范围取决于扫描设备中灰度值的存储方式(例如8位、16位、32位)。
将岩心扫描图像标准化一方面是为了能够根据灰度值的变化识别像素点所对应的物质,另一方面,通过不同的扫描设备所取得的岩心扫描图像中,像素点的灰度值表征不同的物理参数。例如,通过微米级断层扫描重构技术所得岩心扫描图像中,像素点的灰度值表征岩心的密度,像素点的灰度值越大,表示在该处岩心的密度越大。为了能够根据灰度值得到岩心的物理参数,需将岩心扫描图像标准化。
将岩心扫描图像映射至三维空间时将岩心扫描图像标准化,岩心在三维空间中的映射对应于上述标准灰度图像。相应的,三维空间中的像素点对应于标准灰度图像中的像素点。
在一示例性实施例中,对岩心在三维空间中的映射,取其中的若干像素点作为样本,人工完成对样本中像素点对应物质的识别。
用已识别的样本训练所搭建的神经网络算法,训练好的神经网络算法能够对上述三维空间中的所有像素点进行自动识别。
步骤150,识别三维空间中灰度值的变化,根据灰度值的变化提取特征量。
应当理解,受限于扫描设备,岩心扫描图像中有部分像素点的灰度值是失真的;以及,对岩心进行扫描时,是先获得岩心横截面的二维灰度图像,之后,可以按需根据二维灰度图像序列进行三维重构,生成岩心的三维灰度图像。
在获得岩心横截面的二维灰度图像时,扫描信号打在孔隙上时,对应像素点的灰度值小于打在岩石上时对应像素点的灰度值。但是,由于孔隙的存在,扫描信号打在孔隙中,直接打到和该孔隙位于不同平面上的岩石上时,也会产生较大的灰度值,导致二维灰度图像上的小部分孔隙部分具有和岩石部分接近的灰度值。
由于以上问题的出现,只根据像素点灰度值所在范围进行物质识别是存在明显不足的。
因此,在此实施例中,需识别三维空间中灰度值的变化,根据灰度值的变化来提取特征量。应当理解,灰度值的变化不仅包括灰度值的一阶变化,还包括灰度值的高阶(例如二阶、三阶、四阶)变化。也就是说,通过获取三维空间中灰度值不同层次上的变化,根据灰度值多层次上的变化构造特征量。
获得标准灰度图像中像素点的灰度值,由所有像素点的灰度值构成灰度值函数,计算该灰度值函数的一阶及高阶变化。以及,对该标准灰度图像通过若干图像处理算法进行图像特征的提取。
根据灰度值的变化所提取的特征量包括:
1)对标准灰度图像应用高斯模糊(又称Gaussian Blur、高斯平滑)后的结果。通过高斯模糊能够减少图像噪声、降低细节层次。
2)灰度值函数的黑塞矩阵(又称Hessian Matrix、海森矩阵、海瑟矩阵、海塞矩阵)。黑塞矩阵是多元函数的二阶偏导数构成的方阵,描述了函数的局部曲率。
3)对标准灰度图像应用Sobel算子的结果。Sobel算子是离散的一阶差分算子,在图像的任一像素点应用Sobel算子,将会产生该像素点的梯度矢量/法矢量。
4)对标准灰度图像应用Laplacian算子的结果。通过Laplacian算子对去噪后的图像求梯度的散度。
5)对标准灰度图像进行各向异性扩散(又称Perona-Malik扩散)滤波后的结果。通过各向异性扩散滤波降低图像噪声。
6)对标准灰度图像进行双边滤波后的结果。双边滤波能够对图像进行非线性保边去噪平滑滤波,其将像素点的值以邻近像素点的加权平均值替换,可以基于高斯分布进行加权,权重不仅取决于像素点之间的欧氏距离,还取决于辐射差异。
7)根据Lipschitz条件(又称利普希茨连续条件,Lipschitz Continuity)对标准灰度图像进行平滑后的结果。符合利普希茨条件的函数连续、一致连续。
8)对标准灰度图像应用Gabor变换后的结果。通过Gabor变换为图像进行线性滤波,对图像进行纹理分析。
9)对标准灰度图像应用DoG(高斯差分,Difference of Gaussians)算子后的结果。通过高斯差分算子进行灰度图像增强和角点检测。
10)灰度值函数灰度向量的膜长(Membrane projection)。灰度向量的膜长是灰度向量消除方向因素后的线段长度。
11)标准灰度图像灰度值的均值。
12)标准灰度图像灰度值的方差。方差越大,图像灰度值偏离自身均值越多。
13)标准灰度图像灰度值的最小值。
14)标准灰度图像灰度值的最大值。
15)标准灰度图像灰度值的中位数。对图像灰度值按大小排序获得。
16)对标准灰度图像进行Kuwahara滤波后的结果。Kuwahara滤波为保边平滑滤波。
17)灰度值函数的导数。对图像的灰度值函数求导获得。
18)标准灰度图像的结构张量(Structure tensor)。通过结构张量区分图像中的平坦区域、边缘和角点。
19)标准灰度图像灰度值的熵。灰度值分布越随机,熵越大。
20)对标准灰度图像应用聚类算法(又称Neighbors)的结果。
在一示例性实施例中,为用户提供如图2所示的交互界面,接收用户根据需要所进行的特征量选择,只针对用户所选择的特征量进行计算,提高识别速度。
在该实施例中,步骤150包括:根据三维空间中每个像素点的灰度值,计算三维空间中每个像素点的灰度值变化趋势,由灰度值变化趋势构造像素点的若干特征量。
其中,若干特征量是用户所选择的特征量,例如,检测到用户在图2所示交互界面选择了特征量Hessian,则根据三维空间中像素点的灰度值,计算像素点灰度值的二阶偏导数(灰度值变化趋势),由像素点灰度值的二阶偏导数构造像素点的黑塞矩阵(特征量)。
步骤170,根据特征量,通过神经网络算法识别岩心所含物质,得到三维空间中的物质分布。
将像素点的特征量输入神经网络算法,神经网络算法将根据像素点的特征量识别该像素点所对应的物质,因此,神经网络算法能够将对应于不同物质的像素点区分开,三维空间中的像素点被区分开后,所得到的就是岩心所对应的三维空间中的物质分布。
神经网络算法可以是two-stage算法,例如R-CNN,Fast R-CNN,Faster R-CNN,也可以是one-stage算法,例如Yolo。
通过神经网络算法检测像素点灰度值及特征量,对三维空间中的像素点进行自动识别,能够大大提高识别的精度。此外,通过上述方法进行图像识别,自动学习,自动分割,可以大大降低工作量,无需人为设定阈值。
如前所述,在图1所示实施例中,岩心扫描图像可以是二维灰度图像,也可以是三维灰度图像。图3是根据图1对应实施例示出的步骤130的细节的流程图。如图3所示,当岩心扫描图像是对应于岩心横截面的二维扫描图像时,步骤130包括:
步骤131,对岩心扫描图像进行三维重构得到岩心在三维空间中的映射。
根据扫描设备的参数标定二维灰度图像中的像素点在三维空间中的坐标,基于二维灰度图像中的特征进行二维灰度图像之间的立体匹配,根据像素点在三维空间中的坐标以及二维灰度图像间的立体匹配构建岩心的三维灰度图像,即岩心在三维空间中的映射。
应当理解,扫描岩心所得二维灰度图像需先经三维重构生成岩心的三维灰度图像,之后通过神经网络算法对三维灰度图像进行物质识别。
步骤133,将三维空间中像素点的灰度值约束至相应的灰度值范围,该灰度值范围对应于灰度值的存储方式。
在具体实现中,将三维空间中像素点的灰度值根据扫描信号强度的衰减变化进行恢复,使所有灰度值对应同一信号强度。恢复后像素点灰度值所在范围适应于灰度值的存储方式,以16位无符号数据格式为例,灰度值范围是0~65536,即0~2^16。
步骤135,将三维空间中若干像素点作为样本,对样本进行物质识别和标注,生成样本数据。
为了降低人工工作量,仅对三维空间中小部分像素点进行像素点对应的物质的人为识别,识别出像素点对应的物质后,根据像素点所对应物质,对像素点进行标注。在一示例性实施例中,对像素点进行的标注即将像素点的灰度值替换为特定值,例如,像素点所对应物质为水的,将像素点的灰度值替换为1,像素点所对应物质为油的,将像素点的灰度值替换为2。
在另一示例性实施例中,对像素点进行的标注即将像素点与特定标注信息关联,例如,像素点所对应物质为水的,将像素点与标注信息“水”关联。
对样本中的像素点完成了识别和标注后,将包含有像素点灰度值、标注信息的样本数据用于神经网络算法训练。
图4是根据图1对应实施例示出的一种采用人工智能算法识别数字岩心图像质的方法的流程图。如图4所示,步骤170之前,还包括以下步骤。
步骤210,获取样本数据,样本数据包括已识别所包含物质的样本的所有特征量以及所识别物质的标注信息。
其中,已识别所包含物质的样本是指物质分布已知的样本,将物质分布已知的样本所对应的像素点数据(包括像素点的灰度值、像素点的特征量、像素点对应的标注信息)作为样本数据,用于训练神经网络。
在一实施例中,像素点对应的标注信息是指在人工识别出该像素点所对应的物质之后,对该像素点进行标注,将和所识别物质对应的信息作为该像素点的标注信息。
步骤230,用样本数据训练神经网络,获得能够根据特征量以及标注信息进行物质识别的神经网络。
输入物质分布已知的岩心的图像数据,进行迭代直到神经网络算法的输出结果与岩心的实际结构一致(误差较小)。
对岩心在三维空间中的映射进行标注时,只需人工标注小部分像素点,得到样本数据,用于训练神经网络,大部分像素点都由训练好的神经网络进行标注,人工工作量小,标注效率高。
图5是根据图1对应实施例示出的步骤170的细节的流程图。如图5所示,步骤170包括:
步骤171,遍历三维空间中的像素点,将像素点的灰度值以及特征量输入神经网络算法。
对于三维空间中的每个像素点,将该像素点的灰度值以及若干根据灰度值计算得到的特征量输入神经网络算法中。
步骤173,通过神经网络算法确定像素点所对应物质,按像素点对应的物质,将像素点与相应标注信息关联。
在步骤170之前,通过样本数据训练了神经网络算法,训练后的神经网络算法能够根据三维空间中像素点的灰度值及特征量确定像素点所对应物质,根据像素点所对应物质,对像素点进行标注,即,将像素点关联至相应的标注信息。
不同的物质对应不同的标注信息,例如,孔隙、岩石分别对应不同的标注信息,以通过标注信息区分不同的物质。
在一示例性实施例中,将对应于不同物质的像素点标注为不同颜色,以直观表征岩心中的物质分布,例如,将对应孔隙的像素点都标注为蓝色,将对应于岩石的像素点都标注为红色。
应当理解,神经网络算法对物质进行标注后,可以通过人工方式验证标注是否正确。在一示例性实施例中,对于标注正确的像素点,保存该像素点的灰度值及特征量,之后可以将该像素点作为种子像素点。
至此,对三维空间中的像素点都进行了一次标注。
还可以根据种子像素点进行一次标注。
图6是根据图5对应实施例示出的步骤170的细节的流程图。如图6所示,步骤170还包括:
步骤310,将像素点的灰度值及特征量与已确定所对应物质的种子像素点进行比较。
种子像素点是具有特定灰度值、特征量、标注信息的像素点,种子像素点的构造方法是,对所对应物质已知的像素点,获得像素点的特征量及灰度值,将像素点和相应标注信息关联,形成种子像素点,标注信息是适应于像素点所对应物质的,在将标注信息和像素点关联前,需先配置标注信息和其所表征物质的对应关系。
将标准灰度图像的像素点和种子像素点比较,即遍历标准灰度图像中的像素点,将当前像素点与所有种子像素点一一比较,判断是否存在与当前像素点有相同灰度值、特征量的种子像素点。
步骤330,该像素点与一种子像素点有相同的灰度值及特征量时,将该种子像素点所关联的标注信息作为该像素点的标注信息。
存在与当前像素点有相同灰度值、特征量的种子像素点时,将该种子像素点的标注信息与当前像素点关联。
由于种子像素点可以通过人工及计算机补充、更新,根据种子像素点的灰度值、特征量对岩心所映射三维空间中像素点进行标注,可以作为对神经网络算法标注的验证、补充,提高识别正确率。
应当理解,本申请所提供的方法不限于用于识别岩心中的物质,也可以用于识别岩屑中的物质。
下述为本申请装置实施例,可以用于执行本申请上述方法实施例。对于本申请装置实施例中未披露的细节,请参照本申请方法实施例。
图7是根据一示例性实施例示出的一种采用人工智能算法识别数字岩心图像的装置的框图。如图7所示,该装置包括以下模块。
图像获取模块410,用于获取岩心扫描图像,所述岩心扫描图像与岩心对应。
灰度值获取模块430,用于通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法。
特征量提取模块450,用于识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量。
物质识别模块470,用于根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布。
图8是根据图7对应实施例示出的物质识别模块的细节的框图。如图8所示,物质识别模块包括以下单元。
遍历单元471,用于遍历所述三维空间中的所述像素点,将所述像素点的灰度值以及特征量输入神经网络算法。
标注单元473,用于通过神经网络算法确定所述像素点所对应物质,按所述像素点对应的物质,将所述像素点与相应标注信息关联。
可选的,本申请还提供一种电子设备,该电子设备可以用于如前所示实施环境中,执行如上任一所示的方法的全部或者部分步骤。所述电子设备包括:
处理器;
用于存储处理器可执行指令的存储器;
所述计算机可读指令被所述处理器执行时实现前述方法。
该实施例中处理器执行操作的具体方式已经在前述方法的实施例中执行了详细描述,此处将不做详细阐述说明。
该电子设备执行上述方法时,按以下流程为用户显示交互界面。
在开始进行识别时,为用户显示一交互界面,接收用户对标注信息的设置,使得之后能够根据用户对标注信息的设置,对识别为特定物质的像素点建立和相应标注信息的关联。
在根据用户所输入数据配置标注信息之后,为用户显示另一交互界面,接收用户对特征量的选择,之后装设于电子设备中的神经网络算法将根据用户所选择的特征量进行图像中物质的识别。
神经网络算法对像素点特征量的计算可以是并行计算,该电子设备中装设有若干CPU(Central Processing Unit,中央处理器)时,通过该若干CPU并行进行计算。
在一示例性实施例中,还提供了一种存储介质,该存储介质为计算机可读存储介质,例如可以为包括指令的临时性和非临时性计算机可读存储介质。该存储介质例如包括指令的存储器,上述指令可由装置的处理器执行以完成上述方法。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围执行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

1.一种采用人工智能算法识别数字岩心图像的方法,其特征在于,所述方法包括:
获取岩心扫描图像,所述岩心扫描图像与岩心对应;
通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法;
识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量,所述灰度值的变化包括:将三维空间中所有像素点的灰度值转换成灰度值函数,计算所述灰度值函数的一阶或高阶变化;
根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布。
2.根据权利要求1所述的方法,其特征在于,所述岩心扫描图像是对应于岩心横截面的二维扫描图像,所述通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法,包括:
对所述岩心扫描图像进行三维重构得到所述岩心在三维空间中的映射;
将所述三维空间中像素点的灰度值约束至相应的灰度值范围,所述灰度值范围对应于所述灰度值的存储方式;
将所述三维空间中若干像素点作为样本,对所述样本进行物质识别和标注,生成样本数据。
3.根据权利要求1所述的方法,其特征在于,所述识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量,包括:
根据所述三维空间中每个像素点的灰度值,计算所述三维空间中每个像素点的灰度值变化趋势,由所述灰度值变化趋势构造所述像素点的若干特征量。
4.根据权利要求1所述的方法,其特征在于,所述根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布之前,所述方法还包括:
获取样本数据,所述样本数据包括已识别所包含物质的样本的所有特征量以及所识别物质的标注信息;
用所述样本数据训练神经网络算法,获得能够根据特征量以及标注信息进行物质识别的神经网络算法。
5.根据权利要求1所述的方法,其特征在于,所述根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布,包括:
遍历所述三维空间中的所述像素点,将所述像素点的灰度值以及特征量输入神经网络算法;
通过神经网络算法确定所述像素点所对应物质,按所述像素点对应的物质,将所述像素点与相应标注信息关联。
6.根据权利要求5所述的方法,其特征在于,所述根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布,还包括:
将所述像素点的灰度值及特征量与已确定所对应物质的种子像素点进行比较;
所述像素点与所述种子像素点有相同的灰度值及特征量时,将所述种子像素点所关联的标注信息作为所述像素点的标注信息。
7.一种采用人工智能算法识别数字岩心图像的装置,其特征在于,所述装置包括:
图像获取模块,用于获取岩心扫描图像,所述岩心扫描图像与岩心对应;
灰度值获取模块,用于通过所述岩心扫描图像得到所述岩心所映射三维空间中每个像素点的灰度值,取若干所述像素点作为样本,对所述样本进行物质识别所得样本数据用于训练神经网络算法;
特征量提取模块,用于识别所述三维空间中所述灰度值的变化,根据所述灰度值的变化提取特征量,所述灰度值的变化包括:将三维空间中所有像素点的灰度值转换成灰度值函数,计算所述灰度值函数的一阶或高阶变化;
物质识别模块,用于根据所述特征量,通过神经网络算法识别所述岩心所含物质,得到所述三维空间中的物质分布。
8.根据权利要求7所述的装置,其特征在于,所述物质识别模块包括:
遍历单元,用于遍历所述三维空间中的所述像素点,将所述像素点的灰度值以及特征量输入神经网络算法;
标注单元,用于通过神经网络算法确定所述像素点所对应物质,按所述像素点对应的物质,将所述像素点与相应标注信息关联。
9.一种电子设备,其特征在于,包括:
处理器;以及
存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所述处理器执行时实现根据权利要求1至6中任一项所述的方法。
10.一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现根据权利要求1至6中任一项所述的方法。
CN201810933401.0A 2018-08-16 2018-08-16 采用人工智能算法识别数字岩心图像的方法及装置 Active CN109241867B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810933401.0A CN109241867B (zh) 2018-08-16 2018-08-16 采用人工智能算法识别数字岩心图像的方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810933401.0A CN109241867B (zh) 2018-08-16 2018-08-16 采用人工智能算法识别数字岩心图像的方法及装置

Publications (2)

Publication Number Publication Date
CN109241867A CN109241867A (zh) 2019-01-18
CN109241867B true CN109241867B (zh) 2022-03-15

Family

ID=65070424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810933401.0A Active CN109241867B (zh) 2018-08-16 2018-08-16 采用人工智能算法识别数字岩心图像的方法及装置

Country Status (1)

Country Link
CN (1) CN109241867B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110097027A (zh) * 2019-05-13 2019-08-06 安徽工业大学 基于卷积神经网络的煤岩壳质组显微图像分类方法及系统
CN110458169A (zh) * 2019-07-22 2019-11-15 中海油信息科技有限公司 一种岩屑ct图像特征识别方法
CN112348831B (zh) * 2020-11-05 2022-11-11 中国石油大学(华东) 基于机器学习的页岩sem图像分割方法
CN112419244B (zh) * 2020-11-11 2022-11-01 浙江大学 混凝土裂缝分割方法及装置
CN113313131B (zh) * 2021-07-29 2021-09-21 四川省冶勘设计集团有限公司 基于图像处理的数字化岩芯辨识方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927528A (zh) * 2014-05-05 2014-07-16 中国矿业大学(北京) 基于紧邻域像素灰度联合分布特征的煤岩识别方法
CN104182730A (zh) * 2014-08-06 2014-12-03 南京大学镇江高新技术研究院 一种花岗岩显微薄片自动鉴别方法
CN105649615A (zh) * 2015-12-28 2016-06-08 中国石油天然气股份有限公司 Ct定量、三维可视化测试储层致密油赋存状态的方法
CN106198579A (zh) * 2015-06-01 2016-12-07 中国石油化工股份有限公司 一种测量页岩中有机质含量的方法
CN106485223A (zh) * 2016-10-12 2017-03-08 南京大学 一种砂岩显微薄片中岩石颗粒的自动识别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112126A (zh) * 2014-08-06 2014-10-22 南京大学镇江高新技术研究院 一种大理岩显微薄片自动鉴别方法
US9880318B2 (en) * 2014-11-07 2018-01-30 Ge Energy Oilfield Technology, Inc. Method for analyzing core sample from wellbore, involves analyzing zone of interest in core sample, and forming image of core sample to spatially represent characteristics of core sample
CN107220946B (zh) * 2017-05-18 2020-06-23 长安大学 一种岩石运输带上不良块度图像的实时剔除方法
CN107655908B (zh) * 2017-11-07 2020-05-08 中国石油天然气股份有限公司 一种构建数字岩心的方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927528A (zh) * 2014-05-05 2014-07-16 中国矿业大学(北京) 基于紧邻域像素灰度联合分布特征的煤岩识别方法
CN104182730A (zh) * 2014-08-06 2014-12-03 南京大学镇江高新技术研究院 一种花岗岩显微薄片自动鉴别方法
CN106198579A (zh) * 2015-06-01 2016-12-07 中国石油化工股份有限公司 一种测量页岩中有机质含量的方法
CN105649615A (zh) * 2015-12-28 2016-06-08 中国石油天然气股份有限公司 Ct定量、三维可视化测试储层致密油赋存状态的方法
CN106485223A (zh) * 2016-10-12 2017-03-08 南京大学 一种砂岩显微薄片中岩石颗粒的自动识别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
一种岩芯识别算法;冯惠妍等;《黑龙江八一农垦大学学报》;20100228;89-91 *
智能图像技术研究及岩心图像自动识别系统;蒙秀梅;《中国优秀硕士学位论文全文数据库信息科技辑》;20110915;I138-835 *

Also Published As

Publication number Publication date
CN109241867A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
CN109241867B (zh) 采用人工智能算法识别数字岩心图像的方法及装置
Zhao et al. Multi-scale optimal fusion model for single image dehazing
EP3916635B1 (en) Defect detection method and apparatus
CN107833220B (zh) 基于深度卷积神经网络与视觉显著性的织物缺陷检测方法
CN113160192B (zh) 复杂背景下基于视觉的压雪车外观缺陷检测方法及装置
US20090252429A1 (en) System and method for displaying results of an image processing system that has multiple results to allow selection for subsequent image processing
CN108564085B (zh) 一种自动读取指针式仪表读数的方法
CN109872303B (zh) 表面缺陷视觉检测方法、装置和电子设备
CN109840483B (zh) 一种滑坡裂缝检测与识别的方法及装置
CN108470350B (zh) 折线图中的折线分割方法及装置
CN111507426B (zh) 基于视觉融合特征的无参考图像质量分级评价方法及装置
CN110570435B (zh) 用于对车辆损伤图像进行损伤分割的方法及装置
CN111145209A (zh) 一种医学图像分割方法、装置、设备及存储介质
CN115830004A (zh) 表面缺陷检测方法、装置、计算机设备和存储介质
CN115861409B (zh) 大豆叶面积测算方法、系统、计算机设备及存储介质
CN113592782A (zh) 一种复合材料碳纤维芯棒x射线图像缺陷提取方法及系统
CN114998290A (zh) 基于有监督模式的织物瑕疵检测方法、装置、设备及介质
CN113689412A (zh) 甲状腺图像处理方法、装置、电子设备及存储介质
Shit et al. An encoder‐decoder based CNN architecture using end to end dehaze and detection network for proper image visualization and detection
CN110991408B (zh) 基于深度学习方法分割脑白质高信号的方法和装置
CN116310358B (zh) 铁路货车螺栓丢失检测方法、存储介质及设备
CN116934761A (zh) 一种乳胶手套缺陷自适应检测方法
CN116245861A (zh) 基于交叉多尺度的无参考图像质量评价方法
CN114092470B (zh) 一种基于深度学习的肺裂自动检测方法及装置
CN114782822A (zh) 电力设备的状态检测方法、装置、电子设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant